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ABSTRACT: Infrared (IR) spectroscopic imaging of human
liver tissue slices has been used to identify and characterize
liver tumors. Liver tissue, containing a liver metastasis of breast
origin (mucinous carcinoma), was surgically removed from a
consenting patient and frozen without formalin fixation or
dehydration procedures, so that lipids and water remained in
the tissues. A set of IR metrics (ratios of various IR peaks) was
determined for tumors in fixation-free liver tissues. K-means cluster analysis was used to tell tumor from nontumor. In this case,
there was a large reduction in lipid content upon going from nontumor to tumor tissue, and a well-resolved IR spectrum of
nontumor liver lipid was obtained and analyzed. These IR metrics may someday guide work on IR spectroscopic diagnostics on
patients in the operating room. This work also suggests utility for these methods beyond the identification of liver tumors,
perhaps in the study of liver lipids.

■ INTRODUCTION

It is possible that infrared (IR) spectroscopy could prove useful
as a real-time intraoperative diagnostic tool,1,2 without the need
for histologic fixation or staining of examined tissues, because
IR spectra can be recorded rapidly and with high signal-to-noise
ratio. In this regard, one can envision utilizing a fiber optic
attenuated total reflection (IR-ATR) probe3 to evaluate
potentially diseased organs or tissues in situ during surgical
procedures. Ideally, a surgeon who is attempting to resect a
tumor would like to know whether the entire tumor has been
successfully removed and whether the surgical resection
margins are negative for residual tumor before leaving the
operating room. However, the ability to obtain comprehensive
real-time information regarding completeness of surgical
resection is generally highly labor-intensive, time-consuming,
and fraught by a high level of false-negative results. This is
secondary to the intrinsic nature in which the evaluation of the
surgical resection margin is conducted by the pathologist and is
primarily limited by the fact that the pathologist only evaluates
a minute fraction of the entire resected circumferential
boundary of the tumor from within the operative field. The
aim of the current work is to identify the most important and
characteristic IR spectral features associated with tumor-bearing
tissues within the liver, with the ultimate goal to develop a
method for real-time differentiation of specific cell types
associated with diseased liver tissue and normal liver tissue that
can be used to assist in the surgical resection of liver tumors.

Liver tissue containing a liver metastasis of breast origin
(mucinous carcinoma) was surgically removed from a
consenting patient at the time of a planned liver resection
and was frozen without formalin fixation or dehydration
procedures (i.e., lipids and water remained in the tissues). Fresh
liver tissue was snap frozen in liquid nitrogen, and cryostat
sections were obtained from which imaging IR spectra were
recorded. A similar slice was also treated with a hematoxylin
and eosin (H&E) stain4 and processed as a virtual Aperio slide
for comparison to the IR results. A method based on k-means
cluster analysis5−7 was used to identify a set of IR metrics that
are important for identifying liver tumors. Some changes in
chemical composition between the tumor and its surrounding
tissue are presented.
In 2012, approximately 1.6 million new cancer cases were

expected to be diagnosed in the United States, and
approximately 570 000 Americans were expected to die of
cancer.10 Among these 1.6 million new cancer cases, there were
approximately 29 000 new cases of primary liver cancer. Yet,
more astonishingly, the incidence of secondary liver tumors
(i.e., liver metastases) in the United States is estimated to be as
many as 20-times greater than the incidence of primary liver
cancer. Such liver metastases most commonly originate from
colorectal, breast, and lung cancer cases. From a global
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perspective, the ratio of mortality to incidence of liver cancer is
roughly 0.93 (www.who.int/mediacentre/factsheets/fs297/en,
http://globocan.iarc.fr/factsheets/cancers/liver.asp). Clearly,
tumors of the liver are an important, global problem and the
motivation for the current study.
There is an extensive history of IR bioimaging,8−13 including

research on cancer with tissues other than liver14−19 and some
IR spectral work on human liver20−26 and mice liver tissues.27

