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Abstract 

In totality, Earth’s oceans comprise 70% of the planet’s surface. The bulk water 

itself is teeming with inorganic ions, carbonaceous matter, and over a million unknown 

aquatic species. The surface, where all compounds must pass through when adsorbing from 

the atmosphere or releasing from sea spray, is chemically enriched and exerts control over 

several global processes, including micrometeorology, wave dampening, wave breaking, 

cloud condensation, ice nucleation, and sea spray aerosol generation. Like much of the 

ocean, the surface remains incompletely understood. Improved comprehension of the 

chemical and physical properties of the unique interfacial region is necessary for modern 

climate science. 

The ocean’s surface and interfacial region can be investigated in numerous ways to 

garner further details; each methodology provides insightful information and has 

drawbacks that must be acknowledged. A complete understanding of the surface requires 

a holistic scientific approach. In the first part of this work, gas-phase infrared spectra are 

utilized to train image-based machine learning (ML) models to identify functional groups. 

Using transfer learning, a small dataset (in respect to the large datasets necessary for 

complex neural networks) of spectra was sufficient to create models that correctly 

identified present and absent functional groups (>80% testing accuracy). Functional groups 

with weak infrared responses in crowded regions were the most difficult to identify. The 
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development of ML models that predict relevant spectral information improves upon the 

variability present when analysis is done manually. ML models make consistent 

predictions long after training, which gives them longevity. These models are examined 

further in the final work to evaluate their effectiveness for spectra of aqueous mixtures. 

In the second study, methodology is developed to utilize Energy Exascale Earth 

Systems model output data that corresponds with relevant satellite data to map carbon on 

the ocean surface throughout an entire calendar year. In contrast to the first approach, which 

is more fundamental, the surface carbon is modeled to give global estimates of the total 

carbon mass and mapped to show global variability. At the sea surface nanolayer there is 

approximately 10-4 gigatons of carbon globally. Interestingly, the total mass does not 

change month to month or seasonally, indicating a global equilibrium of carbon 

distribution. Yet, seasonality creates striking maps where winter months (for either 

hemisphere) have decreased surface carbon and summer brings the opposite effect. The 

dissolved organic carbon, an important chemical measurement in the field of study, is also 

modeled in addition to the carbon maps to provide reference values for future work. 

Using established experimental methodology, the third approach presented is an 

investigation into the effect of temperature and bulk-phase on surface adsorption of the 

protein bovine serum albumin. Infrared reflection absorbance spectroscopy is employed to 

determine how the surface chemistry changes when lipids, proteins, temperature, and ionic 

strength are changed. Temperature has a less significant effect on bovine serum albumin 

adsorbing to the surface than ionic strength. Artificial sea water at 20°C has the most intense 

amide bands, which indicates that the solution conditions promote the most protein 
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adsorption compared to 0.45 M sodium chloride and water. The results are indicative of an 

ocean surface that is affected not only by cationic enrichment, but also by temperature, 

which has not been previously documented. The propensity for protein to adsorb to the 

surface is also debated in the literature; these results indicate that protein spontaneously 

adsorbs to the surface under all conditions and there is variability depending on the 

temperature, solution, and presence of a lipid. 

The culmination of the first three studies is explored in the final study where 

mixture solutions are measured using attenuated total reflectance Fourier transform 

infrared spectroscopy and machine learning techniques are applied to identify analyte 

concentration. A matrix of sugar and protein solutions at varying concentrations was used 

to create a complex training dataset to create linear regression, principal component 

analysis, and support vector regression models. Using the support vector regression model, 

sugar concentrations of more complex samples, including additional sugars, were 

accurately predicted. Unknown ocean samples were tested on the same model and 

predicted sugar concentrations were in a reasonable range (<100 mM) compared to 

literature values of measured sugar concentration. These model results on a simple system 

provide an avenue for measuring the ocean surface chemistry more readily with less sample 

preparation required. 

While ocean surface chemistry remains mostly undefined, the multifaceted 

approaches addressed by the work presented herein provide invaluable information 

towards understanding the vital interface. The machine learning development of the first 

work and capstone study expands the options for analyzing the astounding amount of data 
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collected from field missions and long-term studies. Because of the laboratory surface 

studies, it is known that the ocean’s surface is affected by the chemical and physical 

properties of the region. Inevitably, the vastness of the world’s oceans means that local 

adsorption properties are ever-changing from minute to minute and certainly season to 

season. Global models from calculated carbon mass based on literature values provide 

further input data for modeling, and we understand from the models that the surface of the 

ocean is variable globally, as is supported by the surface studies. The overarching 

cumulative effect of each study is an improved understanding of the ocean’s dynamic 

surface and its impact on Earth’s climate. 
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Chapter 1. Introduction 

1.1. Motivation 

The research presented in this dissertation was conducted to explore ocean surface 

chemistry through computation methods and provide insight into the complexity of the 

ocean. The work is motivated by both the complexity of current monitoring methods and 

the need for more consistent sampling or predictions of the sea surface chemistry. 

The sea surface microlayer (SSML) is enriched with organics that form a monolayer 

at the interface. Organic monolayers likely impact micrometeorological phenomena 

because monolayers are known to dampen wave formation. Enriched organics are also 

transported to the atmosphere as sea spray aerosols (SSAs) through wave breaking or 

bubble bursting. SSAs are a mechanism for release of ice nucleating particles and cloud 

condensation nuclei, both of which affect climate and atmosphere. 

Machine learning (ML) provides an avenue to understand chemical space beyond what 

is achievable with human analysis of spectroscopic data. Through ML, a higher throughput 

of data is achievable, while also enabling exploration of connections between data that 

previously could not be studied. Utilizing existing ML methods, the work in this 

dissertation emphasizes the improved analytical opportunities for understanding the 

SSML. 
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1.2. Approach 

Image-based convolutional neural networks (CNN) were utilized to establish a 

consistent method for analyzing Fourier Transform Infrared (FTIR) spectra to determine 

the functional groups in a spectrum. The qualitative identification achieved with ML 

enabled exploration of more complex FTIR spectra that were created as proxies for SSML 

samples. Proxy samples were used to evaluate the qualitative ML models built on 

thousands of spectra and quantitative ML methods were introduced to achieve accurate 

concentration of carbohydrates in new samples.  

The complexity and intricacy of studying the SSML require a holistic approach to 

consistent monitoring of organics. Satellites and models, such as NASA’s MODIS and 

Energy Exascale Earth Systems Model (E3SM), respectively, provide global data on 

chlorophyll-a (chl-a). Chl-a is utilized herein to model carbon at the ocean surface using 

phytoplankton, the ocean’s primary producer, because the detritus from these 

microorganisms becomes dissolved organic carbon (DOC) and generates the organic 

monolayer or sea surface nanolayer (SSnL). 

Laboratory experiments, including attenuated total reflectance (ATR) and infrared 

reflection-absorbance spectroscopy (IRRAS) are used to provide necessary insight into 

complex SSML samples. IRRAS provides surface-sensitive analysis of the behavior of 

molecules at the air-water interface and enables greater understanding of the complex 

chemical and physical properties in a controlled experiment. Utilizing spectroscopy to 

determine composition ultimately reduces the organic waste created during extraction; 

samples are analyzed directly. 

2 



 

    

  

  

   

 

   

     

 

    

       

    

   

 

  

 

   

   

  

      

    

The combination of quantitative ML, qualitative ML, and global modeling provides 

an advanced avenue for monitoring the ocean’s surface. In conjunction with necessary 

laboratory experiments, such as IRRAS of the air-water interface, the fundamental and 

complex processes of the ocean’s surface can be unraveled. With ML, the observation and 

quantification of SSML organics can be more frequent and more informative. 

1.3. Dissertation Highlights 

Chapter 2 includes background details on the specific methods, instrumentation, 

computational, and ML techniques utilized throughout the dissertation work. Included in 

this section is a brief theory of gas-liquid anisotropy, FTIR, ATR-FTIR, and IRRAS. 

Principal component analysis (PCA), linear regression (LR), support vector regression 

(SVR), and CNN mathematical background is detailed along with the computational 

background for modeling the SSnL. 

Chapter 3 reports on the work to develop image-based ML models to predict 

functional groups from FTIR spectra. It was found that successful CNN models were made 

for 15 common organic functional groups and high predictive accuracy was achieved on 

unknown spectra. Since each functional group had a unique model, the dependence on 

training spectra was reduced and many functional groups with limited training data were 

able to perform with similar predictive power as groups that have thousands of examples. 

Chapter 4 approaches the question of modeling the SSnL carbon from a 

computational direction by using E3SM model output to map ocean surface coverage of 

carbon. The calculated amount of DOC by the new model is compared to literature values 

of DOC from field studies and is comparable to the ranges. Global maps of carbon in the 
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SSnL and the total value of carbon over a month reveal that while there is regional 

variability, the total amount of carbon does not significantly vary. 

Chapter 5 summarizes the laboratory experiments directed at understanding the 

dynamics of protein surface adsorption to the air-water interface. Using IRRAS different 

subphases of pure water, NaCl, and artificial sea water at variable temperatures were used 

to investigate the proclivity of bovine serum albumin to partition to the surface. Amide 

bands of greater intensity were observed for bovine serum albumin in artificial sea water 

at higher temperatures, indicative of the protein being salted out.  

Chapter 6 contains the culminating work of this dissertation. Real SSML samples 

are examined via ATR-FTIR spectroscopy and pre-trained ML models to achieve 

quantitative prediction of sugar concentration. The most effective ML model is determined 

by examining complex samples after training with proxy-solutions of varying protein and 

sugar concentrations. SVR predicts the correct sugar concentration within tens of 

millimolar, providing a methodology that quickly and efficiently enables analysis of the 

SSML for improved climatological and atmospheric modeling.  

Lastly, Chapter 7 summarizes the findings presented in this dissertation. The 

atmospheric and climatological implications are briefly discussed to contextualize the work 

completed for this dissertation. Ultimately, it is posited that the findings from each chapter 

are unique and provide an avenue for sustainable environmental chemistry research of the 

ocean. 
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Chapter 2. Theoretical Background, Instrumentation, and Computational Methods 

An overview of the theory, instrumentation, and computational methods used 

throughout this dissertation is detailed herein. Relevant background is provided for the 

SSML, FTIR, ATR-FTIR, IRRAS, PCA, LR, SVR, and CNNs.  

