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We present a direct comparison of phase sensitive sum-frequency generation experiments with phase
reconstruction obtained by the maximum entropy method. We show that both methods lead to the
same complex spectrum. Furthermore, we discuss the strengths and weaknesses of each of these
methods, analyzing possible sources of experimental and analytical errors. A simulation program for
maximum entropy phase reconstruction is available at: http://lbp.epfl.ch/. © 2011 American Institute
of Physics. [doi:10.1063/1.3662469]

I. INTRODUCTION

Sum frequency generation (SFG) (Refs. 1–18) is a pow-
erful technique for probing interfaces at the molecular level.
Sum frequency (SF) photons can be generated when two laser
pulses are spatially and temporally overlapped in a sample
and induce a simultaneous infrared (IR) and Raman transi-
tion. Due to the symmetry requirements of this process, which
is forbidden under the inversion symmetry found in many
bulk materials and most liquids, SFG is inherently interface-
selective. SFG has been successful in elucidating the molecu-
lar surface structure of many aqueous12, 19–24 and biologically
relevant23, 25–35 systems.

Despite the success of SFG spectroscopy, there is an
ongoing discussion about the interpretation of experimental
findings on neat water/vapor interfaces12, 22, 36–41 and at wa-
ter in contact with phospholipid monolayers.32, 41–44 The main
reason for this is that the evaluation of SFG intensity spectra
is often non-straightforward: the SFG signal is proportional to
the square of the nonlinear surface susceptibility |χ (2)|2 or ef-
fective particle susceptibility |�(2)|2. As a result, interference
between peaks gives rise to intensity cross terms, and interfer-
ence between resonances and a weakly dispersed background
may lead to line shapes that are hard to interpret. Furthermore,
most aqueous systems consist of a superposition of vibra-
tional resonances that form broad spectral features. These fea-
tures cannot readily be assigned to distinct resonances, which
has led to different interpretations of the structure of the wa-
ter/vapor interface,12, 22, 23, 36–41 and of the structure of water
in biologically relevant environments.32, 41–44

Recently, however, two methods have been applied that
provide additional information on surface structure in the
form of a spectrum that is proportional to Im[χ (2)] rather than
|χ (2)|2. Phase-sensitive SFG (PS-SFG) (Refs. 35, 36, 39, 45–
48) was introduced as a method to retrieve the complex non-

a)Author to whom correspondence should be addressed. Electronic mail:
sylvie.roke@epfl.ch.

linear susceptibility. In PS-SFG interference between a mea-
sured signal and a reference provides a method to recover
the complex SF spectrum of a planar surface. The result-
ing Im[χ (2)] response is a linear superposition of resonances.
Furthermore, the sign of each resonance can be determined,
which yields information on the absolute orientation of the
transition dipole of molecules at an interface.

An alternative to PS-SFG is the maximum entropy
method (MEM).32 MEM is a computational method that
retrieves complex data from an intensity spectrum. The
maximum entropy method is widely used in geophysics,49

economics,50 and spectroscopy51–53 and has been suc-
cessfully applied to nonlinear microscopy54 and coher-
ent anti-stokes Raman spectroscopy55–57 and recently, SFG
spectroscopy.32, 44, 58, 59 Since MEM analysis is applied di-
rectly to intensity spectra, it can be a suitable alternative in
cases where PS-SFG is not practical. In the case of sum fre-
quency scattering,33, 60–68 for instance, a large number of scat-
terers contribute to the SFG signal. The positions of these
scatterers are random; the overall detected intensity is an in-
coherent sum over all scatterers.69 Since interferometric de-
tection depends on reproducibility of the light path length of
the SFG signal, it is not possible to gain a phase sensitive
signal for randomly distributed scatterers. MEM analysis, on
the other hand can be performed on a regular intensity spec-
trum, without the need for an interferometric measurement,
so that the method can be applied to any case in which a non-
interferometric intensity spectrum is available.

At first glance, MEM analysis seems to accomplish the
impossible: since intensity spectra are proportional to the ab-
solute square of χ (2) or �(2), all phase information is deemed
lost. Since the underlying data consist of a collection of reso-
nances, however, a MEM algorithm can recover complex data
by using the fact that all of these resonances must be decaying
in time, rather than growing or staying constant in time.

