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Abstract

The chemistry that occurs at surfaces has been an intense area of study for
many years owing to its complexity and importance in describing a wide range
of physical phenomena. The vapor/water interface is particularly interesting
from an environmental chemistry perspective as this surface plays host to a
wide range of chemistries that influence atmospheric and geochemical inter-
actions. The application of vibrational sum frequency generation (VSFG), an
inherently surface-specific, even-order nonlinear optical spectroscopy, en-
ables the direct interrogation of various vapor/aqueous interfaces to elucidate
the behavior and reaction of chemical species within the surface regime. In
this review we discuss the application of VSFG to the study of a variety of
atmospherically important systems at the vapor/aqueous interface. Chemi-
cal systems presented include inorganic ionic solutions prevalent in aqueous
marine aerosols, small molecular solutes, and long-chain fatty acids relevant
to fat-coated aerosols. The ability of VSFG to probe both the organiza-
tion and reactions that may occur for these systems is highlighted. A future
perspective toward the application of VSFG to the study of environmental
interfaces is also provided.
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Interface: any region
between two bulk
isotropic media that
lacks an inversion
center, not just the
surface

Aerosol: suspended
atmospheric
particulate matter

VSFG: vibrational
sum frequency
generation

Beam polarization:
the direction,
perpendicular or
parallel, of the electric
field relative to the
incident plane for the
associated input or
output beam

1. INTRODUCTION

The chemistry that occurs at and near environmental interfaces is responsible for a host of im-
portant naturally occurring physical phenomena. Examples include transport across biological
membranes (1–3), the mobility and fate of aquatic chemical species in the environment (4, 5), and
growth and uptake of atmospheric particulate matter (aerosols) (6). As such, the elucidation of
environmental interfacial processes has been the goal of many diverse and thorough experimental
and theoretical studies; however, a complete understanding of the chemical organization and dy-
namics that occur for many two-dimensional interfacial regimes is lacking. The advancement of
inherently surface-specific nonlinear optical spectroscopies such as second harmonic generation
(SHG) spectroscopy and vibrational sum frequency generation (VSFG) spectroscopy allows for
the direct interrogation of molecules lacking an inversion center, which naturally occurs at the
interface between two bulk isotropic media such as air and water (7–11). The ability to selectively
probe interfacial molecules and provide molecular-level information makes techniques such as
VSFG powerful tools for the study of interfacial processes. As such, studies utilizing VSFG, along
with accompanying theoretical work, have provided much insight into the behavior of molecules
at interfaces (10, 12–25).

Although a complete description of VSFG theory is beyond the scope of this review and has been
presented elsewhere (21, 26–29), a brief discussion on VSFG theory is necessary for clarity. Con-
ventional VSFG intensity is proportional to the square modulus of the effective second-order non-
linear susceptibility |χ eff

(2)|2 multiplied by the intensities of the input visible and infrared beams:

ISFG ∝
∣∣∣χ (2)

eff

∣∣∣
2
Ivis IIR ∝

∣∣∣∣∣χ
(2)
eff ,NR +

∑

ν

χ
(2)
eff ,ν

∣∣∣∣∣

2

Ivis IIR. (1)

Here ISFG, Ivis, and IIR are the intensities of the output sum frequency beam, the visible excitation
beam, and the infrared excitation beam, respectively, and χ

(2)
eff ,NR and χ

(2)
eff ,ν

refer to the effective

nonresonant and resonant components of the second-order nonlinear susceptibility. χ
(2)
eff depends

on the VSFG experimental setup (i.e., input beam geometry and polarization); most experiments
utilize the four most-common beam polarizations: ssp, sps, pss, and ppp, where the first letter
corresponds to the output VSFG beam, the second letter corresponds to the input visible beam,
and the last letter corresponds to the input infrared beam, with the ssp combination being the
most widely utilized. For these polarization combinations, the relationship between χ

(2)
eff and the

actual nonlinear susceptibility, χ
(2)
ijk , is given by

χ
(2)
eff ,ssp = Lyy (ωVSFG)Lyy (ωvis)Lzz(ωIR) sin(θIR)χyyz, (2)

χ
(2)
eff ,sps = Lyy (ωVSFG)Lzz(ωvis)Lyy (ωIR) sin(θvis)χyzy , (3)

χ
(2)
eff ,pss = Lzz(ωVSFG)Lyy (ωvis)Lyy (ωIR) sin(θVSFG)χzyy , (4)

χ
(2)
eff ,ppp = − Lxx(ωVSFG)Lxx(ωvis)Lzz(ωIR) cos(θVSFG) cos(θvis) sin(θIR)χxxz

− Lxx(ωVSFG)Lzz(ωvis)Lxx(ωIR) cos(θVSFG) sin(θvis) cos(θIR)χxzx

+ Lzz(ωVSFG)Lxx(ωvis)Lxx(ωIR) sin(θVSFG) cos(θvis) cos(θIR)χzxx

+ Lzz(ωVSFG)Lzz(ωvis)Lzz(ωIR) sin(θVSFG) sin(θvis) sin(θIR)χzzz, (5)

where Lii is the nonlinear Fresnel factor associated with ωi, and θ i is the input or output angle
versus the surface normal for the associated beam (21, 29). By correcting for the nonlinear Fresnel
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PS-SFG:
phase-sensitive sum
frequency generation

coefficients, it is possible to remove spectral contributions arising from experimental geometry,
as recently demonstrated by Feng et al. (30) for the water spectra at the vapor/liquid interface for
spectra originating from many research groups.