2.1. Surface Tension Theory 

Surface tension, formally described as force per distance, or Newton per meter, 

results from the excess free energy at the interface between two bulk phases.1,2 Gas, liquid, 

and solid matter can form five distinct interfaces: gas-liquid, gas-solid, liquid-liquid, 

liquid-solid, and solid-solid. The free energy of formation must be positive (G > 0), where 

free energy is equal to or less than zero, the surface region of the matters would expand 

infinitely and form a disperse, indistinguishable material. While the derivations and 

detailed equations are documented in detail elsewhere, a brief summary of the theory is 

provided.1–3 

The change in internal energy, U, in a two-phase system is described by 

𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑑𝑑𝑇𝑇 − 𝑃𝑃𝑑𝑑𝑃𝑃 + ∑ 𝜇𝜇𝑖𝑖𝑑𝑑𝑁𝑁𝑖𝑖 + 𝛾𝛾𝑑𝑑𝛾𝛾 

Equation 1 

where T is temperature, S is entropy, P is pressure, V is volume, 𝜇𝜇 is chemical potential, N 

is number of molecules, 𝛾𝛾 is force, and A is area. 
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Given that Gibbs free energy is defined as 

𝐺𝐺 = 𝑑𝑑 + 𝑃𝑃𝑃𝑃 − 𝑇𝑇𝑇𝑇 

Equation 2 

and assuming a system at constant temperature, volume, and moles, the force, 𝛾𝛾, or surface 

tension, is expressed as 

𝑑𝑑𝐺𝐺 
𝛾𝛾0 = � �𝑑𝑑𝛾𝛾 𝑇𝑇,𝑉𝑉,𝑁𝑁 

Equation 3 

Under the assumed conditions, a decrease in area (-𝛿𝛿A) will decrease G, if 𝛾𝛾 is positive. 

Stable liquid phases generally see a decrease in surface area, attractive forces (e.g., dipole-

dipole, London dispersion, Hydrogen bonding, and induced-dipole) of phases decrease the 

distance between individual molecules and thus the overall area decreases, such that 

surface tension is always positive. Sometimes in the literature, Gibbs (G) and Helmholtz 

(F) free energy are interchanged in expression for surface tension; the small changes in 

pressure and volume make the values essentially equivalent. 

2.2. Surface Pressure Theory 

The surface tension of pure water, γ0, is 72 mN/m under standard conditions.4 It is 

made so high by the hydrogen bonding network. These intermolecular forces are disrupted 

upon the addition of a surfactant and formation of a monolayer. The disruption to the 

surface tension, γ, from the monolayer is often recorded as surface pressure, Π. 
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Π = γ0 − γ 

Equation 4 

2.3. Air-Water Interface 

Unlike the isotropic bulk of water, the orientational anisotropy of the interface 

creates a unique region.5,6 Bulk water, for example, has an ideal organization in the bulk 

that is disrupted by the presence of a surface, for example. The interface itself is not a 

definitive thickness or infinitesimally small region; it is instead variable depending on the 

physical and chemical properties of the system. Air-water interfaces are unique in that 

molecules may diffuse from the liquid to the interface, diffuse from the interface to the 

bulk, or adsorb to the surface from the air. 

2.3.1. Air-Sea Interface/Sea Surface Microlayer 

The addition of the ocean’s physical and chemical properties, including wave 

breaking and diverse DOC from biogenic7,8 and anthropogenic9 sources, respectively, 

complicate the interface. Specifically, wave breaking leads to aerosolization10 of organics 

enriched at the interface and within the SSML.11 The thickness is often referred to as about 

1 mm,12 however inconsistencies in reported thickness throughout the literature are 

attributed to the variability of the interface globally. Despite lacking a definite thickness, 

the SSML exerts a unique control over global processes given its role as a boundary 

between Earth’s atmosphere and ocean. It’s hypothesized that the SSML contributes 
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greatly to the production of ice nucleating particles,7,13–15 or INPs, and cloud condensation 

nuclei10,16–18 (CCNs) both released in the form of a SSA, which in turn affects climate. 

2.3.2. Enrichment Factor, Surface Activity, Monolayer Formation 

The mechanism in which INPs and CCNs are released to the atmosphere is through 

wave breaking and bubble bursting, producing SSAs, as previously noted. However, their 

prevalence at the interface and specifically the SSnL is due to the physical and chemical 

phenomena arising from the anisotropy and solubility. Enrichment factors19–23 (EFs) 

express the significance of a compound, molecular class, or inorganic ion presence in the 

SSML, such that an EF of 1 indicates no enrichment of a species occurs between bulk or 

interface. The mechanism or cause of enrichment is usually attributable to solubility, 

anisotropy, surface activity, and a compound’s source. 

Solubility is controlled by entropy and intermolecular forces. Carbon-dense 

molecules, such as lipids, are less soluble in water and have a higher affinity to aggregate 

in the SSML, with its less structured water, and form monolayers on the surface (SSnL). 

The formation of a monolayer, or sea slick, on the ocean’s surface was first documented 

by Benjamin Franklin in 1785.24 However, the chemical properties of the surfactant that 

caused the formation were not understood at the time. 

Early measurements of the effect oil or surfactants had on the physical properties 

of the water surface were made by Agnes Pockels.25 Using only rudimentary tools, she 

nevertheless revealed that the surface tension of “impure” water was greatly diminished as 

the surface area per molecule was decreased. In other words, the surface pressure increased 

when a monolayer was formed. This work was published in Nature with the assistance of 
8 
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Lord Rayleigh in 1891.25 Irving Langmuir’s work in the field of surface science led to the 

discovery of the reason for surfactant organization at the surface.26,27 His findings were that 

the oily tails (hydrophobic region) oriented out of the water into the air while the 

hydrophilic head groups interacted with the water. Katharine Blodgett worked closely with 

Langmuir and her work on the transfer of monolayers on an air-water interface to a solid 

substrate is integral to our understanding of modern surface science.28 

2.4. Infrared Spectroscopy 

IR light, with wavelengths longer than visible light and shorter than microwaves, 

probes vibrational motion of covalently bonded atoms by exciting from one vibrational 

state to another.29,30 Only vibrational motions with a temporary change in dipole moment 

are IR active. Additionally, the transition energy must be resonant with the infrared energy 

to cause a change. The approximate wavenumber, proportional to frequency, where bond 

vibrations are observed, can be determined. 

Molecular stretching vibrations can be approximated as two masses connected by 

a spring; moving one mass on the same axis as the spring has a resulting vibration that is 

expressed as 

𝐹𝐹 = −𝑘𝑘𝑘𝑘 

Equation 5 

Where the restoring force, F, is proportional to the force constant, k, and displacement, y. 

Commonly known as Hooke’s law, this expression of simple harmonic motion is the basis 

for classical atomic vibration. 
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The potential energy, E, of the mass and spring can be assigned a value of zero at 

equilibrium and compressing or extending the spring changes the potential energy, dE, 

where 

𝑑𝑑𝑑𝑑 = −𝐹𝐹𝑑𝑑𝑘𝑘 

Equation 6 

such that the force and change in distance is equal to the change in potential energy. 

Substituting Equation 5 in and integrating results in 

1
𝑑𝑑 = 𝑘𝑘𝑘𝑘2 

2 

Equation 7 

which gives the potential energy of a harmonic oscillator. 

Vibrational frequency is deduced starting from Newton’s second law 

𝐹𝐹 = 𝑚𝑚𝑚𝑚 

Equation 8 

where m is mass and a is acceleration. Acceleration is defined as the second derivative of 

distance with respect to time 

𝑑𝑑2𝑘𝑘 
𝑚𝑚 = 

𝑑𝑑𝑡𝑡2 

Equation 9 

Equation 5, Equation 8, and Equation 9 are combined to give 
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𝑑𝑑2𝑘𝑘 𝑘𝑘𝑘𝑘 
= −

𝑑𝑑𝑡𝑡2 𝑚𝑚 

Equation 10 

wherein solutions require that the second derivative is equal to the original function 

multiplied by 𝑘𝑘/𝑚𝑚. A cosine function would satisfy this requirement; such that a 

displacement function of 

𝑘𝑘 = 𝛾𝛾 cos 2𝜋𝜋𝜈𝜈𝑚𝑚𝑡𝑡 

Equation 11 

where A is the maximum amplitude and 𝜈𝜈𝑚𝑚 is the vibrational frequency. Given the 

second derivative 

𝑑𝑑2𝑘𝑘 
= −4𝜋𝜋2𝜈𝜈𝑚𝑚2 𝛾𝛾 cos 2𝜋𝜋𝜈𝜈𝑚𝑚𝑡𝑡 𝑑𝑑𝑡𝑡2 

Equation 12 

Substituting Equation 11 into Equation 10, and using the second derivative 

produces, after canceling terms, converting from frequency to wavenumber, and 

rearranging, 

𝜈𝜈𝑚𝑚 = 
1 

2𝜋𝜋𝜋𝜋 
𝑘𝑘 

�
𝜇𝜇 

Equation 13 

the spring constant, k, and reduced mass, µ, provide an estimated vibrational mode derived 

from the harmonic oscillator energy level equation. A selection rule of allowable transitions 

(∆n) from only ± 1 state limits the vibrational transitions that occur; however, overtones 

present in spectra are evidence that this rule is not infallible. In addition, the selection rule 

enables estimation of the number of modes, or normal modes, which is based on the degrees 
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of freedom present in a molecule. Linear molecules have 3N-5 modes and nonlinear 

molecules have 3N-6.  

2.5. Absorption of Light 

Spectra, recorded from spectrophotometers, are presented in either transmission or 

absorbance mode, which are mathematically related to each other. Transmission spectra 

are produced by dividing the detected light from the sample by the detected light from a 

blank measurement. 

𝑅𝑅𝑠𝑠 𝑇𝑇 = 
𝑅𝑅° 

Equation 14 

Derived from Beer’s Law, absorbance can be defined by a simple relationship to 

transmission. 

𝛾𝛾 = −log(𝑇𝑇) 

Equation 15 

Most FTIR spectra are presented in absorbance because, below an absorbance value of ‘1’, 

the relationship of absorbance and concentration is linear. This enables the analysis that is 

explored in Chapter 6. 