MEM analysis was first applied to SFG spectroscopy
in an investigation of phospholipid monolayers on water.34
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The results of this study were later questioned on the ba-
sis of a difference between the MEM result and results
obtained by molecular dynamics simulations43 and PS-
SFG measurements.35, 41 However, The discrepancies be-
tween MEM analysis and PS-SFG measurements could be
explained.44

In this article, we investigate to what extent the com-
plex signal retrieved from a MEM analysis corresponds to the
signal obtained in a phase sensitive SFG measurement. We
present the theoretical background of both methods, and show
that PS-SFG and MEM are analogous: the experimental pro-
cedure of PS-SFG is mirrored in the theoretical calculation of
the MEM algorithm. We offer insight into the working of the
MEM algorithm and discuss which assumptions are needed
to retrieve a complex phase from an intensity spectrum. We
then compare experimental results obtained from PS-SFG
to results obtained when the MEM algorithm is applied to
the intensity spectrum of the same recording. We show that
whenever PS-SFG detection is not possible due to practical
limitations, MEM analysis provides a reconstruction of the
relative phase of each data point in an intensity spectrum.
Moreover, when a suitable criterion is found for retrieving the
error phase, it is possible to recover a full complex spectrum,
without the need for a phase sensitive measurement. Finally,
we discuss the possible experimental and computational dis-
tortions of complex SFG spectra that may occur in PS-SFG
and MEM analysis.

II. PHASE SENSITIVE MEASUREMENTS AND PHASE
RETRIEVAL

The reflected SFG response of a planar interface is typ-
ically described in terms of a nonlinear surface polarization
P(2), which acts as the source term of the SFG field. The in-
teraction of the (local) source fields E1 and E2 with the non-
linear susceptibility tensor χ (2) determines the strength and
direction of P(2) according to

P
(2)
0,i = ε0χ

(2)
ijkE1,jE2,k. (1)

We assume a time variation of exp (iωt) at frequency ω

for all fields. The nonlinear surface polarization acts as the
source of the sum-frequency field, so that the eventual signal
intensity ISFG becomes

ISFG ∝ |u0 · P(2)|2 ∝ |χ (2)|2, (2)

where u0 is the (local) polarization direction of the sum-
frequency field. The nonlinear susceptibility χ (2) holds in-
formation on molecular density, composition, and orientation
of the infrared transition dipole. For most compounds, χ (2)

can be described with a superposition of a non-resonant back-
ground and a number of resonances:

χ (2) = ANReiφNR +
∑

n

AR,n

ω − ω0,n − iϒn

, (3)

where ANR is the non-resonant amplitude, and φNR is the
phase difference between non-resonant background and res-
onances. AR, n is the resonant amplitude of the nth resonance,
with central frequency ω0, n, and line width (half width at half

maximum) ϒn. In the time domain, the resonance at fre-
quency ω0, n represents an oscillation with the same fre-
quency. The line width ϒn is the decay rate of this reso-
nance, so that the oscillation, in the time domain, is given by
exp [i(ω0, n + iϒn)t] = exp [iω0, nt]exp [ − ϒnt]. Alternatively,
the pair of resonance frequency ω0, n and line width ϒn can be
interpreted as a complex resonance frequency with real part
frequency and imaginary part line width: in the time domain
the resonance is an exponentially decaying oscillator, i.e., ϒn

> 0. Although ω in Eq. (3) can only (physically) attain real
values, mathematically speaking Eq. (3) contains poles (i.e.,
χ (2) is infinite) at the positions of the complex resonance
frequencies.

A. Phase sensitive SFG

In a reflection mode SFG experiment, the recorded quan-
tity is the frequency or time domain intensity, so that the
detection is limited to the absolute square |χ (2)|2 of the non-
linear susceptibility. Because of the interference between res-
onances and non-resonant background, retrieval of resonance
peak positions and amplitudes is often complicated. More-
over, the sign of a resonance is often hard to determine un-
ambiguously for the same reason. In order to alleviate these
limitations, PS-SFG was introduced.36, 39, 45–47

In a PS-SFG experiment, two sum-frequency fields are
mixed: a signal from a sample, and that of a local oscilla-
tor (LO). The mixing of the sum-frequency fields of the sam-
ple and the LO causes an interference pattern in the intensity
spectrum. This interference pattern is compared to that of a
second measurement, in which the sum-frequency field of the
LO is mixed with that of a reference of which the complex
χ (2) is known. Figure 1(a) shows the PS-SFG setup as intro-
duced by Nihonyanagi et al.:39 a fs IR pulse and a ps visi-
ble beam are spatially and temporally overlapped on a sam-
ple. The reflected beams as well as the generated SFG signal
are collected by a parabolic mirror and refocused on a crystal
surface acting as the LO. A time delay of several ps is in-
troduced in the primary SFG signal by a thin silica window
(not shown), so that the SFG signal from sample and local
oscillator are offset temporally. At the detector, the two SFG
signals are dispersed by a grating. This dispersing also causes
a stretching in time of the SFG pulses, so that they now over-
lap and interfere. The interference pattern in the frequency
domain recorded by the detector is given by

ISFG(ω) = |Esample/ref + ELO |2,
= |Esample/ref |2 + |ELO |2

+ 2Re[Esample/ref E∗
LOeiωT ]. (4)

