Supporting Information

Uptake and surface reaction of methanol by sulfuric acid solutions investigated by vibrational sum frequency generation and Raman spectroscopies

Lisa L. Van Loon and Heather C. Allen*

Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210

*Corresponding author email: allen@chemistry.ohio-state.edu (Heather C. Allen)

Mass balance calculations for the methyl species in the H₂SO₄ solutions

The methyl species mass balance at equilibrium was calculated in the following manner. H_{ROH} is the acidity function² for the alcohol, and MHS is the protonated and unprotonated methyl sulfate species.

 $[CH_3OH]_{initial} = [CH_3OH]_{eq} + [CH_3OH_2^+]_{eq} + [MHS]_{eq}$

$$\log \frac{[CH_{3}OH_{2}^{+}]}{[CH_{3}OH]} = -H_{ROH} + pK_{BH}$$

A value of $pK_{BH+} = -2.05$ was used.¹

The values of H_{ROH} were determined from a plot of H_{ROH} vs. wt% sulfuric acid solution. The values were taken from reference 2. Over the wt% range of interest, the relationship between H_{ROH} and wt%

H₂SO₄ is approximately linear. Therefore, the data was fit using a linear regression.

Figure S1. Plot of H_{ROH} values² as a function of wt% H_2SO_4 .

The required values of H_{ROH} could then be calculated using the equation:

$$H_{ROH} = 0.0264 * (wt\%H_2SO_4) - 0.0093$$

The extent of MHS formation was calculated using the apparent equilibrium constant, K_{eq} .

$$K_{eq} = \frac{[MHS][H_2O]}{[H_2SO_4][CH_3OH]}$$

 K_{eq} values were extrapolated from a plot of $K_{eq}\,^3$ vs wt% $H_2SO_4.$

Figure S2. Plot of K_{eq} ³ as a function of wt% H₂SO₄.

Using the extrapolated values of K_{eq} , the extent of reaction was calculated for each H_2SO_4 solution.

 $K_{eq} = 0.0557 x (wt \% H_2 SO_4) - 1.5809$

The percentages of CH₃OH, CH₃OH₂⁺ and MHS were calculated and are shown in Table 2 of the main article. Using a value of $pK_{BH^+} = -4.86$,⁴ the calculated equilibrium mass balance is shown in Table S1 below.

$\begin{array}{c} wt & \% \\ H_2SO_4 \end{array}$	% CH ₃ OH	% CH ₃ OH ₂ ⁺	% MHS
47.1	86.9	0.02	13.0
51.4	83.2	0.03	16.7
54.5	80.7	0.03	19.3
58.4	77.7	0.04	22.3
61.5	75.4	0.05	24.6
64.7	73.1	0.05	26.8
68.3	70.8	0.07	29.2

Table S1. Calculated equilibrium mass balance of the methyl species in $47.1 - 68.3 \text{ wt}\% \text{ H}_2\text{SO}_4$ solutions using pK_{BH+} = -4.86.

Comparing the values in Table S1 and Table 2 from the article show that the value of pK_{BH} chosen will greatly affect the predicted mass balance.

Another study investigated the esterification of ethanol in 60+ wt% H₂SO₄.⁵ Using the % esterification determined in reference 5 we recalculated the mass balance.

$\begin{array}{c} wt & \% \\ H_2SO_4 \end{array}$	% CH ₃ OH	% CH ₃ OH ₂ ⁺	% MHS
61.5	60.5	23.9	15.6
64.7	56.0	27.1	16.9
68.3	51.1	30.8	18.0

Table S2. Mass balance determined using % conversion found in reference 5.

Comparing the values from Table 2 and Table S2, shows that the predicted mass balance using the different values for the % conversion to MHS remain similar within a few percent.

References

- (1) Perdoncin, G.; Scorrano, G. J. Am. Chem. Soc. 1977, 99, 6983-6986.
- (2) Lee, D. G.; Cameron, R. J. Am. Chem. Soc 1971, 93, 4724-4728.
- (3) Deno, N. C.; Newman, M. S. J. Am. Chem. Soc. 1950, 72, 3852-3856.
- (4) Weston Jr, R. E.; Ehrenson, S.; Heinzinger, K. J. Am. Chem. Soc. 1967, 89, 481 486.
- (5) Clark, D. J.; Williams, G. J. Chem. Soc. 1957, 4218-4221.