The resonant component of the Fresnel factor corrected second-order nonlinear susceptibility
is related to the number density, N, of VSFG active oscillators and the molecular hyperpolariz-
ability, βν , through the orientationally averaged Euler angle transformation, 〈μIJK :lmn〉, between
the laboratory coordinates (IJK ) and the molecular coordinates (lmn):

χ
(2)
IJK = N

∑

lmn

〈μIJK :lmn〉βlmn. (6)

The molecular hyperpolarizability term (Equation 7) is proportional to the Raman polarizability
tensor for the transition moment 〈g|αlm|v〉 and the infrared transition moment 〈v|μn|g〉. This
gives rise to the VSFG selection rule that a vibrational mode must be both Raman and infrared
active for VSFG to be allowed:

βlmn = 〈g| αlm |v〉 〈v| μn |g〉
ωIR − ωv + i�v

, (7)

χ
(2)
eff ,v

∝ Av

ωIR − ων + i�v

. (8)

Generally, however, χ
(2)
eff is what is presented in the majority of published VSFG studies.

Equation 8 reveals the Lorentzian lineshape character of the collected VSFG signal, where Aν is
the SFG transition moment strength, ων is the frequency of the SFG active vibration, ωIR is the
frequency of the incident infrared laser beam, and �ν is the line width of the VSFG transition.
It is clear from Equation 1 that during the collection of a conventional VSFG spectrum, the
sign of the second-order nonlinear susceptibility is lost. This renders the direct collection of the
orientation (phase) of the sum frequency transition impossible. Ji et al. (31) recently developed a
generally applicable technique to directly measure the imaginary component (Equation 9) of the
second-order nonlinear susceptibility, termed heterodyne-detected phase-sensitive sum frequency
generation (PS-SFG), and it is being rapidly adopted by a few researchers within the surface
spectroscopy field (32–35):

Imχ (2)
ν = −

∑

ν

Aν�ν

(ωIR − ων )2 + �2
ν

. (9)

The vapor/neat water interface is perhaps the most simple, common, and important envi-
ronmental interface. An understanding of this interface is especially vital from an atmospheric
chemistry perspective as aqueous atmospheric aerosols are involved in a wide range of phenomena,
from heterogeneous chemical reactions to global climate forcing (6, 36, 37). In 1993, Du et al. (11)
completed the first study to utilize the VSFG method to investigate neat water structure at the
vapor/water interface, showing the existence of three peaks at ∼3,200 cm−1, ∼3,400 cm−1, and
∼3,700 cm−1 within the hydrogen-bonding continuum region between 3,000 and 3,800 cm−1.
The first two broad peaks at 3,200 cm−1 and 3,400 cm−1 are attributed to O-H stretching modes
of hydrogen-bound water molecules similar to observations of bulk water with Raman and
infrared spectroscopies (14), whereas the much narrower peak at 3,700 cm−1 is assigned to the
dangling O-H stretch of water molecules that straddle the vapor/water interface. These dangling
water molecules have one O-H bond pointing toward the vapor phase and the other O-H bond
pointing toward the bulk liquid, where it is free to hydrogen bond with other water molecules
(11). In the years following Du et al.’s study, many other researchers reproduced the VSFG
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Solute: a small,
soluble, polyatomic
molecular species

Lipid:
molecule featuring a
hydrophobic tail such
as an alkyl chain with a
hydrophilic head
group such as a
carboxylic acid

spectrum of the vapor/neat water interface, yet the exact origin of the VSFG spectral shape for the
hydrogen-bonding continuum between 3,000 and 3,600 cm−1 remains controversial (16, 38–43).

Beyond examining the water structure at the vapor/neat water interface, there is much interest in
elucidating molecular behavior via VSFG at the vapor/water interface for a wide variety of chemical
systems. With perspective toward understanding the role that tropospheric aqueous aerosols play
in atmospheric chemistry, among other applications, VSFG has been applied to study the behavior
that inorganic ions (25, 44–57), small molecular solutes (25, 58–69), and lipids (32, 35, 70–88)
exhibit at the vapor/water interface as well as that of complex solutions that may involve multiple
components such as multiple ion species and lipid monolayers spread on ion-containing subphases.
At the vapor/water interface, it is critical to understand these three general classes of chemical
systems, which increase in both size and surface preference from simple inorganic ions to solutes
to lipids, as they influence the structure, growth, and reactivity of tropospheric aqueous aerosols.

In this review, we present recent insights gained through VSFG studies on the organization
and reaction of atmospherically relevant chemical systems (ions, solutes, and lipids) to which
the vapor/water interface plays host. Through the examination of both the response of water’s
hydrogen-bonding network at the vapor/liquid interface to the presence of these species and the
vibrational modes of the chemical species themselves, elucidation of surface behavior is possible. In
Section 2, the surface affinity of various inorganic salt-containing solutions is discussed, along with
the effects these ionic species have on interfacial water structure. Included is a brief discussion of
the recently developed PS-SFG technique and its application to the study of ions at the vapor/water
interface. Section 3 discusses VSFG results for small molecular aqueous solutes. Here we highlight
the surface organization and reaction of methanol at the vapor/aqueous interface. In Section 4,
long-chain fatty acids are discussed, focusing on the surface organization, interaction with ionic
species, and oxidation that may occur for these species at vapor/aqueous interfaces, as these are
critical aspects in fat-coated aqueous aerosols. Section 5 briefly discusses future prospects of the
application of VSFG to the study of environmental interfaces.

2. IONS

2.1. Water Structure as Influenced by Ions

The structure of inorganic ions at the vapor/water interface, as well as the relationship and ef-
fect these ions have on the structure of water’s hydrogen-bonding network, is of special interest
to the atmospheric chemistry community. The use of surface-specific vibrational spectroscopic
techniques such as VSFG has been actively pursued by a number of groups to help elucidate
long-standing questions on the surface hydrogen-bonding structure of water containing a wide
variety of ions (14, 24, 25, 49, 50, 52, 89). Less work has examined the ion modes themselves
owing to several factors, ranging from a lack of probable vibrational modes for atomic ions such as
halides to the added experimental complexity in producing longer infrared wavelengths necessary
to access molecular ionic vibrational modes. However, several recent studies have illustrated that
this is possible for a variety of systems, and we discuss these results below (90–92). In this section
we provide a brief synopsis of the major findings from work on vapor/ion-water interfaces using
conventional VSFG completed by our lab and others on a number of inorganic salt-containing
solutions as well as major unresolved questions remaining for these systems. Recent PS-SFG re-
sults on the hydrogen-bonding water structure at the vapor/aqueous salt solution interface are
also highlighted.