Here, Esample/ref and ELO are the sample (or reference) and
the LO SFG fields, respectively. T is the temporal delay be-
tween the sample and the LO fields. This delay is intro-
duced experimentally, e.g., by passing the LO field through
a silica window. Figure 1(c) shows a simulated example of
the spectrum thus recorded, along with its computed Fourier
transform. Since the cross terms EsampleE

∗
LO exp(iωT ) are

temporally offset, they appear as side lobes in the Fourier
transform. A single side lobe can be isolated computationally
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FIG. 1. Comparison between PS-SFG and MEM analysis. (a) Cartoon of a
PS-SFG experimental setup. (b) Cartoon of regular reflection mode (left) and
scattering mode (right) SFG setups. (c) Illustration of the relation between
spectrum I(ω) and autocorrelation R(t) in a PS-SFG measurement. (d) Idem
for MEM analysis. (e) Flow chart for PS-SFG data analysis. (f) Flow chart
for the maximum entropy method algorithm. 2M + 1 indicates the number
of data points in the frequency domain spectrum.

by applying a high pass step filter (rejecting autocorrelation
points within the gray area) and applying the inverse Fourier
transform. This is shown in the flow scheme of Fig. 1(e). Fi-
nally, we can retrieve the nonlinear susceptibility χ (2) relative
to that of the reference by dividing the filtered sample inten-
sity by the filtered reference intensity:

χ
(2)
sample

χ
(2)
ref

= Csample

Cref

Esample(ω)E∗
LOeiωT

Eref (ω)E∗
LOeiωT

, (5)

= Csample

Cref

Esample(ω)

Eref (ω)
,

where Csample and Cref are experimental corrections for reflec-
tivity ratios and Fresnel factors (see Refs. 36, 39, 45–47). The
result is a complex-valued expression, the imaginary part of
which corresponds to Im[χ (2)]. Im[χ (2)] is a linear superposi-
tion of the resonances in χ (2):

Im[χ (2)] = ANR sin φNR −
∑ AR,nϒn

(ω − ω0,n)2 + ϒ2
n

. (6)

It is convenient to know the value of Im[χ (2)] for sev-
eral reasons. First, since Im[χ (2)] is a linear superposition
of resonances, identifying a vibrational mode becomes more
straightforward, since all cross terms have been eliminated.
Second, AR, n is determined by the IR transition dipole and
the Raman transition polarizability of a molecule, as well as
its orientation. As such, the sign of of AR, n contains informa-
tion on the absolute orientation of the transition dipole of a
molecule with respect to the interface normal. If a reference
sample with a known sign of χ

(2)
ref is used and the spectral as-

signment of a line in a spectrum is known, the sign of Im[χ (2)]
yields exact information on the orientation (up or down with
respect to the interface normal) of a molecule.

B. Maximum entropy analysis

The maximum entropy method provides a method for re-
trieving a complex spectrum from a bare intensity measure-
ment. At first glance, this premise seems paradoxical, since an
infinite number of reconstructions are possible for any given
intensity spectrum. The paradox can be solved by imposing
two requirements: (1) all the resonances that are present in a
spectrum are exponentially decaying resonances and (2) all
the information is contained within the spectrum. The first of
these holds in general, due to conservation of energy, while
the second one requires that a spectrum consists at most of
resonances that are lying within the observation window and
a constant background. When the above requirements are met,
a single solution exists that provides the relative phase of all
points in a spectrum.70 Thus, the problem of finding the phase
for every point in the spectrum is reduced to finding the phase
for the overall spectrum.

MEM analysis can be applied to SFG intensity
measurements.32, 44 Two of the possible experimental config-
urations are shown in Fig. 1(b): a reflection mode experiment
(left) and a scattering mode experiment (right). In both cases,
an IR and visible pulse are spatio-temporally overlapped on
a sample. The reflected (scattered) SF signal is then collected
and recorded.

MEM analysis was originally developed70 to extend
autocorrelations beyond a cutoff time Tmax. The under-
lying concept is shown in Fig. 1(d): an intensity spec-
trum (left) showing a number of resonances consists of
2M + 1 data points measured at a frequency interval
�ω. In order to be suitable for MEM analysis, inten-
sity spectra must be corrected for laser power and any
baseline offsets must be removed. The Fourier transform
of the spectrum yields the autocorrelation function R(t)
(right), which shows the exponentially decaying resonances
present in the spectrum. Since for an intensity spectrum
R(− t) = R*(t), we may take only positive autocorrelation val-
ues (i.e., for which t ≥ 0, which lie outside of the gray area in
Fig. 1(d)). The limited spectral resolution �ω cuts off the au-
tocorrelation function at a time Tmax = 2π /(�ω).