2.6. Fourier Transform Infrared Spectroscopy (FTIR) 

Most modern infrared spectrometers utilize Fourier transform to improve upon the 

signal-to-noise ratio and throughput.29 The Fellgett, or multiplex, advantage results in 

improved signal-to-noise ratio as all wavenumbers are sampled at once.31 The signal-to-

noise ratiofor an average of n measurements is given by 

12 
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𝑇𝑇 𝑇𝑇 
� � = √𝑛𝑛 � �𝑁𝑁 𝑛𝑛 𝑁𝑁 𝑖𝑖 

Equation 16 

where S/N is improved by the square root of n. The disadvantage to this is that to improve 

the signal-to-noise ratio by a factor of two, the acquisition time must increase four times. 

A spectrum can be acquired much more quickly than having to sample each wavenumber 

individually and record the response. Instead, spectra are recorded in the time domain. 

However, in consideration with the Jacquinot, or throughput, advantage where there are 

fewer optical elements and the overall time to complete a scan is greatly reduced, the use 

of Fourier transform in infrared spectroscopy has greatly advanced the field and application 

of the instrumentation technique.32,33 

While conventional spectroscopy records in the frequency domain, time domain 

spectroscopy changes with radiant power over time and is achieved by Fourier transform. 

The time domain signal is converted from the frequency domain by 

𝑃𝑃(𝑡𝑡) = 𝑘𝑘 cos(2𝜋𝜋𝜈𝜈1𝑡𝑡) + 𝑘𝑘 cos(2𝜋𝜋𝜈𝜈2𝑡𝑡) 

Equation 17 

where k is constant, and t is time. The time domain contains all the same information as a 

frequency domain spectrum; conversion is done automatically by the recording computer. 

Time domain spectra for the optical region are acquired using a Michelson 

interferometer. The frequency range of optical spectroscopy (1012-1015 Hz) necessitates 

modulation because transducers cannot record radiant power changes at such high 

frequencies. Instead, frequencies must be modulated proportionally to produce measurable 

frequencies; Michelson interferometers accomplish this by splitting one collimated beam 
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to two of nearly equal power. These two beams are recombined, and the modulated beam 

is measured as a function of differences in the lengths of the paths of the two beams. 

One path length is fixed while a movable mirror creates a variable path length. The 

difference is path length for the two beams is referred to as retardation, 𝛿𝛿. The unconverted 

spectra obtained by the interferometer is power output as a function of 𝛿𝛿, from which a 

relationship of the two frequencies can be derived. One cycle of the interferometer is 

completed when the movable mirror travels a distance that corresponds to one half 

wavelength (𝜆𝜆/2). Where the mirror is traveling at a constant velocity, vm, and time, 𝜏𝜏, 

required to move the mirror 𝜆𝜆/2, then we can express one cycle as 

𝜆𝜆 
𝑣𝑣𝑚𝑚𝜏𝜏 = 

2 

Equation 18 

The frequency, f, of the signal at the detector is the reciprocal of 𝜏𝜏, such that Equation 18 

can be written as 

1 2𝑣𝑣𝑚𝑚 2𝑣𝑣𝑚𝑚𝜈𝜈 
𝑓𝑓 = = = 

𝜏𝜏 𝜆𝜆 𝜋𝜋 
Equation 19 

where frequency is related to wavenumber, 𝜈𝜈, and the interferogram frequency is related to 

optical frequency. When vm is constant, the interferogram and optical frequency is directly 

proportional. 

The cosine wave of the interferogram is described by 
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1
𝑃𝑃(𝛿𝛿) = 𝑃𝑃(𝜈̅𝜈) cos 2𝜋𝜋𝑓𝑓𝑡𝑡 

2 

Equation 20 

where 𝑃𝑃(𝜈̅𝜈) is radiant power of the incident beam. One power in frequency domain and the 

other in time domain enables Fourier transform. Introducing the term 𝐵𝐵(𝜈̅𝜈) accounts for an 

imperfect split of the beam, and substituting the relationship from Equation 19 and using 

the relationship of retardation and mirror velocity, 

𝑣𝑣𝑚𝑚 = 
𝛿𝛿 

2𝑡𝑡 

Equation 21 

yields: 

𝑃𝑃(𝛿𝛿) = 𝐵𝐵(𝜈̅𝜈) cos 2𝜋𝜋𝛿𝛿𝜈̅𝜈 

Equation 22 

Integrating over all wavenumbers, 𝜈̅𝜈, 

∞ 

𝑃𝑃(𝛿𝛿) = � 𝐵𝐵(𝜈̅𝜈) cos 2𝜋𝜋𝛿𝛿𝜈̅𝜈 𝑑𝑑𝜈̅𝜈 
−∞ 

Equation 23 

and a Fourier transform enables the transition from one domain to another. The Fourier 

transform of Equation 23 is 

∞ 

𝐵𝐵(𝜈̅𝜈) = � 𝑃𝑃(𝛿𝛿)cos 2𝜋𝜋𝛿𝛿𝜈̅𝜈 𝑑𝑑𝛿𝛿 
−∞ 

Equation 24 

a rather elegant mathematical phenomenon. A complete Fourier transform requires both 

the real (cosine) and imaginary (sine) components. However, only the real function is 

shown here. 
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A few caveats require attention. The integrals, as written, are not the precise 

equations used by the computer because Equation 23 assumes infinite sampling range. 

Computational calculations require that 𝛿𝛿 be infinitely small (small sampling interval). 

However, this is impractical in application. Only a finite sampling range can be summed 

over a finite 𝛿𝛿 (a few centimeters). The result is a restriction in the resolution and sampled 

frequency range. 

In general, resolution can be defined as the distance between two lines that is barely 

resolvable by the instrument, which can be written as 

∆𝜈̅𝜈 = 𝜈̅𝜈2 − 𝜈𝜈1̅ 

Equation 25 

to give the resolution of the instrument. Measuring from arbitrary peak ‘1’ to peak ‘2’, 

where 1 has 𝛿𝛿=0 and the waves are in phase at 2, the maximum of b occurs when 

1
𝛿𝛿𝜈𝜈2̅ − 𝛿𝛿𝜈𝜈1̅ = 1 𝑜𝑜𝑜𝑜 = 𝜈̅𝜈2 − 𝜈𝜈1̅𝛿𝛿 

Equation 26 

Combining Equation 25 and Equation 26 through substitution results in 

1
∆𝜈̅𝜈 = 

𝛿𝛿 
Equation 27 

such that the resolution improves to the reciprocal of the distance the mirror travels. 

2.6.1. Attenuated Total Reflectance 

With a crystal positioned horizontally, mirrors direct the incident infrared light to 

the crystal where internal reflection causes the beam to travel across and to the detector 
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after sampling the crystal and source. ATR uses total internal reflection and the creation of 

an evanescent wave that probes the crystal and sample by just a few micrometers.29,30,34 

The penetration depth of the evanescent wave is determined by the wavelength, critical 

angle, and refractive indices of the crystal and sample. 

𝜆𝜆 
𝑑𝑑𝑝𝑝 = 

2𝜋𝜋�𝑛𝑛𝑐𝑐2 sin2 𝜃𝜃𝑐𝑐 − 𝑛𝑛𝑠𝑠2 

Equation 28 

The critical angle is given by 

𝑛𝑛𝑠𝑠 𝜃𝜃𝑐𝑐 = sin−1 

𝑛𝑛𝑐𝑐 

Equation 29 

where n is the refractive index of the sample, s, and crystal, c. The infrared beam, after 

reflecting off the crystal, is directed to the detector. Some of the key requirements and 

subsequent benefits of ATR are that the crystal material must have a higher refractive index 

than the sample, such that the sample will not absorb the light without returning to the 

detector. ATR fundamentally has a short path length, which is beneficial in highly 

absorbing samples, such as water. 

2.6.2. Infrared Reflection Absorbance Spectroscopy 

Much like ATR, IRRAS uses reflection to sample monolayers on reflective 

surfaces, such as water.35 These spectra provide information about monolayer structure and 

interaction with the subphase. The incident IR source is reflected from a gold mirror at an 

angle of 48° relative to surface normal (Figure 1). The angle is chosen specifically for its 

closeness to the Brewster angle of water (where all light is transmitted rather than reflected) 
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to reduce sampling of the subphase in the presence of a monolayer. After the IR light has 

probed the interfacial region, it is reflected to the detector via a gold mirror. The 

background, or reference, spectrum for IRRAS is the pure subphase before the monolayer 

is deposited. Absorbance is calculated with the same equations used for transmission FTIR 

to produce a reflectance-absorbance spectrum. Only about 6 % of the original IR intensity 

is reflected from the surface to the detector, requiring a sensitive detector. HgCdTe (MCT) 

detectors are most often implemented to collect the minute amount of signal. IRRAS is 

generally regarded as a surface sensitive technique, wherein the topmost micrometer of the 

subphase is probed along with the monolayer. 

Figure 1. IRRAS configuration used in the Allen lab. 𝜽𝜽 is angle relative to surface normal 
that the incident beam (green) is directed onto the surface (blue). Reflected light 
(yellow) is directed to the detector. 

2.7. Computational Method Theory 

The novelty of this dissertation is in the application of well-established laboratory 

techniques to ML for the advancement of achievable chemical analysis. Each chapter 
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includes background and brief theory of the applied ML techniques. Here, a rigorous 

detailing of the mathematical background is provided for the four main ML approaches 

used throughout each chapter: LR, PCA, SVR, and CNNs. 

2.7.1. Linear Regression 

LR is a mathematically simple yet useful technique in chemistry applications.36–38 

Data with linear relationships may be well suited for LR. Using the relationship 

𝑘𝑘 = 𝑚𝑚𝑚𝑚 + 𝑏𝑏 
Equation 30 

where y is the dependent variable, m is the slope of the line, x is the independent variable, 

and b is the intercept, concentration of an analyte in solution could be predicted, for 

example.  

2.7.2. Principal Component Analysis 

Broadly, PCA provides a reduction in data dimensionality.39–41 It can be employed 

to determine underlying relationships among data, establish the mathematical components 

of which the data is constructed, or utilized as a preprocessing technique to eliminate 

superfluous information in the dataset.39,42 PCA is accomplished, mathematically, by 

determining the best linear transformation of the data in which the dimensionality is 

reduced but the dataset is still described. 