Early VSFG work on aqueous inorganic salt solutions at the vapor/water interface primarily
focused on quantifying differences observed between salt solutions and acidic solutions on the
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Figure 1
Conventional ssp polarized VSFG and Imχ

(2)
ν SFG spectra of neat water and aqueous solutions of (a) VSFG spectra of sodium halides,

(b) VSFG spectra of 3-M Mg(NO3)2 and 1-M NaNO3, (c) VSFG spectra of 1-M Na2CO3, 1-M Na2SO4, and 1-M (NH4)2SO4, and
(d ) Imχ

(2)
ν SFG spectra of 1-M Na2CO3, 1-M Na2SO4, and 1-M (NH4)2SO4. Figure adapted from References 46, 57, and 100.

hydrogen-bonding water structure at the vapor/solution interface. In 1997, Raduge et al. (45) and
Baldelli et al. (55) were the first to report on the water structure at the vapor/solution interface
for sulfuric-acid solutions. Following this work, Baldelli et al. (89) demonstrated in 1999 the
influence of alkaline metal salts of sulfate and bisulfate on water structure. Later, Schnitzer et al.
(56) extended the discussion to include a wider range of salts versus their acid analog. These
experiments and others on a wider range of salts and acids have been repeated by several research
groups, including ours (14, 49, 54).

In the past 10 years, the advancement of VSFG instrumentation has renewed interest in the
effect that salts, especially halide salts (F−, Cl−, Br−, and I−) with mono- and divalent coun-
tercations (Na+ and Mg2+, Ca2+, and Sr2+), have on the water structure near the vapor/liquid
interface, prompted by the work of Jungwirth & Tobias (93) predicting surface activity of some
halides. The introduction of the halide salts, other than those containing fluoride, caused a slight
decrease in the strong hydrogen-bonding region at 3,200 cm−1 and a significant increase in the
weak hydrogen-bonding region at 3,400 cm−1 (Figure 1a). These spectral changes increased with
increasing polarizability of the anion (Cl− < Br− < I−) and were interpreted as an indication
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Local electric field:
the electric field
generated in the
interface by the charge
separation of cations
and anions in ionic
solutions

of the surface enrichment of solvated anions at the vapor/liquid interface, as an increase in the
3,400 cm−1 region intensity is also a signature for the halide’s solvation shell water molecules (46).
For fluoride-containing solutions, a slight decrease in both the 3,200 cm−1 and 3,400 cm−1 regions
was observed by Raymond & Richmond (54). These observations, along with molecular dynamics
simulation results, have been interpreted to represent the F− ion being repelled from the interfacial
region (54, 93). In contrast, for halide acid solutions (HCl, HBr, and HI), an enhancement of both
the 3,200 cm−1 and 3,400 cm−1 regions is observed with VSFG. For the acids, the increase in the
3,400 cm−1 peak is again attributed to the enrichment of polarizable anions within the interfacial
region, whereas the 3,200 cm−1 enhancement is attributed to hydronium ions residing within the
interface convoluted with surface potential effects (47). Hydronium ions in halide acid systems have
been suggested to both increase the interfacial depth and order water molecules within the interface
(47, 50, 94). A comparison of the sodium halide salts to halide acid systems also reveals differences in
the free O-H region, with a reduction in the free OH density for halide acids above 1 M (47, 51, 95).

The influence of molecular anions such as NO3
−, SO4

2−, and CO3
2− on the hydrogen-bonding

structure of water has also been the focus of many VSFG studies (14, 44, 48, 49, 53, 57, 96).
An understanding of the VSFG results for polyatomic anion-containing solutions in the water
hydrogen-bonding region proves more elusive than that for the halide salt solutions. For all nitrate-
containing solutions (Figure 1b), a severe depletion of the 3,200 cm−1 peak is observed, and for
divalent cation–containing nitrate solutions, an enhancement of the 3,400 cm−1 region is observed,
with the larger divalent cation–containing solutions exhibiting a greater enhancement of the
3,400 cm−1 region (Sr2+ > Ca2+ > Mg2+). Solutions containing sulfate, with monovalent cations,
however, feature a large enhancement for both the 3,200 cm−1 and 3,400 cm−1 peaks (Figure 1c).
(Divalent countercation solutions have not been measured.) Finally, sodium-carbonate solutions
exhibit an enhancement of the 3,200 cm−1 peak and a depletion in the 3,400 cm−1 peak in VSFG
spectra of the vapor/solution interface.

For nitrate systems, the significant depletion of the 3,200 cm−1 peak, and in some cases the
enhancement of the 3,400 cm−1 peak, is taken as evidence that the nitrate ions reside within the
vapor/water interface. The nitrate ion is thought to have comparable surface activity with that of
the chloride ion such that even though nitrate exists within the interfacial region, no enrichment
for the ion is observed (52, 57, 93, 96, 97). The magnitude for the decrease and increase of
the 3,200 cm−1 and 3,400 cm−1 peaks, respectively, becomes more apparent for divalent cation–
containing nitrate solutions as the size of the cation increases (Mg2+ < Ca2+ < Sr2+). This has
been attributed to the creation of complex concentration gradients by the larger divalent cations
when paired with the nitrate ion such that the depth of the interfacial region increases (57); similar
results have been found for the chloride ion when paired with divalent cations (95, 98). Recent
PS-SFG studies are consistent with this picture (96).