Beyond the time point Tmax, no information is available,
so that a prediction of values is necessary. The obvious choice
– to pad the autocorrelation with zeros – induces ringing ar-
tifacts in the frequency domain. If we assume, however, that
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FIG. 2. Three simulated spectra with equal photon counts and their relative
entropy (h) values. For a homogeneous spectrum (solid curve), the h is high-
est, whereas increasing spectral features lead to a progressively lower entropy
(dashed curves). Since h denotes relative entropy, it is allowed to be negative.

all decaying resonances continue decaying, we can attempt
to extend the autocorrelation with (non-zero) values that are
consistent with the existing ones. Once these autocorrelation
values are found, the corresponding intensity spectrum be-
comes a continuous function on the frequency interval that
was measured. The MEM describes a method of finding auto-
correlation values for t > Tmax by quantifying the information
content of a spectrum by means of the spectral entropy h:

h =
∫ 1

0
log[I (ν)]dν (7)

with

ν = ω − ω1

ω2 − ω1
, (8)

a rescaled frequency whose value changes from 0 to 1 along
the frequency interval [ω1, ω2]. The value of h provides a
measure of the information content of a spectrum. An exam-
ple is given in Fig. 2. Here, three spectra have been generated
with an equal photon count. The least structured of these spec-
tra has an entropy value of zero. The entropy value decreases
when the spectrum becomes more structured, which indi-
cates that the information content of the spectrum is higher.
It should be noted that, unlike thermodynamic entropy, nega-
tive values for spectral entropy are allowed since h represents
a relative value. Adding features, such as the ringing that is
introduced when R(t) is padded with zeros and transformed
to the frequency domain, would further decrease the spectral
entropy. We are therefore looking for the R(t) that is consis-
tent with the known data points and which has the highest
possible entropy value (i.e., which adds no information to the
spectrum).

Since R(t) is known for values up to t = Tmax, we can
calculate R(t) for t > Tmax by requiring that adding an addi-
tional autocorrelation point does not alter the spectral entropy,
and therefore does not introduce any additional features in the
intensity spectrum. The computational procedure is summa-
rized in Fig. 1(f). The requirement of constant entropy can be
satisfied by setting the derivative of the entropy with respect
to the added autocorrelation point R(m > M) equal to zero:

dh

dR(m > M)
= 0 =

∫ 1

0

1

I (ν)

dI (ν)

dR(m > M)
dν. (9)

Since spectrum and autocorrelation are related by the
Fourier transform, the above formula requires that the Fourier
transform of 1/I(ν) is zero for t > Tmax, while remaining con-
sistent with I(ν) for t ≤ Tmax. The ability to retrieve a complex
spectrum stems from the description of the intensity spectrum
in terms of 1/I(ν). Since this function is real and positive, we
can introduce a complex valued function g(ν), so that

1

I (ν)
= |g(ν)|2. (10)

The expression for g(ν) is not unique. Our spectrum,
however, consists of a collection of exponentially decaying
oscillations. According to Eq. (3), a resonance is described
by the fraction 1/(ω − ω0, n − iϒn). Since ω is limited to real
values, the denominator of this fraction will never be zero (un-
less ϒn is zero). Mathematically speaking, we can postulate a
complex frequency ωc = ω0, n + iϒn, for which the denomi-
nator does vanish.

Because the Fourier components of 1/I(ν) are zero for
m > M, we can write g(ν) as a Fourier series

∑
amexp(imν)

with m ∈ {0, 1, 2, . . . , M}. This makes g(ν) effectively an
order M polynomial, which has M zeroes at complex frequen-
cies. The positions of these zeroes correspond to the posi-
tion of resonances: since g(ν) is zero at these point, I(ν) is
infinite. At such a point, the real value of ν corresponds to
the resonance frequency. The imaginary part of the complex
frequency determines the line width and whether the oscilla-
tion corresponding to the resonance is decaying (Im[ωc] = ϒn

> 0) or growing in time(Im[ωc] = ϒn < 0). Since only de-
caying resonances are allowed, we therefore have to find a
solution for g(ν) for which all zeros occur at Im[ν] > 0.

Since both g(ν) and its complex conjugate are valid solu-
tions for Eq. (10), every node of g(ν) can be freely exchanged
by its complex conjugate. Thus, there are 2M equivalent so-
lutions, of which only a single solution consists of only de-
caying resonances. Burg showed70 that the solution with only
decaying resonances can be found by solving the matrix equa-
tion

⎛
⎜⎜⎜⎝

R(0) R∗(1) · · · R∗(M)
R(1) R(0) · · · R∗(M − 1)

...
...

. . .
...