PCA is produced using an orthogonal linear transformation with singular value 

decomposition to project the data onto a new coordinate system.40,43 The scalar values with 

the greatest variance are projected on the first coordinate and second greatest variance on 

the second principal component, until all variance in the data is explained or a set threshold 
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is met (e.g., 99% variance explained). Consider a dataset, x, that has several observations, 

d, and X is an x × d matrix. The rows, x, represent each sample (e.g., a range of spectra 

from an experiment) and the columns, d, represent each datapoint (e.g., wavenumbers). A 

variance maximization function will identify the optimal linear combination of d such that 

variances are maximized. These linear combinations of d are known as the principal 

component (PC) scores, s, and the weights, w, are PC loadings. 

The mathematical transformation is described by l d-dimensional vectors with w 

that match the vector x of X to a new vector of s. Where s is 

𝑠𝑠𝑖𝑖 = 𝑚𝑚𝑖𝑖 × 𝑤𝑤𝑘𝑘 

Equation 31 

and s inherits the greatest variance over X, k is one through l, l is less than d such that 

dimensionality reduction is achieved, and w is a unit vector. 

Variance is maximized by establishing that solutions to w of the first component 

must satisfy 

𝑤𝑤1 = arg max ��(𝑚𝑚𝑖𝑖 × 𝑤𝑤)2� 
‖𝑤𝑤‖=1 

𝑖𝑖 

Equation 32 

and when written in matrix form, the value being maximized is equivalent to the Rayleigh 

quotient. In other words, the maximum value of w is the matrix’s largest eigenvalue, 

occurring when w is the eigenvector. The first PC is given as 

𝑠𝑠1𝑙𝑙 = 𝑚𝑚𝑙𝑙 × 𝑤𝑤1 

Equation 33 

and subsequent components are determined by  
20 



 

 

 

   

 

 

  

 

     

   

  

 

  

   

  

 

  

d 

w 

+ 
E X s X 

E = our error matrix 

𝑘𝑘−1 

𝑋𝑋𝑘𝑘 = 𝑋𝑋 − � 𝑋𝑋𝑤𝑤𝑤𝑤𝑇𝑇 

1 

Equation 34 

Figure 2 provides a visualization of the matrix organization described herein. 

Figure 2. Principal component analysis general schema. 

2.7.3. Support Vector Regression 

First introduced by Drucker and colleagues in 1996, SVR is a subset of support 

vector machines (SVM).44 SVMs are a supervised machine learning technique, meaning 

data is labeled during the training. SVMs are useful for classification, regression, and 

identifying outliers. In general terms, SVRs work to find the best hyperplane where the 

most data exists and distance from the plane is minimized for any data not in the 

hyperplane. A successful model will predict discreet values given input data. The overall 

benefit is that the data does not need to have linear correlations; hyperplanes of any 

function can be identified using an SVR. 
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In this dissertation, a linear SVR is employed. A linear model is determined by the 

minimization of 

1 
‖𝑤𝑤‖2 → 0

2 

Equation 35 

in the context of the loss function: 

|𝑘𝑘𝑖𝑖 − 〈𝑤𝑤, 𝑚𝑚𝑖𝑖〉 − 𝑏𝑏| ≤ 𝜀𝜀 

Equation 36 

where y is the target value, w is the normal vector to the hyperplane, x is the input value, 

b is the intercept, and 𝜀𝜀 is a set tolerance threshold (i.e., how much error is acceptable in 

the model). The loss function of SVR, like SVM, does not include any data that is close to 

the model prediction such that training time is saved to optimize the model for data that 

deviates the most from the average. 

2.7.4. Convolutional Neural Networks 

By far the most computationally intense ML technique considered, CNNs are an 

advanced image-based ML approach.45–47 CNN theory is discussed in detail in the 

background section of Chapter 3 and the process of backpropagation is provided. Image-

based ML is an incredibly advanced field of artificial intelligence, likely because of the 

plethora of applications that are afforded to an ML algorithm that can process information 

from images. Just a few examples include self-driving cars, playing chess, identifying faces 

in a crowd, scanning databases against a license photo, images from doorbell video being 

used to assist in solving a crime, or determining what kind of bird was seen on a walk. The 
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applications are unique, diverse, and complex, which is why image-based ML is a perfect 

tool to integrate into chemical problems. 

Using transfer learning, a process of taking pretrained models where weights of the 

neural network have been adjusted and training only the last hidden layer, the advances of 

the image-based ML field can be harnessed in datasets with fewer examples. 

Backpropagation in CNNs, and neural networks in general, improves the model 

while decreasing the overall training time required. Consider two nodes, connected to one 

another, as in Figure 3. 

Figure 3. Nodes al and al-1 are connected to one another. The variable l denotes location 
regarding each node. 

A target node, where predicted values, yi, are provided, is somewhere to the right of the 

node labeled al, for activation of layer l. A cost function can then be written as 

𝜋𝜋𝑜𝑜 = (𝑚𝑚𝑙𝑙 − 𝑘𝑘𝑖𝑖)2 

Equation 37 

and the value of al is determined by 

𝑚𝑚𝑙𝑙 = 𝜎𝜎𝜎𝜎𝑙𝑙 
Equation 38 

where zl is 

𝜎𝜎𝑙𝑙 = 𝑤𝑤𝑙𝑙𝑚𝑚𝑙𝑙−1 + 𝑏𝑏𝑙𝑙 
Equation 39 
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These preceding functions comprise backpropagation; where 𝜎𝜎 is the nonlinear sigmoid 

function, bl is the node bias. Backpropagation uses partial derivatives 

𝜕𝜕𝜋𝜋𝑜𝑜 𝜕𝜕𝜎𝜎𝑙𝑙 𝜕𝜕𝑚𝑚𝑙𝑙 𝜕𝜕𝜋𝜋𝑜𝑜 = 
𝜕𝜕𝑤𝑤𝑙𝑙 𝜕𝜕𝑤𝑤𝑙𝑙 𝜕𝜕𝜎𝜎𝑙𝑙 𝜕𝜕𝑚𝑚𝑙𝑙 

Equation 40 

to determine how a change in weight, wl, effects the cost function, co, or loss. Given the 

first derivatives of Equation 37, Equation 38, and Equation 39, 

𝜕𝜕𝜋𝜋𝑜𝑜 = 2(𝑚𝑚𝑙𝑙 − 𝑘𝑘𝑖𝑖)𝑚𝑚𝑙𝑙−1𝜎𝜎𝑙𝑙 𝜕𝜕𝑤𝑤𝑙𝑙 

Equation 41 

a change in the weight is affected by the activation of the previous two nodes, true value, 

and zl. A few different routes of interpretation can be followed from this solution. The cost 

of the change in weight, when substituting in a rearranged Equation 38, would be affected 

by the sigmoid function, or 

𝜕𝜕𝜋𝜋𝑜𝑜 2(𝑚𝑚𝑙𝑙 − 𝑘𝑘𝑖𝑖)𝑚𝑚𝑙𝑙−1𝑚𝑚𝑙𝑙 = 
𝜕𝜕𝑤𝑤𝑙𝑙 𝜎𝜎 

Equation 42 

An equally important observation comes from substituting Equation 39, which yields 
𝜕𝜕𝜋𝜋𝑜𝑜 = 2(𝑚𝑚𝑙𝑙 − 𝑘𝑘𝑖𝑖)𝑚𝑚𝑙𝑙−1(𝑤𝑤𝑙𝑙𝑚𝑚𝑙𝑙−1 + 𝑏𝑏𝑙𝑙)
𝜕𝜕𝑤𝑤𝑙𝑙 

Equation 43 

which illustrates that the value of the weight affects the cost function of the model.  
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Chapter 3. Functional Group Identification for FTIR Spectra Using Image-based 
Machine Learning Models 

Reproduced in part with permission from Enders, A.A.; North, N.M.; Fensore, C.M.; 

Velez-Alvarez, J.; Allen, H.C. “Functional group identification for FTIR spectra using 

image-based machine learning models” Anal. Chem. 2021, 93, 28, 9711-9718. Copyright 

2021 American Chemical Society. 

3.1. Introduction 

The anthropogenic impact on the climate and environment has prompted the 

analysis and detection of pollutants or contaminants with FTIR such as microplastics in 

waters48,49 and table salts,50 nitrates from agricultural fertilizers in soil,51–53 and 

polyaromatic hydrocarbons in the ocean’s surface54,55. The diversity of the chemical 

composition of the pollutants and the central fundamental technique of FTIR underscore 

the importance of a computational method for improved throughput of spectral analysis. 

The bottleneck is most frequently the assignment of peaks to relevant functional 

groups.56,57 

Functional groups describe and define the physical and chemical properties of 

compounds.58,59 Identification of many organic groups is accomplished via FTIR due to 

the associated unique vibrational frequencies.60,61 Large numbers of spectra are time 

consuming to analyze and require expert chemist analysis to determine present 

composition. This limits the application of FTIR spectral techniques as a sampling method 

for functional group elucidation. There is thus an unexplored, yet applicable field of FTIR 
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spectra interpretation through statistical methods. Progress towards ML methods for 

environmental pollutant analysis has been explored for specific, targeted applications.56,62– 

64 Generalizable functional group ML models would increase the utility of FTIR sample 

screening in environmental and other chemistry applications.65,66 

In this study, we investigate the implementation of CNNs47 to identify functional 

groups present in FTIR spectra. By limiting spectral preprocessing, we explore a 

minimalistic approach to allow the network to learn spectral patterns for successful 

recognition of the 15 most common organic functional groups (Table 1). ML serves to 

address a need for quick identification of spectral components.67 To date, the use of a CNN 

to broadly classify functional groups has not been reported. CNNs work by having layers 

of nodes called neurons, these neurons can be trained on data to identify spectral 

components that were observed in the training data in new spectra. The algorithm works to 

minimize a loss function; this is done by comparing answers given by the CNN to the true 

answers from a training dataset. The difference between the reported and the true presence 

of a group constitutes the loss function. The training dataset is a randomly segmented 

subset of spectra that the CNN uses to learn and adjust neuron weights. 

CNNs expand upon artificial neural networks (ANNs) by using mathematical 

convolutions to provide convolved data to the following neuron. Each neuron has a 

receptive field for which it convolves the information, similar to how a human brain has 

regions of neurons designated for processing specific information.68 CNNs significantly 

reduce the number of neurons per pixel that a traditional feed-forward network requires to 

capture the complexity of an image. Thus, CNNs are a sophisticated solution to the 
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alternative complex network required to machine learn images by capturing the spatial and 

temporal uniqueness of images. FTIR spectra offer unique “images” to evaluate using the 

sophisticated ML advancements.  