Particularly notable to us was the methodology of Fernandez et
al.,28 who recently reported a table of IR metrics for prostate
cancer. These metrics serve as a starting point for our work on
IR metrics of liver tissue. Several groups19,29,30 have shown that
the functional equivalent of an H&E stained image could be
extracted from IR spectroscopic imaging information on tissues
slices. In our current work, we evaluate the utility of the
prostate tumor IR metrics of Bhargava and co-workers28 for
liver and augment these with metrics important when the tissue
is not fixed. All of the potential metrics were merged into a
large set, and a quantitative determination revealed those most
important for evaluation of tumors within the liver.
The paper continues with an Experimental Section giving a

description of the collection of human liver tissue, the recording
of IR spectroscopic imaging data, and software that extracts the
IR spectra from the commercial software enabling manipulation
with statistical programs. The next section introduces the types
of IR metrics under consideration, which is followed by a k-
means cluster analysis using scaled IR metrics in order to
identify the best IR metrics. Finally, the results of k-means
cluster analysis with the unscaled subset of best IR metrics are
described using both 5 and 25 groups. The paper concludes
with a discussion of the k-means cluster results for liver
diagnostics.

■ EXPERIMENTAL SECTION
The liver tissue was collected during surgery at the University
Hospital (Ohio State University, Columbus, OH). The
collection, reservation, and resecting of the tissue was approved
by the Institutional Review Board (IRB, No. 2011C0085).
Immediately after collection, the specimen was pretreated by
snap freezing in liquid nitrogen, which allowed rapid lowering
of the sample to a temperature below −70 °C. Snap freezing of
the liver tissue provided specimen integrity for further analysis.
A cryostat, set at −20 °C, was used to obtain 2−3 μm thick
sections of tissue. Normally, a pathologist will fix the tissue, that
is, soak the tissue in a neutral buffered formalin solution and
then dehydrate the sample with a sequence of graded ethanols,
xylene, and finally parrafin. This preserves the tissue and works
well with various staining procedures. However, research
presented here concerns the possibility of taking in vivo IR
spectra; therefore, the tissue was not fixed. It was sliced to a
thickness of 2−3 μm, and the slice was further cropped to fit
onto an IR ZnSe window (8.0 mm diameter, 1.0 mm thickness,
from Crystran Ltd. U.K.) within a home-designed, sealed
sample holder. An optical microscope image of the sample is
shown in Figure 1a, where the intense yellow of the ZnSe
window has been digitally reduced.
IR spectra were recorded with an imaging FTIR microscope

(Perkin-Elmer Spotlight 300) with a computer-controlled
microscope stage and a liquid-nitrogen-cooled linear array of
16 mercury cadmium telluride (MCT) detectors. The data
were recorded in seven windows, as shown with dotted lines in
Figure 1a. Because the imaging region is bigger than the
microscope’s field of view, the instrument patches together

multiple optical views, producing a rectangular tiling artifact
that is apparently accentuated by the bright yellow color of
ZnSe. Despite the tiling artifact, this image can be overlaid, in a
pixel-by-pixel fashion with the k-means images of the following
sections. Each IR window region (shown in Figure 1a) was
2200.0 μm vertically by 300.0 μm horizontally (352 pixels by 48
pixels). The instrument obtained a full IR spectrum at each
image pixel (6.25 μm by 6.25 μm area) in each window (4 cm−1

resolution, 2 cm−1 steps in the range of 750−4000 cm−1, and 16
scans per pixel). Each of the seven windows required about 3 h
of scanning time for a total of 21 h of data collection.
Later, the data were merged with home-written Matlab