R(M) R(M − 1) · · · R(0)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1
a1

a2
...

aM

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

b

0
0
...
0

⎞
⎟⎟⎟⎟⎟⎠

(11)
for am and b. Here, b is a constant and am are Fourier coeffi-
cients, so that g(ν)∝∑

amexp(imν). As a result, the complex
χ (2) is given by

χ (2)(ν) = eiφ

g(ν)
= beiφ

1 + ∑M
m=1 ameimν

. (12)

The phase φ, a uniform phase factor, represents the last
unknown in this analysis. The MEM algorithm described by
Eq. (11) returns a complex-valued spectrum for which the rel-
ative phase (i.e., between different spectral points) is known.
However, since |χ (2)|2 is identical to |χ (2)eiφ|2, the actual
value of this phase is lost. Therefore, one must resort to
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FIG. 3. Simulation of the effect of error phase on the shape of the Imχ (2) spectrum. A spectrum consisting of resonances follow a curved pattern in the complex
plane (left). The Imχ (2) spectrum is the projection of this curve on the imaginary axis (right). An error phase rotates the complex curve around the origin. Shown
here are the original spectrum (blue curve) and the same spectrum with an added (arbitrary) phase of 120◦ to simulate a possible outcome of MEM analysis (red
curve). In the two cases, the imaginary spectra are radically different from each other. By rotating the complex curve around the origin and applying a suitable
external criterion – in this case, requiring that all resonances point downward – the error phase can be eliminated.

additional criteria to obtain the correct absolute phase φ and
thereby, the correct spectral shape of Im[χ (2)].

Figure 3 shows an illustration of the effect of the error
phase on the outcome of the MEM reconstruction. Two cases
are shown: the actual spectrum that is simulated and which
should be recovered after applying the right error phase cor-
rection (blue curves), and a possible outcome of the MEM
algorithm with an error phase still present (red curves). Here,
we simulated an error phase of 120◦, but in practical cases it is
unknown. Figure 3 (left) shows the two spectra projected onto
the complex plane, while Fig. 3 (right) shows the imaginary
parts of the two spectra.

The simulated complex spectrum of a χ (2) consisting of
two resonances follows a curve in the complex plane [Fig. 3
(left, blue curve)]. In the frequency domain [Fig. 3 (right, blue
curve)], Im[χ (2)] takes on the shape of a double Lorenzian res-
onance. Introducing an arbitrary error phase (in this case we
have chosen 120◦) rotates this curve around the origin by the
same amount [Fig. 3 (left, red curve)], so that the equivalent
curve in the frequency domain [Fig. 3 (right, red curve)] takes
on a derivative line shape.

In practice, we have to recover the blue curve in Fig. 3
by multiplying the complex values of the red curve of Fig. 3
with a complex value eiφ . To this end, we have to set a suitable
criterion (see also the supporting information accompanying
Ref. 34). In this example, we required that (1) the imaginary
part has a Lorentzian shape for all resonances and (2) the
imaginary part of all resonances is purely negative. Finding
the value of φ that corresponds most closely to these criteria
(in this example φ = −120◦) will then recover the blue curves
of Fig. 3.

It should be noted that the error phase correction does
not alter the relative phase of individual spectral points with
respect to each other. Therefore, even without error phase cor-
rection a relation can be established, for instance the phase

difference between a non-resonant background and resonant
peaks.71

III. RESULTS AND DISCUSSION

A. Comparison of PS-SFG with MEM analysis

Although recent results obtained by MEM analysis have
been tested against phase sensitive SFG measurements (e.g.,
the experimental results of Ref. 34 have been compared44

with those of Mondal et al.41 and the computational results of
Nagata and Mukamel43), no direct comparison of the same
spectrum by two different methodologies – MEM and PS-
SFG – exists up to date. In this section we investigate to what
extent MEM predicts the correct complex χ (2) and how pos-
sible discrepancies can be explained. To this end, we have an-
alyzed previously published35 PS-SFG data, for which both
Im[χ (2)] and |χ (2)|2 are known, and feed the |χ (2)|2 into a
MEM algorithm. We then analyze the extent to which com-
plex χ (2) spectra obtained from PS-SFG and MEM are simi-
lar, given a perfect value for the error phase, and what influ-
ence an incorrect choice for the error phase has on the results
in the MEM case.

Several recent studies have reported on the structure of
the neat water/vapor interface and that of the water/DPPC in-
terface by means of phase-sensitive SFG. Here we have re-
produced spectra reported by Chen et al.35 Figures 4(a) and
4(d) show the |χ (2)|2 response of the water/DPPC and the
neat water/vapor interface, respectively. Both spectra show
bands that are characteristic for water centered at ∼3200
and ∼3400 cm−1. Further information on this band structure
can be obtained by considering phase-sensitive information.
Figures 4(b) and 4(e) show the real (gray curve) and imagi-
nary part (black curve) of the susceptibility χ (2). In the case
of the water/DPPC interface (Fig. 4(b)), both water bands
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FIG. 4. Comparison of phase-sensitive SFG measurements with maximum
entropy phase retrieval for a water-DPPC (a)–(c) and a water-vapor (d)–(f) in-
terface. Shown are absolute square (a) and (d) of χ (2) as well as the real (gray)
and imaginary (black) parts of χ (2) obtained from phase-sensitive measure-
ments (b and e) and the MEM algorithm (c and f). Intensity and amplitude
units are given relative to the z-cut quartz reference.

interfere constructively, while for the water/vapor interface
(Fig. 4(e)) the change of sign of Im[χ (2)] at 3200 cm−1 sug-
gests a destructive interference between the two bands.