For sodium-sulfate and ammonium-sulfate solutions (Figure 1c), the enhancement for both
the 3,200 cm−1 and 3,400 cm−1 regions has been attributed to the ordering of the interfacial water
molecules by the local electric field that results from the sulfate dianion residing at the bottom of
the interfacial region, with the cations residing some distance above the sulfate dianion (49, 53).
Although this interpretation for VSFG results is somewhat speculative, it is in agreement with
molecular dynamics simulations and PS-SFG studies for sulfate solutions, as shown in Figure 1d
(discussed below) (53, 96, 99, 100). The larger spectral enhancement observed for ammonium-
sulfate solutions compared with sodium-sulfate solutions is interpreted as a result of the ammonium
ions’ surface preference, which causes a greater separation between the ammonium and sulfate
ions. This increased separation generates a local electric field with a greater magnitude within
the interfacial region than what is generated with sodium-sulfate solutions and thus has a greater
ordering effect on water molecules within the vapor/solution interface.
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The sodium-carbonate results shown in Figure 1c are interpreted as follows: The enhancement
of the 3,200 cm−1 peak is generally attributed to a convolution of an increase in the cooperative
O-H stretching of tetrahedrally coordinated water molecules, the ordering effects of the ion-
induced field, and strong ion-dipole interactions (44, 48, 49). The origin behind the decrease in
the 3,400 cm−1 mode for sodium-carbonate solutions is unclear and is the subject of ongoing work.

The recent application of PS-SFG to the study of water organization at vapor/ion-water inter-
faces has confirmed many interpretations of these interfaces from conventional VSFG studies (48,
96, 100). Shown in Figure 1d are the Imχ (2)

ν spectra obtained from PS-SFG for sodium-sulfate,
ammonium-sulfate, and sodium-carbonate solutions. For both sulfate and carbonate, relative to
the neat water surface, the change in sign from positive to negative from 3,000 to 3,200 cm−1 and
the increased negative intensity of the 3,200–3,500 cm−1 region for the salt solutions compared
to neat water reveal that both sulfate and carbonate have a strong orienting effect on the water
OH transition moment, causing the water molecules to align with their OH transition moments
pointing toward the bulk solution. This indicates that the dianions are residing near the bottom
of the interfacial region, with the associated cations, ammonium and sodium, relatively near the
surface. As a first estimate, the differences in spectral magnitude observed for the salt solutions
in Figure 1d reveal the degree of separation between the cations and anions within the interface
for the various salt solutions. Here the sulfate dianion resides deeper within the interface (well
below the topmost surface) compared to carbonate, which results in a greater local electric field
within the interface for sulfate solutions and exhibits a larger ordering effect on water molecules
than is present in carbonate solutions. There is a similar explanation for the differences between
ammonium-sulfate and sodium-sulfate solutions, as the ammonium ion is known to exhibit a
greater surface preference than sodium, resulting in a larger charge separation of the ion pair
within the interface (53).

2.2. Ion Interrogation

Beyond the examination of the effect ions have on the water structure at the vapor/water interface,
it is possible to utilize VSFG to directly interrogate molecular ions at the vapor/water interface
(90–92). These results often reveal surprising differences in ion behavior when compared to bulk
studies of aqueous ions utilizing Raman and infrared spectroscopies (92, 101). Although little atten-
tion has been given to these types of studies because of added experimental complexity, we feel that
several recent studies probing ion modes directly with VSFG at the vapor/water interface should
be highlighted. Shown in Figure 2 are spectra in the N-O vibrational region for the air/aqueous
solution interface of 2.6 m and 3.3 m magnesium-nitrate solutions (here m is moles solute per
kilogram solvent). It is also worth noting VSFG spectra published by Miyamae et al. (90) probing
the S-O region at the vapor/liquid interface for a series of sulfuric-acid solutions from 0.01 x
to 0.9 x mole fraction sulfuric acid, along with nitrate-ion spectra from nitric-acid solutions by
Soule et al. (91).

The spectra shown in Figure 2 feature two components that are both attributed to the
symmetric stretching mode of the nitrate anion at the vapor/aqueous interface (92). As the con-
centration increases from 2.6 m to 3.3 m, the component at ∼1,047 cm−1 increases dramatically.
This is taken as evidence of ion-pair formation at the vapor/aqueous interface, in agreement with
Raman experiments on the forced dehydration of supersaturated nitrate droplets (102). The work
of Miyamae et al. (90) illustrates the surface activity of the sulfate dianion and speciation present
as the concentration of H2SO4 increases from 0.01 x to 0.9 x mole fraction H2SO4. The little
intensity for the dilute 0.01 x H2SO4 solution indicates that the sulfate dianion is repelled from
the interface. However, as the concentration of H2SO4 increases to 0.39 x, approximately 98%
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Figure 2
Conventional ssp polarized VSFG spectra of 2.6 m Mg(NO3)2 and 3.3 m Mg(NO3)2 solutions (where m is
moles solute per kilogram solvent), demonstrating the symmetric stretch of the nitrate ion at the air-aqueous
interface. Markers are data, the solid line is the fit, and the dashed lines are fit components. Figure reprinted
with permission from Reference 92. Copyright 2009 American Chemical Society.

of the sulfate anions are protonated to form the bisulfate, HSO4
−, anion, which can approach

the interface. These studies demonstrate the sensitivity of VSFG to atmospherically relevant
interfacial processes involving ions (90–92).

3. SOLUTES

3.1. Organization of Methanol

The surface preference and reaction of small soluble solutes at the air/vapor interface are also of
great interest within the atmospheric chemistry community, and surface-specific optical spectro-
scopies such as VSFG and PS-SFG have been applied to study a wide range of these chemical
systems (25, 58–69). Solutes generally differ in their behavior at vapor/water interfaces from what
is observed for ions because of their larger molecular nature and the general, but not absolute,
lack of a charge. Here we restrict the discussion to the simple alcohol methanol, CH3OH, which
has broad importance within tropospheric chemistry because it can be used as an alternative fuel
and it is a common byproduct of plant biogenesis (6). Methanol is also known to impact both the
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Figure 3
Conventional ssp polarized VSFG spectra, CH3-ssp peak position, and intensity of aqueous methanol
(CH3OH) solutions. (a) VSFG spectra at different bulk methanol mole fractions. (b) CH3-ssp peak position
(left y axis) and intensity (right y axis) at different surface methanol mole fractions (with normalized surface
number density). Figure adapted from Reference 67.