(version R2013a) routines into one large window that was
2200.0 μm by 2100.0 μm, including 118 272 separate pixels
and/or IR spectra. All of the following tissue slice images are of
this size. A Matlab routine from Perkin-Elmer called
“fsm_load.m” by Ben Peterson facilitated the process (http://
www.mathworks.it/matlabcentral/fi leexchange/22736-
perkinelmer-ir-data-file-import-tools). Our home-written Mat-
lab programs are described in the MS thesis of Z. Chen.31 The
starting point for the analysis is a three-dimensional matrix of
spectra transmittances, data(i,j,k′), where i is a pixel index for
the image row, j is a pixel index for the image column, and k′ is
an index stepping through the IR spectrum. After the IR
spectroscopic imaging, the sample was taken from the
instrument and treated with an H&E stain4 (as shown in
Figure 1b). The intense yellow of the ZnSe window has been
digitally reduced in the same manner as with Figure 1a. The
staining shows a tumor at the top half of the merged window,
and therefore, the bottom half was a region just outside of the
tumor.

Figure 1. Optical microscope images of a slice of liver tissue with a
tumor on ZnSe for IR spectroscopic imaging (scale on left). (a) Seven
windows (top) were merged into one window (2.1000 mm wide by
2.2000 mm tall) for IR spectroscopic imaging. An Aperio H&E stain
for an optical microscope of a nearby slice at approximately the same
place and size is inset at the right. The bottom (b) shows the same
tissue as in (a) after H&E staining on ZnSe. The tumor is lighter and
at the top half of the images.
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■ IR METRICS

Considering that there are 1626 spectral steps (potential
metrics from peak intensities) in each IR spectrum and 118 272
spectra, there are more than 192 million pieces of information
to be analyzed. Clearly, there is utility in reducing the spectral
information to something more manageable and under-
standable, hence the utility of IR metrics. We started with the
IR metrics (b1−b36 in Table 1s of the Supporting Information)
of Fernandez et al.28 (for prostate cancer on fixed tissues) and
added a set that might be more useful without fixation (b37−
b64 in Table 1s of the Supporting Information). Matlab
routines facilitate the calculation of a value of each metric at
each pixel in the image. The result is a three-dimensional matrix
of IR metrics, b(i,j,m), where i and j are indices over the rows
and columns, respectively, of the image and m is an index over
the metrics. The absorbance intensities at each peak were
corrected with a two-point baseline specific to each IR peak,
eliminating the need for baseline offsetting and flattening before
analysis. The metrics reduce the original data, a spectrum of
1626 points at each image pixel, to 64 values at each pixel. The
process of k-means clustering was used to evaluate the quality
of the metrics leading to a reduced set of IR metrics that are
highly appropriate for liver tissue work on fixation-free tissue
with lipids.

■ K-MEANS CLUSTER ANALYSIS WITH SCALED
METRICS

Variations apparent in the IR spectra at each image pixel
encouraged an attempt to sort the pixels into groups using IR
metrics. K-means clustering is one of the simplest clustering
techniques, whereby clusters or groups are characterized by
centroids (essentially average values of the members of the
group). The technique varies the position of the centroids and
the membership in the groups to minimize the sum of
“distances” between group members and the group centroid.
Unlike the normal three-dimensional distances of Euclidean
space, these distances are hyperdimensional, having a
component contribution from each of the metrics (64 in this
part of the evaluation).
In order to use the metrics results with Matlab routines for k-

means clustering, the values of each metric, m, in the two-
dimensional plane of the image had to be mapped into a single
column. Using Matlab’s linear mapping convention, the value of
each biomarker at each pixel in the two-dimensional image was
mapped into a one-dimensional array (i,j →n), where n is a
one-dimensional index of the pixels [n = (j − 1)imax + i]. In
other words, the three-dimensional metrics data, b(i,j,m), was
mapped into a two-dimensional matrix, X(n,m), where n is a
single index over the pixels and m is an index over the metrics.
Upon defining an index k over the groups, Gk, defined by k-
means clustering, the centroids for each group can be denoted
as c(k,m). Then, k-means clustering minimizes the quantity