The above phase sensitive measurements were used as a
test case for our MEM phase retrieval algorithm. By feeding
the |χ (2)|2 spectrum of Figs. 4(a) and 4(d) into the MEM al-
gorithm, we obtain a complex spectrum of which the complex
χ (2) should, theoretically, resemble the spectra of Figs. 4(b)
and 4(e) up to a phase factor corresponding to the error phase.
Therefore, by choosing an appropriate phase correction, it
should be possible to obtain a spectrum with close correspon-
dence to Figs. 4(b) and 4(e).

Finally, Figs. 4(c) and 4(f) show the complex spec-
tra obtained from MEM analysis of the intensity spectra of
Figs. 4(a) and 4(b), respectively. For both datasets, Im[χ (2)]
closely resembles the Im[χ (2)] obtained in phase-sensitive
analysis. The change of sign of Im[χ (2)] at 3200 cm−1 of the
spectrum of the water/vapor interface, for instance, is repro-
duced in the MEM analysis. A difference can be observed
for the real part of χ (2). The difference is most clear for the
water/DPPC interface, where for the phase sensitive measure-
ment [Fig. 4(b)] Re[χ (2)] remain near zero in the spectral re-
gion between 3400–3500 cm−1, whereas the MEM analysis
[Fig. 4(c)] predicts a negative value for Re[χ (2)].

B. Possible sources of error

Our analysis shows that PS-SFG and MEM analysis can
arrive at the same complex spectrum for a given sample. This
result, however, is not guaranteed, since experimental and
computational circumstances may lead to deviations or ar-
tifacts. Figure 5 shows a simulation of the different distor-
tions that may occur due to experimental or computational
effects. Figure 5(a) shows the same PS-SFG spectrum as
Fig. 4(b). Several experimental or computational effects may
lead to distortions of this spectrum, which may explain the
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FIG. 5. Simulation of distortions induced by experimental or computational
effects: (a) undistorted PS-SFG spectrum from Fig. 4(b), (b) distortion in-
duced by a phase shift of 10◦, (c) distortion induced by a phase drift of
exp [iωt] of 40 fs, and (d) complex conjugation of the spectrum.

discrepancy between the PS-SFG spectrum of Fig. 4(b) and
the MEM analysis of Fig. 4(c).

1. Phase shift

Figure 5(b) shows the effect of a uniform phase shift
of 10◦. Such a phase shift is most likely to occur when the
phase of the reference is away from its assumed value. In a
PS-SFG experiment, the reference is external, i.e., a separate
sample is used as reference. The reference sample in a PS-
SFG experiment should be far from resonance for all wave-
lengths involved. In such cases, it is reasonable to assume that
the nonlinear susceptibility of the reference is purely real, so
that this phase can be taken as a zero point. In most PS-SFG
experiments, a quartz crystal is used as reference. We were
unable to obtain quartz phase information for wavelength
>2 μm. When the susceptibility of the reference sample is
not purely real, e.g., when the reference sample is on or close
to resonance, then the assumption of a zero phase leads to an
incorrect reconstruction of the complex spectrum.

For the MEM the reference is internal, i.e., the overall
phase is set by making an assumption on a feature in the
spectrum (the shape of a peak or the phase of a background).
Therefore, any phase shift in a PS-SFG experiment will be
systematic, while phase shifts in a MEM reconstruction can
be expected to show more variation. A uniform phase shift
can be corrected for using the same procedure as the MEM
error phase correction. We will list suitable criteria for error
phase correction in Sec. III C, which can be applied to both
PS-SFG and MEM complex spectra.

2. Phase drift

PS-SFG requires a stable experimental configuration.
Care should be taken that the time delay T between the sig-
nals of the local oscillator and the sample or reference does
not change between measurements. A difference in time de-
lay would lead to a phase modulation exp [iω�T], where �T
is the time delay difference. For typical bandwidths of broad-
band systems, ω varies over a range of 250–400 cm−1, so that
a difference in time delay of 40 fs leads to a phase drift of
17◦–27◦ over the range of the spectrum. The effect of such a
phase drift can be seen in Fig. 5(c): in this case, the peak in
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Re[χ (2)] at 3200 cm−1 is enhanced, while the dip below zero
at 3400 cm−1 is more pronounced compared to Fig. 5(a).