We probe the effectiveness of image recognition ML as a facile solution to FTIR 

spectra interpretation. The information contained in a spectrum is most often presented to 

a chemist as a 2D image, therefore it is desirable to develop models that learn via similar 

spectral visualization.69 Determining functional groups present in spectra requires analysis 

of both peak location on the frequency axis and shape; training models of spectra as images 

allows for an elegant approach that utilizes the totality of information obtained from a 

spectrum. Previous implementations of FTIR ML for functional group identification have 

limited,70 averaged,71 and segmented70,72 spectral data to reduce information used during 

training. The computational resources available today make this an unnecessary and 

limiting feature. We include all available spectral data from 4000 to 600 cm-1 to reduce any 

biases on the learning process. 

Current methods for spectral processing and interpretation are limited to library 

searching software73 and highly specific questions using implementations of ML including: 

Support Vector Machines,56,74 k-Nearest Neighbors,75,76 and Principal Component 

Analysis (PCA)56,74,75 or Factor Analysis77. Library searching methods require a pre-

existing and transferrable database for searching spectra. The initial creation of libraries 

requires an intensive endeavor for collecting a large enough spectral repository. Once 

implemented, libraries cannot extrapolate beyond those included in the software. The size 

of libraries is not of significant concern for storage, but it is a cumbersome feature for 
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application compatibility and relative use-to-memory consumption. ML does not require 

transfer of training data to the user and can predict beyond the data used for training. The 

use of ML to resolve challenging implementations of FTIR spectra (e.g., extremely large 

datasets, continuous analysis) has become of interest as increased processing power makes 

it possible to train and infer (interpret an unknown spectra) with complex algorithms.78–81 

However, these highly specific models are only applicable in the setting in which they are 

developed because the training is completed on a narrow range of examples. To increase 

the amount of available training spectra or improve further calculations, ML algorithms in 

tandem with molecular dynamics have been explored.81–83 

Previous applications84–86 of ML have employed data preprocessing prior to 

training with unsupervised ML methods, such as PCA74, which reduces the information in 

the training data. Significant mathematical spectral preprocessing is becoming an 

unnecessary component with the advances in ML. Data dimensionality reduction limits the 

transferability of the final model to broader applications. Deep learning results in feature 

extraction within the model before and during learning. ML requires any feature extraction 

(e.g., selecting peaks of interest) be completed by a user (manually or automatically) before 

training the algorithm. Results from recent studies identify little variability in prediction 

success between preprocessed data (e.g., removing wavenumber regions, derivative 

spectra, and components resulting from PCA) and raw data pipelined to sophisticated ML 

methods.46,87 A recent application of ML successfully implemented broader methods for 

functional group analysis, however the authors utilize a multilayer perceptron ML method 

with an autoencoder and train using two sources of data: FTIR and MS spectra.88 
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Implementing methods such as selecting spectral regions of interest70 can result in learning 

becoming memorization by the model; rather than making a generalizable algorithm that 

can inference on novel spectra, the model overfits the training data. An overfit model does 

well on spectra it has seen before but performs poorly on new data. Showing select data 

based on human evaluation increases the time required by an expert and introduces 

additional bias. While there are regions of relative disinterest to the chemist, it is not 

sufficient to ignore them in training. The absence of a peak is equally informative as the 

presence of another. 

In our work, we create separate functional group models that are executed 

simultaneously, resulting in complete analysis of FTIR spectra. We obtain spectra from the 

NIST Chemistry Webbook; peaks are not labeled in this dataset. The use of individual 

functional group models presents a robust approach to establish a broad but precise 

computational analysis of spectra. Training a model for each functional group improves 

the overall accuracy attainable because each model is focused on a binary question: is this 

functional group present? The training of individual models does not impede speed of 

spectrum analysis achieved and results are provided succinctly. By approaching the 

classification of spectra via the proposed method, we reduce the likelihood that the model 

learns a connection between functional groups that is not chemically relevant. In other 

words, one present functional group does not indicate another group’s presence or absence. 

Individually trained models reduce the potential for this and improve the overall accuracy 

by posing a simplified question. Here we develop effective and accurate FTIR ML models 
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that apply to broader questions, limit spectral preprocessing, and provide the entire 

spectrum to the algorithm. 

3.2. Methods 

3.2.1. Python Scripts 

All Python scripts can be accessed from our repository at this address: 

https://github.com/Ohio-State-Allen-Lab/FTIRMachineLearning. The FTIR spectra are 

property of NIST and can be accessed through their website. The implementation of 

Inception V347 is modified for our use and the original source is linked on our repository 

with the published modified version. The computational procedure is described in detail in 

Appendix A and is documented in each Python script. 

3.2.2. Spectra Collection 

Data was obtained from the National Institute for Science and Technology 

Chemistry Webbook via a web scraping implementation in Selenium using the CAS 

number identifier from the official list of compounds in the WebBook.89 When a compound 

had an FTIR spectrum, the file, in jcamp-dx format, was retrieved and stored with the CAS 

number as the filename. A total of 8,728 spectra from pure compounds in gas phase were 

obtained (Figure 4). Each spectrum’s InChI key was saved in a collective text file. 

3.2.3. Data Pre-Processing 

Only spectra in absorbance and wavenumbers were used for training models. Each 

spectrum was evaluated to ensure it was in absorbance and wavenumbers via a Python 

script. Files in transmission or wavelength were relocated to a distinct directory to preserve 
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all spectra obtained from web scraping. Files in the correct mode were converted from 

jcamp-dx to csv. Once converted, each spectrum was normalized so that the maximum 

peak height was 1. Normalized spectra were saved as jpg images. 

3.2.4. Labeling 

Functional groups were identified via the InChI key. Using SMARTS functional 

group identifiers, each spectrum’s key was parsed to return binary indicators. Present 

functional groups are labelled as “1” and absent as “0”. For example, a molecule containing 

R-COOH would have a “1” in the carboxylic acid field. Results were saved in one 

spreadsheet with CAS numbers as spectrum and file identifiers. Spectra were copied into 

directories based on presence or absence of a functional group. This method allows one 

compound with multiple functional groups present to be copied into the directory for each 

group. Each of the 17 functional groups had two directories: positive and negative cases. 

Positive cases include the functional group and negative cases do not contain the group. 

Randomly ten photos, five from positive and negative, for each functional group were 

reserved for validation. Then, the directory containing more instances for a given group 

was reduced randomly until both directories contained the same number of spectra.

 3.2.5. Machine Learning 

A CNN for image recognition was employed. A unique model (independent of all 

other models) was trained for each functional group to predict on two classes: present or 

absent. The functional groups and the number of images in the positive cases are presented 

in Table 2. The architecture, Inception V3, was accessed from the available models on the 
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Google TensorFlow library. Each model was trained for 10,000 epochs at a learning rate 

of 0.01, using an initialized version of Inception V3 and training the last layer of the model 

graph (Figure 5). 

Inception V3, a 42 layer CNN, employs several techniques that ultimately led to an 

increase in accuracy in the final model results. The model begins with preprocessing the 

input spectra, which includes decoding and reducing spectra to 299x299x3 or pixels by 

pixels by RGB channel. The RMSProp optimizer results in the greatest accuracy. The 

specific equations describing the available optimizers are provided (Appendix B). As a 

post-optimization step, exponential moving average is employed (Appendix B). Batch 

normalization aids in reducing the time to convergence and occurs after convolutions in 

Inception V3; specific details, including the equations used, are provided (Appendix B). 

Additionally, learning rate adaptation is utilized to efficiently train the algorithms. Using 

gradual learning rate ramp-up, the initial learning rate for the model is approximately 10% 

of the defined rate; after initializing, the rate is linearly increased until the slope of the 

decay rate intersects with the theoretically defined exponential decay rate. More specific 

details are included in the Supporting Information.  

Models are trained and validated using an 80/20 split. For example, if 100 spectra 

are provided, 80 are used for training and 20 are used for validation. The preprocessing 

methods includes distortion of the spectra such that after each backpropagation, the 80 

spectra are altered and are not identical between iterations. Validation spectra are used to 

guide backpropagation but do not affect the training directly. The final train and validation 

accuracies presented are from the described source. After the models converge, the 
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reserved ten spectra are used to test the models further. These spectra are not used to adjust 

the model and present a more accurate representation of the model accuracy beyond the 

current dataset. 

Parameters are initialized to reduce the time and computational power required to 

train a custom model. Models converge within the 10,000 training steps and early 

termination of training is not employed. It took five hours to train the 15 models. 

Classification of an unknown spectrum requires one minute.  

3.2.6. Accuracy and Loss 

Accuracy and cross entropy (loss) for both training and test models was obtained 

and saved as csv files. The final accuracies and entropies for training and test results from 

each model are investigated to identify any anomalies. 

3.2.7. Classification of Validation Data 

When spectra were classified, the models were called upon to infer (determine the 

functional groups present) and a result was provided. Each functional group model was 

trained and validated separately, and the predictions were not used in conjunction to 

attempt ensemble classification. Models were evaluated independently of each other and 

from the embedded validation methods to further analyze prediction accuracy. The ten 

reserved spectra were analyzed via the respective models they were withheld from to 

examine the learning quality of the algorithm. Confusion matrices90 were used to represent 

the true and predicted functional group for the 17 models.  
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3.3. Results and Discussion 

Using approximately 9,000 gas phase FTIR spectra, we train 17 functional group 

models using image-based ML. Our methods result in 15 effectively identified functional 

groups (Table 1). Each model is trained independently. When a molecule has more than 

one functional group present, the models for the relevant functional group will identify the 

presence from the spectrum resulting in a complete analysis for the 15 trained functional 

groups. Accuracy and cross entropy results from the last step of training are reported for 

the train and validation process. The two functional group models that underperform are 

aldehyde and nitrile, based on model prediction of untrained spectra. We define 

underperforming as misidentifying more than 60% of test cases. Nitrile vibrational modes, 

for example, are less than 100 cm-1 from carbon dioxide vibrational modes. In general, 

characteristic nitrile peaks are easily identifiable from an IR spectrum. Yet, the models 

difficulty in identifying the functional group likely arises from a convoluted wavenumber 

region. The training accuracy is a measure of how well the model classifies the training 

data, which it used to train the network. A higher training accuracy indicates that the model 

is learning the training spectra. Validation accuracy expresses the ability of the model to 

generalize to untrained spectra, which is determined by the number of correctly classified 

validation spectra. Thus, it is more meaningful to have a higher validation accuracy, albeit 

not a requirement for a successful inferencing model. Cross entropy is the loss function 

used to evaluate the final model and is defined as the logarithm of the likelihood of a correct 

assignment. Smaller cross entropy values indicate a model is well trained. We observe 

cross entropy for training is less than validation. Models are more likely to correctly 
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inference spectra that have been used to train and adjust weights, in comparison to the 

validation spectra. 