∑ ∑ ∑ −
∈

X n m c k m( [ ( , ) ( , )] )
k n G mif

2

k (1)

by changing group membership and centroid position. The
quantity (∑m [X(n,m) − c(k,m)]2)1/2 is the hyperdimensional
distance between each metric score, X(n,m), for an image pixel
in a group and its centroid, c(k,m). This leads to a criterion for
evaluating the metrics with regard to distinguishing groups.
Noting that the distance between two groups, Gk1 and Gk2, is

∑= −d c k m c k m[ ( 1, ) ( 2, )]G G
m

,
2

k k1 2
(2)

the contribution of a metric to the separation between groups is

= | − |d c k m c k m( 1, ) ( 2, )G G m, ,k k1 2 (3)

Therefore, the metrics can be evaluated by the size of dGk1,Gk2,m,
which determines the importance of each metric to the
separation of those groups. However, the metrics have various
average values and different distributions that can bias a
numerical comparison; therefore, they were all scaled to the
same average value (0.5), and the estimated standard deviation
of each metric was used to set a range, that is, the scaled value
of zero was two standard deviations below the scaled average
and the scaled value of one was set to two standard deviations
above the average.
K-means cluster analysis was performed with five groups and

scaled metrics (an image, Figure 1s, is given is the Supporting
Information). There was one nontumor group at the bottom
half of the image, three tumor groups, and a group of holes
(some holes in the tissue slices were inadvertently created
through the microtoming process). Matlab programs produce a
black-and-white bitmap image of each metric, a color bitmap
image of each of the groups, the centroid component of each
metric for each group, the average x and y position of each
group, and the IR spectrum of each group. Gray scale images of
selected metrics (scaled) are given in Figure 2, showing that

different IR metrics are sensitive to different aspects of the liver
tissue. The contribution of each scaled metric to the difference
between groups (eq 3) was calculated for the nontumor group
and two of the tumor groups. These contributions were added
for each of the 64 initial metrics and sorted from highest to
lowest. The top 20 are given in Table 1 in order of importance.

■ RESULTS WITH UNSCALED IR METRICS
Using the top 20 metrics in Table 1 without scaling, a k-means
cluster analysis was performed using five groups producing the
image shown in Figure 3. The nontumor is green, and the holes
are yellow. Again, there are three groups within the tumor (red,
blue, and cyan). The IR spectrum of each group (baseline-
flattened and offset to zero) is presented in the bottom part of

Figure 2. Gray scale bitmap images of selected scaled metrics, L1, L7,
L14, and L18 from top left to bottom right. The tumor is largely in the
top half of the images.
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Figure 3 with the same color coding for groups. The IR spectra
are normalized by the number of pixels in each group;
therefore, the intensities are meaningfully compared. There are
significant differences between the tumor and nontumor
regions. Most notably, the peak at 1745 cm−1, which is
assigned to ester-linked fats, is much smaller in this tumor.
The metric scores for all groups except the holes are

presented in Table 2, enabling comparisons between metrics
and to other IR work. Many specific, chemical changes are
archived in Table 2. As only one example, take the first new
metric, L1, which is the ratio of the absorbance of ester-linked
fat at 1744 cm−1 to that of the amide II band of protein at 1548
cm−1. The value is 0.679 in the nontumor, but it falls to 0.288
in the blue tumor region that is closest to the nontumor part, to
0.132 in the red tumor group, and to 0.092 in the cyan tumor
group. There is a dramatic reduction of ester-linked fat from the
nontumor upon going into the tumor.