3. Complex conjugation

It is important to note an ambiguity exists in represent-
ing complex spectra for both MEM and PS-SFG. In Eq. (3)
we assumed a (decaying) resonance exp (iωt − ϒ t). Since
the sign choice of iωt is arbitrary – for an electromagnetic
wave we can equally well write (−iωt) – both Eq. (3) and its
complex conjugate are adequate descriptions of the resonance
spectrum. As a result, we have to choose a sign convention to
use for the sign in front of iϒn in Eq. (3) (in our case minus).
Figure 5(d) shows the effect of complex conjugation of a spec-
trum: changing the sign of iϒn changes the sign of Im[χ (2)].
It is therefore important to ensure sign conventions have been
applied consistently.

The choice of sign is implicitly present in the computa-
tional procedures for both PS-SFG and MEM analysis: a sign
change alters the relation between spectrum and autocorrela-
tion from a (forward) Fourier transform to an inverse Fourier
transform and leads to two possible solutions for the com-
plex spectrum that are each others complex conjugate. Alter-
natively, complex conjugation of the spectrum is also realized
by reversing data order44 (from increasing wavelength to de-
creasing wavelength order) or by reversing the step filter in the
time domain: the filter of Figs. 1(c) or 1(d) can be reversed,
so that either the left lobe (PS-SFG) or left half (MEM) of
the autocorrelation is used. The resulting spectrum is again
complex conjugated with respect to the regular result. Since
complex conjugation cannot be corrected for by applying a
phase factor, such as in the error phase correction procedure,
care must be taken that the same conventions are used when
comparing spectra.

4. Other causes

For a successful MEM analysis, a spectral recording is
needed that is as clean as possible. Any background signal
must be subtracted and all intensities must be corrected for
excitation intensity, preferably by dividing with a reference
intensity signal. Since the entropy is given by the logarithm
of intensity, care should be taken that all intensity values are
larger than zero. Due to the nonlinear nature of the MEM
analysis process, it is not possible to establish a direct rela-
tion between disturbances in source data and their influence
on MEM analysis results. It remains advisable, therefore, to
test the robustness of a MEM reconstruction by artificial vari-
ation of such corrections.

C. Error phase correction

An error phase correction will always be required for
MEM and might be required for PS-SFG. In order to find the
most accurate correction, one of the following criteria can be
used:

(1) In the presence of sharp resonances (e.g., C–H or S–O
resonances), we can use the property that the imaginary part
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FIG. 6. Demonstration of a MEM reconstruction using external criteria. The
top panel shows the sum frequency scattering spectrum of a 1% (v/v) oil-in-
water emulsion in the presence of 8 mM SDS in the frequency range 950–
1200 cm−1. The bottom panel shows the MEM analysis of this intensity spec-
trum. Here, an error phase correction has been chosen so that the SO-stretch
resonance shows a purely absorptive line shape in the imaginary while show-
ing a derivative line shape in the real part of the amplitude spectrum. The
black, dashed curve shows a single Lorentzian peak as a guide to the eye.
Intensity and amplitude units are arbitrary.

of these resonances is either purely positive or purely negative
and follows a line shape that is symmetric, which may be a
Lorentzian, a Gaussian, or a Voigt profile.58, 59 A deviation
from a symmetric shape (e.g., such as the ones observed by
Ji et al.46) is a strong indication a phase shift is still present.
Also, when the nature of a resonant mode is known a priori
this may be applied as an additional constraint for the phase
shift correction. For example, in the case of a surface-grafted
self-assembled monolayer, the grafted molecules will point
away from the support. The sign of the complex resonance
can therefore be constrained to the expected value.

(2) In the absence of isolated resonances, the presence
of a non-resonant background may be exploited to obtain an
estimate for the phase shift,32, 71 by requiring that the non-
resonant signal does not contribute to the imaginary part of
χ (2) or �(2).

Figure 6 shows an example of a spectrum reconstructed
with the first criterion. A sum frequency scattering signal was
recorded from a 1% (v/v) hexadecane-in-water emulsion con-
taining 8 mM sodium dodecyl sulfate (SDS). The spectrum
was recorded in the 950–1200 cm−1 frequency region, which
shows a single peak at 1070 cm−1, commonly assigned to
the sulfate symmetric stretch resonance. The bottom panel
shows the MEM reconstruction of this spectrum. Here, we
have taken the outcome of the MEM algorithm, and multi-
plied the complex value of every data point by the same phase
factor exp [iφ]. φ was chosen such that the single peak at
1070 cm−1 is purely positive and symmetric for the imagi-
nary spectrum (bottom panel). As a result, the real part of the
complex spectrum shows a dispersive shape and a broadband
background feature is visible, predominantly in the imaginary
spectrum.