A confusion matrix for each model was created by using spectra that have been 

withheld from training and testing data. A confusion matrix compares model assignments 

to the actual identities of the samples; it shows correct assignments along the trace of a 

matrix and false assignments off the trace. Four models have perfect confusion matrices 

from classification of ten withheld images, five containing and not-containing functional 

group spectra examples. The presence or absence of carboxylic acid, aromatic, methyl, and 

ester functional groups are correctly identified in the withheld spectra (Figure 6). 

The number of instances of each functional group occurring in the spectra varies 

significantly, with aromatic-containing spectra occurring most frequently with 3,467 

images. In contrast, acyl halide has 85 spectra for training and testing the model. We 

explored the relationship between the number of images and the cross entropy and accuracy 

for training and testing results (Figure 7). Training accuracy decreases with increasing 

number of spectra (Table 3). However, the final accuracy, determined by evaluating the 

unknown spectra for functional group identification, is not correlated to the number of 

images used for training. Our results indicate that the total number of training spectra does 

not affect the final performance of the models. The scattered, non-uniformity exhibited in 

Figure 7 (a) and (b) depict the deviation from a linear relationship between the number of 

spectra and accuracy and cross entropy for validation, confirming the number of images is 

not influencing the performance of the models. Training accuracy provides insight into 

how well the model has learned the training images for a functional group model. 
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Counterintuitively, few spectra being trained for a functional group will result in a higher 

training accuracy because the model trains on the same spectra more frequently. This 

model memorizes or overfits functional groups, resulting in a model incapable of 

extrapolating to new spectra. 

However, from our results the challenges of limited training spectra do not result 

in less accurate models. We confirmed this by investigating the relationship of number of 

images per class as a function of validation accuracy and cross entropy (Table 3). Models 

that have more spectra to train on have lower overall training accuracy but still perform 

well when analyzing unknown spectra. To investigate the linear correlation between the 

number of spectra used for training and the final accuracy and cross entropy, the Pearson’s 

correlation coefficient is used (Figure 7). More linearly correlated relationships have a 

coefficient closer to one, where positive coefficients indicate a positive correlation and 

negative coefficients indicate a negative correlation. The coefficient for training accuracy 

and number of training spectra indicate they are indirectly correlated, whereas the 

coefficient for training cross entropy and number of training spectra is positive, or 

positively correlated. However, the models with less training spectra show no correlation 

between final accuracy and ability to classify unknown spectra. Furthermore, both 

validation accuracy and cross entropy do not have significant linear correlation. While 

training results display correlation with the number of images, the validation data indicates 

that models are successful with a range of number of training spectra. 

We can determine some of the underlying shortcomings in the model, from both 

spectroscopic and computational perspectives, by investigating two functional groups: 
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aldehyde and carboxylic acid. The model results for aldehyde are promising for the training 

data but do not perform as effectively in validation and testing (Table 3). The confusion 

matrix for carboxylic acid describes how well the model performs on spectra that have not 

been used for training or validation. We observe that the IR mode frequencies for the 

carboxylic acid and aldehyde affect the performance of the model, in addition to the 

number of spectral examples available for training and validation. 

Aldehyde C-H stretching frequency (2830- 2695 cm-1) is commonly overlapping in 

organic spectra with other C-H bonds because it is a weaker mode (Table 3). The carbonyl 

stretch is also frequently unresolved in compounds that contain multiple oxygen atoms. 

The C-H bending mode is often weak, in addition to being in the fingerprint region, which 

is a challenge to interpret due to the complexity. With these stretching and bending modes 

considered, it is reasonable to anticipate that an aldehyde functional group is challenging 

for the model to identify in spectra. In comparison, carboxylic acid functional groups are 

always correctly identified in spectra by the model. The model for carboxylic acids is well 

trained. As observed by the validation accuracy and cross entropy (Table 4), the carboxylic 

acid model has a more robust transferability to spectra it has never observed. We confirm 

the effectiveness of the model with a correct assignment of unknown spectra. In totality, 

there are more carboxylic acid training spectra, and the IR modes are better resolved, 

especially the strong COO-H stretching, in comparison to aldehydes (Table 4). 
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We do not specifically probe the temperature and pressure dependence of model 

success. However, we hypothesize that the models would perform at high accuracy because 

pressure effects have been shown to have minimal effect on IR response.91 In general, the 

IR transition moment strength for hydrocarbon bonds decreases with increasing 

temperature and this may affect model accuracy. 

From our results, we observe that the models are more accurate for functional 

groups when there are more training spectra examples for the functional group and IR 

peaks are well resolved. Albeit this is an intuitive result for a trained spectroscopist with 

respect to accuracy correlating to peak resolution, yet there is no precedent using a machine 

learning approach. 

3.4. Conclusion 

We present a novel method for FTIR spectral interpretation using CNNs and the 

NIST database. Fifteen functional group models successfully and effectively classify 

unknown spectra in a facile method for spectral submission to interpretation. We find that 

the image recognition features inherent in CNNs are transferrable to a chemical-

identification application. From our observations, we can conclude that CNNs are effective 

at identifying spectral features for classification and generalizable models are achievable 

with ample spectral examples. In future work, optimization for functional group 

identification with fewer spectral examples should be investigated to improve accuracy. 

Further investigation of the models could include determining the ability of the model to 

predict binary and higher-order mixture compositions as well as shifts along the frequency 

axis. 
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Table 1. Functional groups for which successful models were trained. 
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Table 2. Functional groups are presented with the total number of positive spectra examples 
used in training as well as the total number of functional group examples used. 

Functional Group Number of Positive Spectra 
alcohol 2,212 
alkane 2,542 
alkene 1,095 
alkyne 209 
amide 152 
amine 770 

aromatic 3,467 
carboxylic acid 581 

ester 904 
ether 2,033 

acyl halide 85 
alkyl halide 2,266 

aldehyde 198 
methyl 2,941 
nitro 414 

ketone 743 
nitrile 345 

Total Instances 
(spectra) 20,957 
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Cross Entropy 

Train(%) Validation (%) Tnin Validation 

acyl halide 100 98 0.025347 0_143665 

amide 100 70 0.060037 0.900095 

aldehyde 100 80 0.04735 0.385665 

alkyne 99 80 0.079596 0.332745 

nitrile 97 65 0.17019 0.668148 

nitro 98 89 0.12624 0.668148 

carboxylic acid 98 98 0.070173 0.076216 

ketone 93 76 0-228837 0.501178 

amine 93 80 0-24136 0-494815 

ester 97 83 0.111057 0.323917 

alkene 85 68 0-407803 0.743543 

ether 89 81 0-27397 0.443644 

alcohol 90 86 0.236544 0.330591 

alkyl halide 85 73 0.350733 0.531302 

alkane 85 90 0.327755 0.265718 

methyl 81 84 0.384048 0.358021 

aromatic 92 89 0.199645 0.259044 

Table 3. Final accuracy and cross entropy for train and validation of each functional group 
model is presented in order of increasing number of training images. 
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Table 4. Aldehyde and carboxylic acid IR stretching and bending mode frequencies. 

Mode Frequency 
(cm-1) 

Appearance 

Aldehyde 

C-H stretch 2830-2695 Weak, 
medium 

C=O stretch 1740-1720 Medium, 
strong 

C-H bend 1390-1380 Weak, 
medium 

Carboxylic 
acid 

O-H stretch 3300-2500 Strong, 
broad 

C=O stretch 1760 Strong 

O-H bend 1440-1395 Medium 
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(b) 

aromatic (3467) t----"' 
~---- amine (770) 

methyl (2941) 

(C) 
~-----!alkyl halide (2266) 

(d) ~--- {ether (2033) 

alcohol (2212)] 

lacyl halide (85) f [ ester (904) t-----' 

Figure 4. Number of spectra used to train each functional group model, (a) carbon-
containing, (b) nitrogen-containing, (c) halide-containing, and (d) oxygen-containing. The 
number of images is equivalent for the positive and negative cases used in training and 
testing. 
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Figure 5. General summary of Inception V3 architecture. Additional details are provided 
in the Supporting Information, including a summary of the model preprocessing 
parameters. 
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Figure 6. Confusion matrix is identical for carboxylic acid, aromatic, methyl, and ether 
functional group models. 
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Figure 7. Final train and validation accuracy and cross entropy as a function of the number 
of spectra used to train each functional group. Insets (a) and (b) show validation results; 
(c) and (d) show training results. Pearson’s correlation coefficients (PCC) are inset in the 
plots for final accuracy and cross entropy of training and validation as a function of the 
number of spectra. The coefficients closer to ± 1 indicate that the train accuracy and cross 
entropy are linearly correlated (negative is inversely correlated and positive is directly 
correlated) to the number of spectra used in training. Validation accuracy and cross entropy 
are not linearly correlated to the spectral examples used. 
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Chapter 4. Carbon on the Ocean Surface: Temporal and Geographical Investigation 

Reproduced in part with permission from Enders, A.A.; Elliott, S. M.; Allen, H.C. “Carbon 

on the ocean surface: Temporal and geographical investigation”. ACS Earth Space Chem. 

2023, 7, 2, 360–369. Copyright 2023 American Chemical Society. 