The amide I (1656 cm−1) and II (1548 cm−1) protein bands
are two of the strongest bands involving protein backbone
motions that have many inflections, indicating unresolved
structure. There has been much IR work on the secondary
structure of proteins32−35 and, given the high signal-to-noise of
the group spectra (they are averages of ∼30 000 individual
spectra), second derivatives of the group IR spectra were
determined for comparison upon going from tumor to
nontumor. The Perkin-Elmer Spectrum program was used to
get five-point, finite-difference, second derivatives that have
been multiplied by a factor of −200 in order to be displayed on
a scale similar to that of the absorption spectra as shown in
Figure 4. Second derivatives have large negative-going features
at the peak center, which has been reversed and scaled for
better comparison to the absorption line shape. Notice how the
inflections in the absorption spectra correspond to the peaks of
the second derivatives multiplied by −200. There are 7 or 8
discrete peak centers discernible in the amide I band alone.
Their peak centers are listed in Figure 4. The second derivative
peaks at 1654 cm−1 are α-helix, while the peaks at 1637 and
1694 cm−1 (or possibly 1683 cm−1) may be β-sheet. The other
peaks likely correspond to other helices and various turns in
standard structures. There is less α-helix in the tumor and more
of the 1683 cm−1 amide I group in the tumor. The biggest
changes seem to be in the amide II band. The second derivative
peak at 1546.9 cm−1 is the largest in the nontumor region,
while the two surrounding peaks at 1559.3 and 1537.9 cm−1

become larger in the tumor. Clearly, there are discernible
changes between proteins in and out of the tumor.
It has been useful to make histograms of the IR metric values.

In fact, all but one of the metrics (L14) show two resolved
distributions, one for the tumor and one for the nontumor. It is
even more useful to make two-dimensional histograms of one
metric against another in order to see if they work together to
give even more separation of the tumor and nontumor groups.
Such a plot of L5 (baseline-corrected absorption at 1516 cm−1

divided by that at 1236 cm−1) versus L1 (baseline-corrected
absorption at 1744 cm−1 divided by that at 1548 cm−1) is
shown in Figure 5a. Clearly, there are two separate
distributions, and the separation is greater than either metric
by itself (as is evident by the projections that reveal the one-
dimensional histograms of each metric). A plot of a different set
of metrics, L14 versus L1, is presented in Figure 5b. A third
distribution is apparent, but there are no groups that identify
this region.
One can address this issue by doing the k-means analysis

with more groups, but this presents challenges to graphical
visualization. A k-means analysis was performed with 25 groups,
and the results are given in Figure 6. The IR spectra of all 25
groups are given in the Supporting Information. A matrix of the
eq 2 distances between each of the 25 groups was computed,
and a hierarchical dendrogram was constructed, which
supported classification of the groups into categories of
nontumor (green), tumor (purple), and holes (black or dark
blue). The images are plotted with shades of green for the
nontumor, shades of purple for the tumor, shades of dark blue
for the holes, and yellow for the nontumor group closest to the
tumor. This exercise emphasizes that it is relatively easy to
discern tumor from nontumor. Therefore, some of the most
important work ahead lies in trying to extract differences
between the groups within a classification.
Noting that groups 3 and 13 are near each other and are

neighbors in the dendrogram, the IR spectrum of group 13

Table 1. Top 20 IR Metrics for Fixation-Free Liver Tumor
Tissuesa

name ratio name ratio

L1(b43) 1744/1548 L11(b19) 1016/1080
L2(b37) 1744/1244 L12(b59) 1252/1544
L3(b64) 1742/1256 L13(b39) 1024/1080
L4(b53) 1160/1548 L14(b42) 1080/1244
L5(b28) 1516/1236 L15(b47) 1516/1582
L6(b54) 2916/1548 L16(b7) 1744/1162
L7(b45) 1120/1020 L17(b23) 1080/3290
L8(b46) 2924/1544 L18(b58) 1556/1548
L9(b48) 1080/1548 L19(b2) 1012/1256
L10(b38) 1744/1162 L20(b30) (1144−1182)/1544

aEach metric is a baseline-corrected ratio of absorbance at the
numerator (in cm−1) to absorbance at the denominator (in cm−1). If a
range is given, then the average absorbance over that range is used.
The b labels are from the set of 64, while the L labels are for the new
set of 20.