IV. CONCLUSION

We have shown the similarities between PS-SFG and
phase reconstruction using the MEM algorithm. We show that
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MEM can recover the complex spectrum underlying an non-
interferometric recording when we assume that (1) all infor-
mation is contained within the spectrum (i.e., the spectrum is
described by a collection of resonances within the recorded
frequency window and a non-resonant background) and (2)
all resonances are the result of exponentially decaying oscil-
lations. In a direct comparison of PS-SFG water spectra and
their MEM-reconstructed counterpart, we have shown that
MEM analysis does indeed yield a complex spectrum that fol-
lows the result from PS-SFG spectroscopy closely. We have
analyzed the possible causes for discrepancies between MEM
and PS-SFG, such as a shift or drift in the complex phase and
complex conjugation. We show that these effects may both
originate from numerical effects in MEM analysis as well as
experimentally induced effects from PS-SFG. PS-SFG offers
the advantage of an absolute phase detection, provided a suit-
able reference sample is used. The MEM, on the other hand,
does not require a reference sample, a convenience that comes
at the cost of having to correct for an error phase. This error
phase must be corrected by means of some external criterion,
for which we have discussed two possible methods. MEM can
be applied to any SFG measurement and does not require a
PS-SFG setup. MEM is especially valuable in cases where
phase-sensitive modifications to the detection scheme are not
possible, such as in the case of SF scattering33, 60, 64, 65 or SF
microscopy.72, 73

V. EXPERIMENTAL DETAILS

A. PS-SFG experiments

PS-SFG measurements were performed using the setup
described here, which is based upon the design by Niho-
nyanagi et al.39 A 300 μJ visible (VIS) (2 ps, 792 nm, s-
polarized) and a 10 μJ infrared (IR) beam (85 fs, p-polarized,
centered at 3250 cm−1) are spatially and temporally over-
lapped at incident angles of 50◦ and 60◦ on a first stage, which
contains either a sample or a z-cut quartz surface as reference.
The reflected IR, VIS, and SF pulses were then refocused with
a gold concave mirror (f = 100 mm) onto a second stage con-
taining a GaAs crystal surface (Lambda Precision Optics),
which functions as LO and generates a second SFG signal.
The SFG signal from the first stage was delayed by 2.5 ps
by passing it through a 1 mm thick silica plate positioned be-
fore the mirror. The interference spectrum resulting from the
two SFG signals was spectrally dispersed (Acton Research,
SpectraPro SP-500 monochromator with a 1200 g/mm grat-
ing blazed at 750 nm) and then detected by a liquid nitrogen
cooled charge-coupled device (CCD) (Roper Scientific, 1340
× 400 pixel array, LN400EB back illuminated CCD).

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)
was purchased from Avanti Polar Lipids (Alabaster, AL).
Spectrophotometric grade chloroform and methanol were
purchased from Fisher Scientific and used as a mixed solvent
for spreading of the phospholipids. The concentration of
phospholipid stock solutions was ≈1 mM.

The neat water/vapor and water/DPPC interfaces were
prepared using Nanopure water in Petri-dishes (5 cm di-
ameter). Nanopure water (not purged of CO2) with a re-

sistivity of 18.2–18.3 M
 cm and a measured pH of 5.5
was from a Barnstead Nanopure system (model D4741)
with additional organic removing cartridges (D5026 Type I
ORGANICfree Cartridge Kit; Pretreat Feed). DPPC mono-
layers were overspread (≈10 μl) on neat water. After spread-
ing, 10 min was allowed for solvent evaporation and mono-
layer stabilization to equilibrium spreading pressure before
PS-SFG measurements were conducted. Under this condition,
monolayers were equilibrated in the liquid condensed (LC)
phase, which corresponds to a highly ordered monolayer on
the water surface.

B. Sum frequency scattering experiments

Sum frequency scattering measurements were performed
with the laser system described in Ref. 74: a 10 μJ IR
pulse (150 fs, centered around 1100 cm−1, FWHM bandwidth
>140 cm−1 and a 10 μJ VIS pulse (800 nm, FWHM band-
width 12 cm−1) were spatially and temporally overlapped in
a CaF2 cuvette with an optical path length of 0.1 mm. The in-
frared and visible pulses were incident in the horizontal plane
under a relative angle of 15◦. The infrared pulse was polarized
in the horizontal direction, while the visible pulse was polar-
ized in the vertical direction. Scattered SF light was captured
in the same plane at a scattering angle of 60◦, around a solid
angle of 20◦, selected for vertical polarization, and spectrally
dispersed onto an intensified CCD camera (I-STAR, Andor
Technologies).

Emulsion samples were prepared using the method
described by de Aguiar et al.65 2 vol.% of hexade-
cane (≥99.9%, Fluka) was mixed with a D2O (>99%,
Sigma-Aldrich) solution containing 100 μmol purified SDS
(>99%, Alpha Aesar) in a 5 ml vial using an OMNI TIP ho-
mogenizer. The resultant mixture was treated in an ultrasonic
bath for 15 min and further diluted with a solution of SDS in
D2O so that the final emulsion contained 1% (v/v) hexadecane
in water at an SDS concentration of 8 mM.
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