4.1. Introduction 

Carbon is the single most essential element for existence of life on Earth.58 From 

polymeric backbone support of diverse biomacromolecules to the varietal self-bonding of 

which this atom is capable, its impact seems almost infinite.58,59,92 This is especially true 

when considering the effect of increased atmospheric gas concentrations on Earth as a 

unified ecosystem.93,94 Since the Industrial Revolution, global usage of fossil fuels has 

steadily increased.95,96 A clear display of increased carbon consumption over the last few 

decades is the stark rise in atmospheric carbon dioxide; CO2 is the thermochemical fate for 

all hydrocarbons in the oxidizing atmosphere.97 Prior to the 1850s, the global concentration 

of CO2 was around 280 ppm, but by November of 2020 measurements exceeded 410 

ppm.98 While terrestrial sources of carbon are primarily anthropogenic,95 the ocean also 

has a vital role in the carbon cycle through several biogeochemical mechanisms. 

Relative to geocycling, emphasis is frequently placed on ocean acidification since 

the dominant aqueous form of CO2 is carbonic acid.99 Yet, the relationship between carbon 

and Earth’s ocean is multi-faceted. Seawater is both a sink and source for carbon, because 
47 

https://atmosphere.97
https://Earth.58


 

   

  

   

     

   

   

   

  

     

  

   

   

 

     

 

 

   

  

   

   

  

of uptake and return by aquatic organisms extending from mixed layer depths to the sea 

surface and beyond (Figure 8. Simplified schematics illustrating (a) relationships between 

the marine boundary layer (white), sea surface nanolayer (light blue), and sea surface 

microlayer (dark blue) and (b) highlighting some of the major oceanic processes that occur 

including vertical transport from the bulk, enrichment of organics at the surface nanolayer, 

adsorption of atmospheric aerosols and gases, and release of sea spray aerosols from the 

ocean to the atmosphere.(Figure 8).12 The sea surface nanolayer (SSnL) is about 1 nm of 

thickness (i.e. the thickness of one molecular layer) and is the topmost surface of the sea 

surface microlayer (SSML, ~1-1000 μm thickness). The SSnL is enriched in organic 

molecules due to their hydrophobic properties, and these molecules tend to form in an 

ordered layer at the ocean surface, in a monolayer; the carbon within this monolayer is 

what we model globally. Since the 1960s, enrichment of organics in the SSML and SSnL 

has been evidenced by analyses of proteins, lipids, and carbohydrates throughout multiple 

field studies100–102 and laboratory experiments.103–108 However, precise organic 

composition is difficult to characterize for many reasons, including variable 

biogeochemistry and transport dynamics within the SSML and SSnL. 

Research into the carbon present in the SSML and SSnL is either from field 

measurements or models that use satellite data or field data to map global estimates.8,109– 

112 We invoke a previously established method of using phytoplankton from chlorophyll 

satellite data to model carbon.113 We present a method to calculate net amounts of carbon 

resident in the SSnL utilizing Energy Exascale Earth System Model (E3SM) model output; 

our results are reported as normalized carbon and the well-known global budgeting unit of 
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gigatons. Our effort is equally complicated and enriched by the ocean’s inherent 

biogeographical diversity; details of which are directly reflected in the SSML and 

SSnL.114,115 We estimate the overall SSnL mass as a reference through the implementation 

of previously defined physicochemical properties of the air-sea interface. Specifically, we 

apply Gibb’s equations for surfactant thermodynamics utilizing a modified Langmuir 

isotherm expression,116 the concept of an oceanic equation of state,117 and equilibrium 

expressions for adsorption and desorption of complex organics at air-liquid interfaces. 

Our model parameterization is highly simplified and thus we acknowledge that the 

carbon distributions used here are not fully consistent with the reported DOC and 

particulate organic carbon (POC) pools, and their surface prevalence. This disconnect is 

unavoidable. Specifically, there is a knowledge gap in knowing adsorption properties of 

the total DOC and POC pools because of the inherent dynamic nature of the ocean and the 

chemical complexity of the pools. For the first modeling attempt in the present work, we 

assume that the DOC and POC pools retain properties like their initial biomolecular forms 

in phytoplankton, such that a carbon distribution of 60 % protein and 20 % lipid exists. Our 

percentages do not explicitly account for the lifetime, decay, or the resultant aged products 

and the effect that it has on surface activity or enrichment, in general. For example, we 

assume lifetimes of lipids and proteins based on literature values,118 but depending on the 

conditions the decay rate can vary significantly as presented by Duffy and colleagues for 

proteins119 and He et al. reported decay rates under hypoxic conditions.120 There are 

limitations with that assumption because we know from the literature that lipids, proteins, 

and carbohydrates are broken down at different rates,121 and future work will have to refine 
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and improve our model as more data is published. The model we have developed herein 

requires these fundamental assumptions, as described, to result in a global approximation 

of SSnL carbon. 

Two specific compounds serve as proxies for the protein and lipid adsorptive 

contributions, bovine serum albumin and stearic acid. We explicitly address the cyclic 

nature of marine biogeochemical underpinnings; growth, conservation, release, and 

equilibrium-adsorptive reorganization are simulated for the organic composition of our 

model nanolayer. Moreover, all quantities are subject to geographic and temporal scaling. 

Calculated values are compared to total global carbon budgets to provide a perspective on 

the influence of contributions from biomacromolecules when constrained to the ocean 

SSnL. Our model values represent a low-end estimation of the global carbon because we 

only include two molecular classes. To the best of our knowledge, these computations are 

the first of their kind and they represent a unique portrait of the marine SSnL, the topmost 

surface layer of the SSML. Overall, we provide insight into the variability of the ocean 

nanolayer chemistry on a global scale. 

4.2. Methods 

For our model approximation of carbon in the SSnL we use an assembly of proteins 

and lipids, which all enrich this region of the ocean.12 We identify these components based 

on the experimental evidence from Cochran et al.,122 Schiffer et al.,123 and Pham et al.,124 

among other literature in the field. Specifically, sea spray aerosol formation is dependent 

on the SSnL and SSML composition, which we are focused on; Cochran and colleagues 

identify almost 300 surfactants that are best classified as lipids.122 Work conducted by 
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Schiffer et al. and Pham et al. investigated the biological impact on sea spray aerosols, 

providing us with a framework to understand how the SSnL is influenced by marine 

biology.123,124 

Enrichment of the SSnL occurs, in large part, because of gas and liquid interfacial 

phenomena; that is, unfavorable interactions between non-polar, carbon-rich organics and 

polar water.3,116 The protein and lipid concentrations are driven by their release from 

phytoplankton. Here, we use a simplified model system consisting of proteins and lipids as 

a baseline. From that baseline, we then scale up to a global representation to provide 

flexible estimates for carbon mass in the SSnL. 

4.2.1. Proteins 

Proteins are a common exudate or lysate from aquatic species. They are primarily 

injected into the water column when organisms are disrupted by grazing or senescing.104 

Graham and Phillips investigated the behavior of three model proteins: 𝛽𝛽-casein, bovine 

serum albumin, and lysozyme, with data taken relative to laboratory air-water interfaces.106 

Their results indicate a partly irreversible adsorption of proteins to the air-sea interface but 

with two-phase equilibration occurring as well, and the total resulting in a surface pressure 

maximum of 20 mN/m and film thicknesses of up to 50-60 Å. Certain processes, such as 

salting-out, which we expect to occur, can result in greater SSnL coverage and a lowering 

of measured surface tension (increased surface pressure).125,126 
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4.2.2. Lipids 

Lipids, such as fatty acids, phospholipids, and cholesterol, disrupt the surface 

tension of water through specific amphiphilic enrichment.3,116 The non-polar tail chains of 

fatty acids, for example, orient into the air while polar headgroups interact with water itself 

resulting in a stable monolayer.127 Headgroups also interact with inorganic cations, further 

stabilizing the organic films in the SSnL.19,128 A characteristic monolayer (one molecule 

thickness) of stearic acid on pure water can reach surface pressures upward of 65-70 

mN/m.129 Organic films tend to stabilize and calm rough seas through their capacity to 

dampen waves. Wave breakage is a source of bubble bursting and aerosolization of 

surfactants. 

4.2.3. Carbohydrates 

Carbohydrates are more soluble and less surface active in aqueous solutions relative 

to proteins or lipids, but they are still observed in the interfacial region, particularly in the 

SSML, although it is debated as to its concentration in the SSnL.20,103,130 Satellite110 and 

field131 studies suggest that carbohydrates are an estimated 20% of the dissolved organic 

carbon (DOC) in the SSML.130 By comparison and on an absolute basis, carbohydrate 

adsorption is weak. Only through processes such as co-adsorption are carbohydrates 

significantly adsorbed to the SSnL.20,130 Burrows et al. were able to connect the co-

adsorption process through a two-layer Langmuir model for fractional surface coverage 

that ultimately improves their sea spray model.108 There are no well accepted satellite proxy 

data for the co-adsorption in the presence of mixed monolayers to establish carbohydrate 
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SSnL concentrations; therefore, we must neglect their net contributions. We acknowledge 

that their presence and geochemical role is non-negligible and should be incorporated in 

the future after further laboratory experiments on mixed monolayer co-adsorption have 

been validated. Thus, our estimate is a lower limit in establishing total carbon.  

4.2.4. Chlorophyll Data and Plankton Concentration 

Chlorophyll is monitored at the planetary scale by several satellite instruments (e.g., 

NASA MODIS) and modelled through E3SM, among others. Model output is compared to 

chlorophyll satellite data to confirm its accuracy.132 Monthly averages provide a convenient 

means to understand geographic and seasonal variability of upper ocean biomass. 

Phytoplankton are the “primary producers” of the sea, and cell densities are proportional 

to remotely measured chlorophyll. Specifically, pigments are essential to the 

photosynthetic process; light-absorbing conjugated bond systems constitute a relatively 

constant proportion of intracellular compounds. Autotrophs can only live near the ocean 

surface, because of the obligate need for sunlight.39 Dissolved organic carbon primarily 

originates from primary production, or phytoplankton.110,112,134–136 Literature suggests that 

using chlorophyll to model carbon and phytoplankton is a viable approach.110,118,136–140 

4.2.5. Carbon Calculations 

All calculations and figures were done using Python scripts. E3SM chlorophyll data 

were averaged per month for 2005 on a scale of approximately 0.5 by 1 degrees latitude by 

longitude, respectively.132 The satellite results are converted from chlorophyll to planktonic 

carbon concentration (Cp) using the standard ratio of 50:1 (planktonic C to chlorophyll by 

53 

https://sunlight.39


 

    

  

 

   

      

 

  

 

 

 

 

 

    

  

     

   

    

  

  

   

 

mass in grams).137 The ratio is an imperfect representation of all phases of plankton blooms 

and we assume carbon averages across a bloom to the defined ratio. Equation 44 accounts 

for several ocean biogeochemical dynamic processes and ultimately provides a dissolved 

carbon concentration (Ci) for the ith biomacromolecule. Here i = 1 for protein and i = 2 for 

lipid, but this vector can be expected to lengthen in future studies to account for the diverse 

chemical pool. Zooplankton maximum growth rate (g) is estimated from literature values141 

and zooplankton (Cz) values obtained from E3SM output.132 The model provides 

zooplankton in moles carbon. We average monthly from daily outputs of E3SM for the 

calendar year of 2005, which corresponds with available satellite measurements. 