Figure 3. The k-means cluster analysis image with five groups using
the unscaled, top-20 metrics (top). The nontumor portion is in green,
and the holes are yellow. The tumor has red, blue, and cyan groups.
The IR spectrum of each group is given at the bottom with the same
color coding.
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multiplied by 0.963 was subtracted from the IR spectrum of
group 3 in order to cancel the protein (by the amide I band) as
best as possible. This leaves a remarkably well resolved IR
spectrum of the lipid from the nontumor region, as shown in
Figure 7. The nontumor lipid peaks include 3002 (shoulder),
2959 (shoulder), 2925, 2854, 2249, 1746, 1469, 1443, 1369,
1255, 1157, 1107, 1083, 928, and 859 cm−1. The regions from
1500 to 1700 cm−1 and above 3100 cm−1 are dominated by
changes in the protein and are avoided for this discussion about
the lipid. Also shown (in red) is a modeled spectrum using
FDM’s Very Large Bundle (www.fdmspectra.com) of IR
libraries based on a weighted sum of 0.6 times glyceryl
triacetylricinoleate and 0.4 times ethyl cyanopolyacrylate
(where the max peak in each was scaled to one). A Euclidean
IR search was performed on the nontumor, ester-linked lipid
difference spectrum (black trace in Figure 7) using the Perkin-

Elmer Spectrum Search program and FDM’s Very Large
Bundle of IR libraries. The two top matches were glyceryl
triacetylricinoleate and ethyl cyanopolyacrylate. Glyceryl
triacetylricinoleate is commonly used in cosmetics. It is a
triglyceride with C18:1 chains (18 carbons, 1 double bond at
C9), each containing one double bond and an extra ester
linkage per fat chain (occurring below the double bond toward
the free end of the fat chain at C12), which is somewhat
different than textbook triglycerides. This species is an excellent
match except for the peaks at 858 and 2248 cm−1, for which
cyanopolyacrylate (superglue) does better. The superglue
polymer does not match the fat chains at all, but it is a good
match in the fingerprint region, and it does get the peaks at 858
and 2248 cm−1. Taken together, this suggests that the average
of the nontumor liver lipids (after freezing, slicing, melting, IR
exposure, and hours of time) is similar to a glyceryl triacetyl
ricinoleate, where polyacrylate polymerization has been
occurring perhaps between different fat chains. The average
nontumor liver lipid is a triglyceride with roughly twice the
ester groups of textbook triglycerides, a prominent backbone
vibration at 858 cm−1 (not due to fat chains), and some CN
triple bond groups (less than one per fat chain). Note that the
triple bond observation at 2248 cm−1 could also be a CC,
and the only evidence at this point for CN is the match to
cyanopolyacrylate. Explanations for triple bonds in nontumor,
human liver lipid need to consider that the tissue is not fixed.
Possible explanations include (1) enzymes that destroy triple
bonds are no longer functional, (2) triple bonds exist as
intermediates in normal lipid degradation, (3) drug treatments
of patients with tumors may damage the liver, and (4) triple
bonds are a chemical artifact of mixing cell parts as tissue warms
after slicing. There are, after all, good reasons why pathologists
fix tissues extracting lipids. Further work is necessary to say
more. Despite this, there seems to be potential for analysis of
liver lipids by these methods, although caution must be

Table 2. IR Metric Values for Five Groups from the K-Means Analysis with the Best Unscaled Metricsa

IR metric nontumor (green) tumor 1 (red) tumor 2 (blue) tumor 3 (cyan)