HOx cycle and NOy reactions and is involved in various heterogeneous chemical reactions that oc-
cur in methanol-containing aqueous aerosols (6, 67, 103–105). We first present the organization
of methanol at the vapor/water interface with a perspective toward the evolving interpretation
within the literature on its surface behavior. We then highlight the ability of VSFG to monitor
surface reactions and the uptake of methanol for various vapor/aqueous interfaces (104). These
studies underline the complex nature of reactions that can occur at interfacial regions and pro-
vide insight toward heterogeneous chemical reactions that may occur in tropospheric aerosols
containing methanol.

Figure 3a shows the conventional VSFG spectra corresponding to a concentration series of
binary water-methanol solutions from 0.03 x to 1.0 x mole fraction methanol at the vapor/aqueous
interface. The spectra feature two peaks at ∼2,840 cm−1 and ∼2,950 cm−1 and a shoulder on the
red side of the 2,950 cm−1 peak at ∼2,920 cm−1. The peak at 2,840 cm−1 is assigned to the
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symmetric stretching mode of the methanol CH3 moiety, whereas the other peak and shoulder
are attributed to the Fermi resonances of the CH3 symmetric stretch with the overtones of the
CH3 bending modes (58, 59, 62, 67, 68). By monitoring the position and intensity of the VSFG
CH3 symmetric stretch mode, one can infer a picture of methanol’s surface behavior. As methanol
molecules are surface active compared to water molecules in water-methanol binary mixtures,
the bulk mole fraction of methanol does not accurately reflect the surface mole fraction. This has
been accounted for in Figure 3b, which shows the frequency and intensity shifts versus methanol’s
surface mole fraction (67). Figure 3b illustrates the red shift for the CH3 symmetric stretch at the
vapor/solution interface observed with VSFG by several researchers (58, 62, 67, 68). This red-
shift trend is in agreement with Raman, infrared, and theoretical studies of bulk water–methanol
mixtures and is generally accepted as indicating the increased hydrogen-bond-donor character
methanol molecules exhibit as the water content decreases (67, 106, 107).

The most striking trend displayed by the spectra in Figure 3a is the decrease in the CH3

symmetric stretch peak with the increase in methanol concentration above 0.8 x. This trend is
not observed for bulk water–methanol studies utilizing Raman and infrared spectroscopies, but
it has been observed for all VSFG studies at the vapor/solution interface (58, 62, 67, 68). Early
studies by Wolfrum et al. (58) invoked VSFG’s intensity dependence on net molecular orientation
as well as number density (Equation 6) to explain the decrease in VSFG intensity with increased
methanol concentrations. That is, as methanol concentration increases beyond 0.8 x, methanol
at the vapor/solution interface becomes more disordered; subsequent VSFG studies by Huang &
Wu (68) and Ma & Allen (67) and theoretical calculations by Paul & Chandra (108) confirmed
this interpretation.

However, the polarization intensity ratio method (109) used in the above studies to probe
methanol’s reorientation with increased concentration yielded a large distribution of possible
orientations. Recent VSFG studies utilizing the polarization null angle method to determine the
molecular orientation for a variety of interfaces have shown the polarization null angle method to
be more accurate than the widely used polarization intensity ratio method (21). In applying the
polarization null angle methodology to the vapor/methanol-water binary mixture interface, Chen
et al. (62) explored the notion that methanol undergoes reorientation with increased concentration
at the vapor/solution interface and proposed that this is not the case. Their results indicate that
methanol molecules are oriented with the CH3 moiety approaching the surface normal directed
toward the vapor phase for water-methanol binary mixtures and that this orientation does not
significantly change with variation in methanol concentration. To explain the decrease in the
VSFG signal observed with an increase in methanol concentration, Chen et al. proposed the
presence of an antiparallel structure within the second layer from the surface of the interface, in
line with VSFG findings for the vapor/solution interface of acetone-water mixtures (63, 64) and
extended X-ray absorption fine-structure studies on the vapor/methanol interface (110). These
conclusions have also been supported by the work of Sung et al. (69) for VSFG of alcohol-water
binary mixtures and Monte Carlo calculations by Partay et al. (111).

3.2. Reactions with Sulfuric Acid

As indicated above for ions, VSFG provides the ability to monitor reactions that solute molecules
undergo at surfaces beyond organization. Although many studies of this nature are present in
the literature, we focus our discussion on methanol’s uptake and reactions with sulfuric-acid
solutions at the vapor/solution interface (103–105). Sulfuric acid is the end oxidation product of
many sulfur-containing molecules produced in the atmospheric sulfur cycle; sulfur-containing
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Figure 4
Conventional ssp polarized VSFG spectra and chemical reactions for the uptake of methanol at the surface
of 0.12 x to 0.84 x mole fraction H2SO4 solutions. (a) VSFG spectra of methanol surface species at the
solution vapor/liquid interfaces after 30 min of exposure to methanol vapor. (b) Relevant chemical reactions
for the reaction of methanol with acidic media. Figure reprinted with permission from Reference 104.
Copyright 2008 American Chemical Society.

molecules’ strong affinity for water enables them to serve as cloud condensation nuclei and thus
influence the albedo of the Earth (6, 36, 37).

