Supporting Information V110

Effective diffusion coefficients for methanol in sulfuric acid solutions measured by Raman spectroscopy.

Lisa L. Van Loon^{a‡,}, Heather C. Allen^{*a}, and Barbara Wyslouzil^{*a,b}

 a. Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210

 b. Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, Ohio, 43210

To determine the concentration of CH_3OH species in both H_2O and the H_2SO_4 solutions, calibration curves were prepared. Peak areas were determined and plotted as a function of the initial mole % CH_3OH added to the solutions with the recognition that the solutions can contain up to three methyl species, CH_3OH , $CH_3OH_2^+$, and MHS (see Table 2 of the main paper for the expected distributions). The mixtures were stirred to ensure complete reaction before the Raman spectra were taken. Raman spectra were obtained

using 150 mW from a 785 nm continuous wave laser (Raman Systems Inc.) The backscattered light was collected by a fiber optic probe (InPhotonics) coupled to the entrance slit of a 500 mm monochromator (Acton Research, SpectraPro 500i), using a 600 groove/mm grating blazed at 1 μ m. The slit width was set at 50 μ m and the bandpass was 4 cm⁻¹ for the H₂SO₄ solution experiments. Spectra were acquired as the average of three thirty-second spectra.

To minimize the error in the measured peak area, the most intense peak with the least solvent interference was used for analysis. The diffusion of CH_3OH into water was monitored using the C-O symmetric stretch present at 1020 cm⁻¹. The diffusion of CH_3OH into 39.2 to 79.3 wt% H_2SO_4 solutions was monitored using the CH₃ stretching region (2800 and 3200 cm⁻¹) (due to overlapping of H_2SO_4 vibrational modes with the CO stretch of reacted CH₃OH). The diffusion of CH₃OH into 96.5 wt% H_2SO_4 was monitored using the O-S-O symmetric stretch present at 800 cm⁻¹ since the reaction to MHS is both rapid and essentially complete.

The CH₃OH-water calibration curve was multiplied by a factor of 2 to account for the difference in slit width used between the calibration curve collection (50 μ m) and the diffusion experiments (100 μ m) after testing was completed on a methanol standard confirming that the signal does change accordingly in this slit width range.

Table S1. The intercepts, *a*, and slopes, *b*, determined using weighted linear regressions of the calibration data presented in Figs. S1 and S2. The variables *x* and *y* are the mol% CH₃OH and the peak area ratio, respectively.

$y=a+b\times x$	H ₂ O	$39.2 \text{ wt}\% \ H_2SO_4$	$61.6 \text{ wt}\% \ H_2SO_4$	79.7 wt% H_2SO_4	96.5 wt% H_2SO_4
	vC-O	vCH ₃ -ss	vCH ₃ -ss	vCH ₃ -ss	vO-S-O
		vCH ₃ -as	vCH ₃ -as	vCH ₃ -as	
а	78 ± 150	418 ± 180	905 ± 236	-140 ± 203	1091 ± 741
		682 ± 391	1995 ± 272	20 ± 189	
b	6443 ± 49	1442 ± 34	942 ± 31	484 ± 27	9916 ± 137
		2469 ± 71	1726 ± 37	898 ± 24	

Figure S1. Calibration curves for CH_3OH-H_2O using the vCO-ss. In (a) the original curve is shown. In (b) the peak areas were multiplied by a factor of 2 to account for the increase in slit width to 100 µm in the diffusion experiments from 50 µm in the calibration experiments.

Figure S2. Calibration curves for the $CH_3OH-H_2SO_4$ solutions. The x-axes are labeled as the mole % CH₃OH initially added to the solution. However, in (a)-(c) CH₃OH, CH₃OH₂⁺, and MHS are present at the time the spectra were collected and in (d) ~ all the CH₃OH is converted to MHS. In (a)-(c) the circles (•) represent the vCH₃-ss fit and the squares (•) represent the vCH₃-as fit. In (d) the vOSO stretch was used.