L1 (1744/1548) 0.679 0.132 0.288 0.092
L2 (1744/1244) 0.986 0.375 0.616 0.216
L3(1742/1256) 0.904 0.425 0.643 0.258
L4 (1160/1548) 0.353 0.107 0.155 0.167
L5 (1516/1236) 1.025 1.741 1.416 1.505
L6 (2916/1548) 0.625 0.284 0.373 0.322
L7(1120/1020) 0.755 1.816 1.088 1.231
L8(2924/1544) 0.786 0.357 0.471 0.391
L9 (1080/1548) 0.383 0.166 0.223 0.204
L10 (1744/1162) 1.951 1.166 1.858 0.566
L11(1016/1080) 0.892 0.255 0.462 0.488
L12 (1252/1544) 0.771 0.355 0.485 0.412
L13 (1024/1080) 0.962 0.440 0.588 0.631
L14 (1080/1244) 0.557 0.450 0.471 0.466
L15 (1516/1582) 1.277 1.120 1.165 1.241
L16 (1744/1162) 0.372 0.110 0.163 0.172
L17 (1080/3290) 0.359 0.179 0.231 0.235
L18 (1556/1548) 0.832 0.896 0.878 0.907
L19 (1012/1256) 0.433 0.110 0.216 0.251
L20 [(1144−1182)/1544] 0.325 0.104 0.150 0.166
pixels 36 476 23 753 21 075 33 143

aThe associated IR bands (in cm−1) are given as a ratio in parentheses for each metric. If a range is given, then the metric involves an average over
that range.

Figure 4. Second derivatives of the IR spectra for each group in Figure
3 (excluding holes) with the same color coding. The dotted traces are
absorption spectra, while the solid traces are second derivatives
multiplied by −200 in order to put the derivatives on a scale similar to
the absorption spectra. The bottom (green) is nontumor, and the top
has the three tumor groups.
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exercised in extrapolating to the lipid conditions in the living

liver. We believe that this merits further study.
With 25 k-means groups, it was informative to re-examine

the L14 versus L1 metric−metric plot in order identify the new

distribution from Figure 5b that was not identified by any

groups of the five-group analysis. The L14 metric is the ratio of
absorbance at 1080−1244 cm−1 (glycogen and/or lipid to
phosphate), and the L1 is that at 1744−1548 cm−1 (ester-
linked lipid to protein). A plot of L14 versus L1 is given in
Figure 8b, with white numbers indicating the centroid values

Figure 5. (a) Two-dimensional histogram (top) of IR metrics L5 versus L1. L1 is a ratio of ester-linked fat to protein, while L5 is the side of the
amide II protein band to phosphate. A contour diagram of the same information is given at the bottom. The centroid values for the k-means groups
are given with cross symbols identifying the distributions. There is greater separation of the tumor and nontumor values with two metrics than with
either metric by itself (see the projections in the top part). (b) Two-dimensional histogram (top) of the values of IR metric L14 versus L1. L1 is
absorbance at 1744 cm−1 divided by that at 1458 cm−1, while L14 is absorbance at 1080 cm−1 divided by that at 1244 cm−1. A contour diagram of the
same information is given at the bottom. A third distribution is evident that was not identified by the five-group k-means analysis, suggesting that
more k-means groups would be worthwhile.

Figure 6. A 25-group k-means analysis with nontumor groups in shades of green (top left), tumor groups in shades of purple (top middle), and holes
in dark blue−gray (top right). A dendrogram of the distances between groups (bottom) dictated the color scheme, and the full image is given as an
inset to the dendrogram. Yellow indicates the group closest to the interface between the tumor and nontumor.
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for these metrics from the 25 groups. Clearly, groups 7 and 23
(with L1, L14 scores of 0.107, 0.868 and 0.197, 0.845,
respectively) now identify the third distribution and are imaged
with dark purple colors in Figure 8a. These are groups further
within the tumor. The lighter purple regions correspond to
groups 24 and 18 (with L1, L14 scores of 0.071, 0.413 and
0.088, 0.367, respectively). By comparison to the standard
H&E stains (Figure 1a inset), we believe that there is a
concentration of fibrous stroma cells (high protein, low lipid) in
these light purple, tumor regions (see Figure 8a) that have
H&E staining more like that of the nontumor region. In Figure
8b, it is also interesting that groups 5 and 13 occur in the region
between the nontumor and tumor distributions. These groups
have been colored light green (5) and yellow (13), as isolated
in Figure 8a. We assert that these groups help to define the
tumor’s margin.