Figure 4 illustrates VSFG spectra corresponding to the uptake and reaction of methanol vapor
after 30 min of methanol exposure for water and a concentration series of sulfuric-acid solutions,
along with the corresponding reaction sequence for the formation of methyl hydrogen sulfate
(104). As the concentration of sulfuric acid increases (Figure 4a), a blue shift and intensity change
are apparent for the two peaks corresponding to the CH3 symmetric stretch at ∼2,840 cm−1

and the CH3 Fermi resonance at ∼2,954 cm−1 (compare with the methanol-water mixtures in
Figure 3a) until the peak at ∼2,840 cm−1 has disappeared, for 0.84 x mole fraction sulfuric-
acid solution, and the spectrum shows only one strong peak at ∼2,972 cm−1. The slight blue
shift (∼3 cm−1) and intensity decrease observed for the 0.12 x and 0.20 x mole fraction sulfuric-
acid-methanol solutions are consistent with the formation of protonated methanol, CH3OH2

+,
within the interfacial region via the third reaction in Figure 4b (103). In the more concentrated
sulfuric-acid solutions, the formation of methyl hydrogen sulfate, CH3SO4H, occurs within the
vapor/solution interface via the fourth reaction pathway in Figure 4b; this is apparent from the
disappearance of the methanol CH3 symmetric stretch peak at 2,840 cm−1 and the appearance
of the strong peak at 2,972 cm−1 attributed to the CH3 symmetric stretching mode of methyl
hydrogen sulfate (103). These findings illustrate the ability of VSFG to monitor volatile organic
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PA: palmitic acid

OA: oleic acid

SAM: self-assembled
monolayer

compounds such as methanol condensation onto and reaction with aqueous surfaces. Reactions
such as the formation of methyl hydrogen sulfate highlight the transformation toward less volatile
products, which can contribute to aerosol growth (104).

4. LIPIDS

4.1. Palmitic Acid Organization and Ion Complexation

Organic coated aerosols have been shown to be ubiquitous in both marine and terrestrial envi-
ronments. Palmitic acid (PA), C16H32O2, and oleic acid (OA), C18H34O2, are the most prevalent
saturated and unsaturated fatty acid organic components found in fat-coated marine aqueous
aerosols, respectively (112). Many studies have focused on elucidating the behavior of organic
monolayers at the air/aqueous interface with fatty acid Langmuir film proxies, as this behavior has
consequences for the growth of fat-coated aerosols and the reactions in which they take part (32,
70, 83, 85, 113–123). VSFG provides an excellent tool for explaining this behavior because of its
inherent surface sensitivity. In this section, we review recent VSFG studies on the organization
of PA monolayers at the air/aqueous interface as well as examine several reactions that PA mono-
layers may experience at the air/solution interface, such as ion complexation with ions contained
within the solution subphase (74, 86, 88).

Figure 5a shows the spectrum of a PA self-assembled monolayer (SAM) on a neat water
subphase in the C-H stretching region for a surface pressure of 10 mN m−1. This spectrum
features four signatures at 2,842 cm−1, 2,874 cm−1, 2,940 cm−1, and 2,960 cm−1 that have been
attributed to the methylene symmetric stretch, the methyl symmetric stretch, the methyl Fermi
resonance, and the methyl asymmetric stretch, respectively (74, 88). The relative strength of the
methyl symmetric stretch peak at 2,874 cm−1 compared with the methylene symmetric stretch at
2,842 cm−1 indicates the high degree of conformational order found in the PA SAM at a surface
pressure of 10 mN m−1. This is apparent when we consider that for a vibrational mode to be
VSFG active, it must not feature an inversion center. The high methyl-to-methylene symmetric
stretch ratio indicates that the PA molecules are highly aligned, inducing centrosymmetry between
adjacent CH2 moieties (124, 125); this feature is observed only for all-trans alkyl SAMs with an
even number of methylene groups (88, 126).

When a PA monolayer is spread on aqueous subphases that contain ions (0.1- and 0.3-M CaCl2;
Figure 5b), VSFG reveals slightly different behavior for the lipid SAM than what is observed for
a neat water subphase. Here the overall spectral intensity in the C-H region observed for a PA
monolayer is slightly greater than that observed for a PA monolayer on neat water; this suggests
either that the PA molecules are more highly aligned when spread on an ionic subphase or that
the monolayer packing has increased such that there is a greater number density of PA molecules
within the VSFG probe spot. This can also be observed in the compression isotherm (Figure 6b)
for PA monolayers spread on neat water and CaCl2-containing subphases. To quantitate these
observations in the C-H region, Tang and colleagues (74, 88) investigated the COOH head group
of PA to discover the effect ions have on the carboxyl and carboxylate symmetric stretching modes
present at the vapor/solution interface. Shown in Figure 5c,d are spectra corresponding to the
PA monolayer head group for PA SAMs spread on a pH-13 aqueous subphase, a 0.1-M CaCl2
solution subphase, and a 0.3-M CaCl2 subphase (Figure 5c). The peak at ∼1,410 cm−1 for the
PA monolayer on the pH-13 subphase in Figure 5d has been assigned to the solvated COO−

symmetric stretch, indicating that the PA monolayer’s head group is completely deprotonated
at this pH, as is expected from attenuated total reflectance Fourier transform infrared studies by
Gershevitz & Sukenik (113) on the pKa for carboxylate-terminated SAM. The spectra in Figure 5c
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Figure 5
Conventional ssp polarized VSFG spectra of palmitic acid (PA) monolayers and schematic representation of
ion complexation of the PA head group. (a) VSFG spectra in the C-H stretching region of PA monolayers
on neat water at 10 mN m−1 and near neutral pH. (b) VSFG spectra in the C-H stretching region of a PA
monolayer on 0.1- and 0.3-M CaCl2 solutions. (c) VSFG spectra in the COO− stretch region of D31-PA
monolayers on 0.1-and 0.3-M CaCl2 solutions. (d ) VSFG spectra in the COO− stretch region of D31-PA
monolayers on water with pH 13.0. (e) Illustrations of four possible metal-carboxylate complexes in order of
decreasing νs COO− frequency. R represents an alkyl chain. Figure adapted from Reference 74.
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Figure 6
Conventional ssp polarized VSFG spectra and surface pressure–area isotherms (π-A) of a palmitic acid (PA) monolayer on aqueous
surfaces at pH 6. (a) ssp VSFG spectrum of neat water and the PA monolayer on water at 23◦C in the O-H stretching region. (Inset) A
schematic of the PA monolayer organization on water. (b) Surface pressure–area isotherms (π-A) of the PA monolayer on an aqueous
surface. (Inset) Brewster angle microscopy images corresponding to PA monolayers at the indicated surface pressures (arrows). (c) VSFG
spectra in the O-H stretching region of neat water and CaCl2 solutions (0.1, 0.3, and 1.8 M). (d ) VSFG spectra in the O-H stretching
region of PA monolayers on neat water and aqueous CaCl2 solution (0.1, 0.3, and 1.8 M) subphases. Figure adapted from Reference 86.

corresponding to the PA SAM on CaCl2 solutions show very different results; here the spectra are
dominated by a strong peak at 1,435 cm−1, and a slight shoulder at 1,475 cm−1 was also observed.
These spectral features indicate the ion complexation that occurs between the aqueous cation
and the ion-induced deprotonated COO− head group with greater degrees of complexation, as
illustrated in Figure 5e, resulting in a larger blue shift in the COO− frequency (127–129). The
water structure near a PA SAM at the vapor/water and vapor/aqueous salt solution interfaces has
also been examined with VSFG to elucidate the ultimate influence exerted by ion complexation
and concomitant PA head-group deprotonation (86).

With regard to the water structure at the vapor/water interface for a variety of lipid SAMs,
investigators have widely reported that the head-group charge and the packing ability of the SAM
are the most dominant forces in influencing water organization near organic monolayers (32).
Figure 6a illustrates VSFG spectra in the O-H stretching region corresponding to neat water and
a PA monolayer on a neat water subphase. The spectral enhancement of the O-H stretching peaks
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for the PA monolayer results from the slight deprotonation of the PA head group at pH 6, which
produces a surface charge. Surface charges have been shown to enhance water structure through
charge-dipole interactions for a variety of systems at both the vapor/water and solid/water inter-
faces (31, 32, 35, 70, 87, 114, 130). These enhancements have also been widely attributed to χ (3)

effects, as first reported by Zhao et al. (114) for water near charged lipid monolayers. The inset of
Figure 6a shows a physical representation of this. For PA monolayers spread on CaCl2-containing
subphases (Figure 6c), the degree of enhancement observed for the peaks in the O-H region is less
than that observed for PA on a neat water subphase, even for weakly concentrated (0.1-M) CaCl2
solutions. This is further evidence of the ion complexation that occurs between the COO− head
group and Ca2+ ion in solution. Ion complexation effectively screens the surface charge induced
by the deprotonated PA head group, as predicted by Gouy-Chapman theory (114, 130–133).
The screening effect is seen to increase with Ca2+ concentration, as expected, until the water
spectrum for a PA monolayer spread on a 1.8-M CaCl2 subphase (Figure 6c) resembles the water
spectrum for a 1.8-M CaCl2 solution without a PA monolayer at the vapor/solution interface
(Figure 6d), except for the disappearance of the peak at ∼3,700 cm−1 (86). The disappearance
of the 3,600 cm−1 peak in the spectra corresponding to the PA monolayer on the 1.8-M CaCl2
subphase is the final confirmation that the head group of the associated PA molecules is completely
deprotonated, as this mode has been attributed to the O-H mode of the protonated PA head
group (32, 86).

Recently PS-SFG has been applied to the study of the water structure near charged and neutral
Langmuir monolayers on neat water subphases (31–33, 35, 87, 123). These studies generally
demonstrate the reorientation of water molecules causes the O-H transition dipole to point either
toward or away from the charged monolayer, depending on the sign of the charge, although our
recent work on zwitterions is an exception to this trend, as these act as negatively charged head
groups (32). Nihonyanagi et al. (87) recently extended this method to study the water structure near
charged lipid monolayers spread on NaCl-containing subphases and observed similar decreases in
O-H peak intensity on the addition of salts, as is observed for a PA SAM spread on ion-containing
subphases. Although Nihonyanagi et al. invoked electrolyte screening of a Gouy-Chapman electric
double layer by the added salts and not an explicit ion-complexation argument, their results
highlight the suitability of the PS-SFG technique to investigate complex lipid/ion/water systems.

These results demonstrate the intricate interactions that can occur for fat-coated marine
aerosols between the surface organic film and the aqueous subphase. Interactions such as de-
protonation have consequences for the growth and uptake of fat-coated aqueous aerosols as de-
protonation can induce packing in the monolayer by reducing the charge repulsion of the head
groups via ion complexation, with ions contained within the subphase such as Mg2+ and Ca2+

(74, 86, 88). Tightly packed monolayers are generally more resistant to water uptake because of
the increased hydrophobicity of the outer layer, thus inhibiting further growth of the aerosol,
although this idea has been challenged (105, 134, 135).

4.2. Oxidation of Oleic Acid Monolayers

Several researchers have recently applied VSFG to the study of the oxidation, generally by gaseous
ozone (O3), of tropospherically relevant organic films. Stokes and colleagues (136–138) used VSFG
to monitor the reaction and reaction products of glass slides functionalized with tropospherically
relevant organic moieties with ozone at the vapor/solid interface. Their results indicated reaction
probabilities for a variety of organic moieties with ozone that are consistent with the molecular
dynamics simulations of Vieceli et al. (139). At the vapor/liquid interface, more relevant to aqueous
phase aerosols, Voss et al. (73) monitored the reaction for an OA monolayer on an aqueous
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Figure 7
Conventional ssp polarized VSFG spectra and surface pressure–area isotherms (π-A) of oleic acid (OA)
monolayers on neat water subphases. (a) VSFG spectrum of an OA monolayer on neat water at a surface
pressure of ∼12 mN m−1. Abbreviations: FR, Fermi resonance; SS, symmetric stretch. (Inset) Molecular
model of the OA molecule. (b) VSFG spectrum of an OA monolayer at a surface pressure of ∼1 mN m−1.
(c) Langmuir compression isotherm with markers indicating the point of film collapse ( y2) and the point at
which the VSFG spectrum of panel b ( y1) was acquired. (d ) Langmuir isotherm during oxidation of oleic
acid monolayer by ozone. (e) VSFG spectra corresponding to the oxidation of OA monolayers at the
air/water interface with ozone after set exposure times. Figure reprinted with permission from Reference 73.
Copyright 2007 American Geophysical Union.

subphase with ozone via VSFG. The oxidation of OA has been widely used as a proxy for the
heterogeneous reaction of fat-coated aerosols with atmospheric oxidants because of its prevalence
in atmospheric particulate matter (112, 115, 122, 140).