The IR spectra of selected groups are shown in Figure 9.
Each group is normalized to the number of image pixels in the

group; therefore, intensities are meaningful. There are
significant differences in all of the selected groups, which
have been identified with a color-coded image inset in Figure 9.
As mentioned above, there are many more subtle differences in
the IR spectra of these various groups. Therefore, the IR spectra
of all 25 groups (and identifying bitmaps of each group) have
been provided in the Supporting Information.

■ DISCUSSION
A set of literature IR metrics were augmented by various lipid
bands and evaluated giving a set of 20 that are good for
detecting fixation-free liver tumors (see Table 1). A scaling of
the metrics was introduced to make a level comparison. Only 6
out of 20 were from the previous literature work (on fixed
prostate tissue), showing that the molecules removed by
fixation are quite important. An ester-linked lipid provides for
good tumor distinction, at least in this patient. The top IR
metric, L1, is the ratio of absorbance at 1744 cm−1 to
absorbance at 1548 cm−1, that is, a ratio of ester-linked lipid to
protein. It was used as the ordinate in several IR metric versus
IR metric plots (Figures 5 and 8) that show good distinction
between tumor and nontumor. While this work concentrated
on distinguishing a tumor in one patient, work on differ-
entiating cell types by the same methods is promising and
continues. Work also continues on gathering data from other
patients. It is interesting that the ester-linked lipids vary greatly
between patients. The lipid-related peaks at 2248 (likely a triple
bond) and 858 cm−1 are very different than what is seen with
IR spectra of fixed liver tissues. So far, these peaks have been
seen in two other patients. Future work on more patients will
provide a better perspective on the importance of this result.
Diagnostic tools have been presented that could one day be

utilized within the operating room, providing vital real-time
information on how the surgeon should proceed and for
verifying completeness of surgical resection. Noting that
fixation is a large perturbation from the tissue of living patients,
the freezing and slicing of the current work is a lesser
perturbation and a step closer to the ultimate goal of in situ IR
spectral evaluation of the liver or on freshly excised liver tissue
from biopsy or resectional specimens. The sensitivity of IR
spectra to liver lipids suggests utility beyond work on tumors of

Figure 7. IR difference spectrum of the lipid in the nontumor region
(black trace, green dots) obtained by subtracting 0.963 times the IR
spectrum of group 13 (yellow) from the IR spectrum of group 3 (light
green), where the colors refer to the inset image. The spectrum was
arbitrarily scaled to make the max peak equal to one for comparison to
IR search results. The red curve is a composite from the FDM library
with 60% glyceryl triacetylricinoleate and 40% ethyl cyanopolyacrylate.

Figure 8. (a) Color-coded image of tumor groups 7 and 23 (darker
shades of purple) that comprise inner parts of the tumor, groups 24
and 18, which have fibrous stroma cells (lighter shades of purple).
Groups 13 (yellow) and 5 (light green) help to indicate the margin.
(b) Contour diagram of the L14 IR metric versus L1 IR metric. A third
distribution is identified for groups 7 and 23, which was not identified
by a five-group k-means analysis.

Figure 9. IR spectra of selected groups from the 25-group k-means
analysis. The dark (19) and medium green (9) groups are nontumor,
the yellow (13) and light green (5) groups are near the margin, the
light purple (24) indicates a region with fibrous stroma cells, and
purple (7) indicates an inner tumor region.
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the liver. Steatosis or fatty liver disease may be readily assessed
with the methods presented herein. Knowledge about the
condition of the liver might be important in a variety of health
care decisions beyond liver tumors.
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A table of the original 64 IR metrics, an image of a 5-group k-
means analysis using scaled IR metrics, and bitmap images of
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means analysis in an Excel file. This material is available free of
charge via the Internet at http://pubs.acs.org.
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