Here we focus the discussion on the oxidation for OA monolayers at the vapor/water interface
by ozone in conjunction with the above discussion on the organization and reaction of atmo-
spherically relevant fatty acid lipid monolayers. Figure 7a presents the VSFG spectrum of an OA

122 Jubb · Hua · Allen

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

01
2.

63
:1

07
-1

30
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 O

hi
o 

St
at

e 
U

ni
ve

rs
ity

 L
ib

ra
ry

 o
n 

05
/0

7/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



PC63CH06-Allen ARI 27 February 2012 9:55

monolayer spread on a neat water subphase compressed to a surface pressure of ∼12 mN m−1,
which corresponds to an average area per OA molecule in the film of 32 Å per molecule, slightly
before the monolayer collapses at 28 Å per molecule indicated by point y2 in Figure 7c. There
are five spectral features present in Figure 7a that are attributed to the CH2 symmetric stretch
(2,846 cm−1), the CH3 symmetric stretch (2,876 cm−1), the CH2 Fermi resonance (2,923 cm−1),
the CH3 Fermi resonance (2,941 cm−1), and the olefinic = CH stretch (3,014 cm−1) (73).
Figure 7b illustrates the VSFG spectrum for an OA monolayer slightly compressed to ∼1 mN
m−1, indicated by point y1 in Figure 7c. Unlike for the PA monolayers discussed above, the
CH2 vibrational modes of the OA monolayer possess strong VSFG intensity owing to a lack of
inversion for the CH2 moieties, which results from the unsaturated nature of the OA molecule.

Spectra corresponding to the reaction of the OA film with ozone are shown in Figure 7e, and the
corresponding Langmuir isotherm during the oxidation is shown in Figure 7d. Here an immediate
drop in the CH3 symmetric stretch peak is apparent after 1 min of exposure to ozone, and by
30 min of exposure, all VSFG signatures of the OA monolayer are gone. Through separate VSFG
studies on the known reaction products of OA with ozone (140)—nonanal [CH3(CH2)7CHO],
nonanoic acid [CH3(CH2)7CO2H], azelaic acid [HO2C(CH2)7CO2H], and 9-oxononanoic acid
[OCH(CH2)7CO2H]—it was determined that the spectra shown in Figure 7e do not originate
from reaction products at the vapor/water surface, which is consistent with the relatively high
solubilities for these reaction products in water (141). To explain the observed spectral changes
for the oxidation of OA, Voss et al. (73) compared the oxidation spectra (Figure 7e) with the VSFG
spectra observed for a slightly compressed (∼1 mN m−1), and thus disordered, OA monolayer at
the vapor/water interface (Figure 7b). The similarities between the spectra shown in Figure 7b
and the spectra corresponding to the short ozone exposure times (1-min exposure) indicated that
oxidation disordered the OA film. These results suggest that the oxidation of an organic film on an
aqueous aerosol induces disorder within this film via the dissolution of the oxidation products into
the aqueous subphase. This creates space for the unoxidized OA molecules to disperse owing to
steric effects, analogous with observations for the slightly compressed OA monolayer (Figure 7b)
(73). This disorder may lead to the fragmentation of the aerosol or to heightened evaporation
of the aqueous subphase; both these scenarios would lead to the formation of smaller fat-coated
aerosols.

5. FUTURE PERSPECTIVES FOR VSFG OF
ENVIRONMENTAL INTERFACES

Many recent advances in instrumentation and methodology have made the future of applying
VSFG to the study of environmental interfacial processes a bright one. Perhaps the most exciting
is the recent development of the PS-SFG technique (31), which enables the direct measurement of
the transition dipole moment and provides insight into the organization of molecules. However,
the application of this technique has been limited by the small number of research groups adopting
it (31–33, 35), likely because of the complexity of the instrumentation and spectral processing. As
an alternative, the utilization of the maximum entropy method has shown promise (18, 19, 34).

Recent advances have also been made for time-resolved VSFG measurements (142–144) as
well as nonlinear optical spectroscopic measurements (145–148) from nonplanar interfaces such
as colloidal suspensions. The ability to resolve dynamics at interfaces is a crucial step toward
furthering the understanding of how molecules behave within the constrained interfacial region.
Colloidal suspensions are ubiquitous in the environment and extremely important for the aqueous
geochemistry of pollutant cycling (4).
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SUMMARY POINTS

1. VSFG is a powerful tool for the investigation of environmental interfaces. Water
molecules at the vapor/solution interface are shown to reorganize in the presence of
ions. The size, charge, geometry, and polarizability of ions play a role in this reorganiza-
tion, making PS-SFG direct measurements of the interfacial water structure important.

2. Solutes and lipids display very different behavior at the vapor/water interface than ions
because of their increased surface preference. The orientation of these species at the
surface can be determined through VSFG.

3. Reactions involving ions, solutes, and lipids in interfacial regimes are observable with
VSFG. This is demonstrated by observing a series of various reactions for each class of
systems: ion pairing between nitrate and the countercation at the vapor/solution interface,
the reaction and uptake of methanol by sulfuric-acid solutions, and ion complexation and
oxidation for various lipids spread on aqueous subphases.
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