𝐶𝐶𝑝𝑝 𝐶𝐶𝑖𝑖 = 𝑔𝑔𝐶𝐶𝑧𝑧 � � (1 − 𝛾𝛾)𝜏𝜏𝑖𝑖𝑝𝑝𝑖𝑖,% 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑝𝑝 

Equation 44 

The consumption of phytoplankton due to grazing is limited on a kinetic basis and 

is accounted for through the relationship (𝐶𝐶𝑝𝑝/(𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑝𝑝)), where Kinges is the half 

saturation constant for ingestion by zooplankton. We adopt rough global average values 

for key variables (i.e., Kinges, 𝜏𝜏) established in early ocean models.141 The local 

concentration of carbon is further modulated by grazing assimilation efficiency (𝛾𝛾), and 

steady state is achieved with the mixed layer lifetime (𝜏𝜏) of the ith species. Lastly, we 

address the fraction or percentage of each molecule (protein and lipid) initially residing in 

an autotrophic cell. Using literature values, we approximate the carbon associated with 

proteins and lipids (pi,%) to be 60% and 20% of biomass, respectively.117 All of the 

parameters are summarized in Table 5. 
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The conversion from concentration to SSnL mass requires realistic models of 

molecular adsorption to the air-water interface. Classic Langmuir isotherms are capable of 

modeling relevant population competition to zeroth order.3 Extending beyond the 

idealization of Langmuir allows us to account for deviations in isothermal surface excess 

between proteins and lipids, which are attributable to bonding, functionality, and site 

configuration. We assume that partial coating of the SSnL is limited to one molecular 

thickness.3,116,142 Several literature equilibrium constants are adopted in the form of inverse 

half saturation carbon atom concentrations, as a first approximation.117 The expressions we 

use are derived from typical laboratory adsorption isotherm behavior so that the monolayer 

can be modeled as accurately as possible. An effective fractional surface coverage relevant 

to the excess is determined via the relationship: 

(1/𝐶𝐶𝑖𝑖,𝑅𝑅𝑖𝑖𝑅𝑅 )𝑖𝑖𝑖𝑖 × (𝐶𝐶𝑖𝑖)𝑖𝑖𝑖𝑖 𝜃𝜃𝑖𝑖 = 21 + ∑𝑖𝑖=1(1/𝐶𝐶𝑖𝑖,𝑅𝑅𝑖𝑖𝑅𝑅)𝑖𝑖𝑖𝑖 × (𝐶𝐶𝑖𝑖)𝑖𝑖𝑖𝑖 

Equation 45 

Here Ci,Ref is the half saturation carbon concentration of the ith biomacromolecule (1 = 

proteins and 2 = lipids) and noting as stated above that there is no established literature 

value of Ci,Ref for carbohydrates. The variable ni is an adjustable coverage parameter 

permitting us to set the isotherm shape to typical experimental adsorption curves for each 

species, and Ci is the calculated bulk seawater carbon concentration of the ith contributor. 

The calculations are performed over the entire global ocean, distributed about every 

one-half degree latitude and one degree longitude. We assume that local marine 

biogeochemical dynamics are at steady state on this scale because horizontal diffusivities 
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are about 3x107 cm2/s.143 Results are also grouped by Longhurst province to summarize 

SSnL carbon masses regionally.114 The nanolayer total is determined using a summation 

over each calculated value (Equation 46, see Table 5 for definitions). Our calculations 

encompass biogeochemical diversity using chlorophyll-a modeling, zooplankton 

concentrations, and grazing rates of the upper ocean, while also presenting integrated 

amounts in a concise form. The total SSnL mass for each evaluated month is presented in 

gigatons (Gt) of carbon to provide a convenient reference for comparison to budget figures. 

� � �𝐴𝐴𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐Γ𝑖𝑖 𝜃𝜃𝑖𝑖 = 𝑀𝑀𝐶𝐶,𝑆𝑆𝑆𝑆𝑖𝑖𝑆𝑆 

𝑐𝑐𝑙𝑙𝑙𝑙 𝑐𝑐𝑙𝑙𝑖𝑖𝑖𝑖 𝑖𝑖 

Equation 46 

Areas are scaled appropriately to the cosine of latitude so that they decrease toward 

the poles. Based on the model results and excess maxima for surrogate proteins and lipids, 

we present SSnL carbon estimates. Parameter values inserted into the described equations 

are presented in Table 5 with relevant references. Maps are normalized to the largest 

observed value of carbon overall such that the most intense value is calculated as one. 

4.3. Results and Discussion 

The carbon SSnL mass is estimated to compare to global budget values, with 

potential to improve current understanding of how the surface modulates gas transfer, 

micrometeorology, and global biogeochemistry. Using established relationships between 

chlorophyll and phytoplanktonic production and consumption, model measurements are 

converted to dissolved concentrations of carbon for proteins and lipids, the major marine 

surfactants. Maps of carbon after calculating Equation 44 are presented in Appendix C; 
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these reflect the calculation of Ci for lipids and proteins. Fractional surface coverage is also 

mapped for each month (Appendix C). 

We first compare our calculated concentrations of lipids and proteins (from 

Equation 44) to field measurements of DOC to confirm our model is representative of 

physical measurements; these values do not take into account surface adsorption and are 

not representative of the SSnL.109 Briefly, we sum over Ci for a given pixel to give us lipid 

and protein mass and we average over the year to get an estimated carbon concentration. 

We confirm that our calculated carbon concentration is close to experimentally determined 

DOC concentrations, indicating that the model methods are sufficient for global analysis, 

albeit they should be an underestimate as shown in Figure 9. Experimental amounts of 

DOC are likely divergent from our calculations for two main reasons. Our calculations do 

not include carbohydrate contributions because of insufficient information about their 

surface adsorption kinetics, so these calculations have not been included in our model. 

Second, the dates studied vary. Our model, for example, is for the year 2005. However, the 

field studies are from a range of years. DOC is dynamic and varies throughout the day, let 

alone yearly. Despite the variations, our calculated value from the modeled carbon is close 

to field observations of DOC concentrations, which confirms that our approach of using 

chl-a is viable for modelling applications. 

SSnL adsorption is accounted for through experimental isotherm relationships to 

calculate the fractional carbon coverage. Total carbon mass of the SSnL for a one-month 

average is determined to be ~10-4 Gt, indicating simultaneously that there is significant 

amount of carbon, but that amount is small relative to other contributions in the 
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biogeochemical cycle. For example, most recently in 2020 total CO2 emissions were 

estimated at 10.2 Gt carbon and the carbon sink into the ocean was about 3 Gt.144 Carbon 

in the SSnL is normalized to its greatest single pixel value; ~107 g carbon is represented by 

the value of 1 and bright yellow regions on maps. Results for all months are mapped to 

emphasize the variability throughout the calendar year (Appendix C).  

We observe the seasonal variability more closely in the months of change (Figure 

10). Maps for March, June, September, and December emphasize the hemisphere 

separation and seasonality. In June and September, southern oceans are significantly darker 

blue/purple, which is indicative of less carbon in the southern hemisphere winter and 

spring. The equator is defined by consistently high values of carbon, but seasonal variations 

are still observed, most notably between March and December. May and November 2005 

monthly averages provide Northern hemisphere mid-spring and mid-fall references, with 

six months separation (Figure 11). 

Our results indicate that coastlines support higher carbon biomass, which is 

supported by literature observations reported for field studies.115 For example, the yellow-

green coloring offshore Chile is consistent with well-known eastern basin upwelling and 

associated biological activity. Similarly, regions of remote open ocean exhibit significantly 

lower masses in their respective fall seasons, and this can be seen most notably by 

contrasting May and November shifting central minimum of the South Pacific and North 

Pacific Gyres. Even equatorial variability and continuity is of significance (Figure 5a). The 

equator has a more constant yearly temperature and increased upwelling of nutrients 
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through ocean circulation, which creates ideal conditions for marine biota to thrive and 

ultimately produce more carbon (bright yellow on maps). 

Figure 12 emphasize longitudinal variability and a degree of similarity between the 

two central sample months. Normalized carbon for spring and fall is overlaid for latitudes 

of 0° and 25°. Regional overlap of red and black is an indication that SSnL carbon remains 

consistent over time. Figure 12 highlights the detailed seasonal variability we observe 

along the equator. Carbon mass is lower in May when viewed along this longitudinal axis. 

Greater November SSnL carbon is explained by the behavior of global trade winds. 

As the adjoining hemispheres move in and out of summer/winter, the carbon mass 

rises and falls by five percent or more (Figure 12). As summer ends in the two hemispheres, 

low latitude aquatic productivity increases since there is more upward mixing, resulting in 

injection of nutrient material. This ultimately contributes to a relatively concentrated SSnL. 

In the midrange northern hemisphere (above 40° latitude), carbon decreases from May to 

November and this effect is driven by the standard productivity decreases; seasonal algal 

blooms do not persist into late fall. This is supported by the higher masses around -40° 

(southern hemisphere) in November relative to May. 

At 25° north latitude, Figure 12b, we observe greater carbon mass in northern 

hemispheric spring across most longitudes. November displays lower or unchanged surface 

carbon between the two sample months. There are few longitudes where northern 

November outpaces May at this selected mid-latitude; mostly occurring in coastal areas. 

Our observations confirm regular oceanographic seasonal variations known to modulate 

the contemporary distribution of primary productivity. For example, as the northern 
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hemisphere approaches summer a strong upwelling of nutrients becomes stabilized in the 

mixed layer. Combined with seasonally increased temperature and daylight hours, this 

change gives rise to plankton blooms and the ecosystem is subsequently enriched with 

carbon. 

Calculated masses were evaluated over the named ecological regions defined by 

Longhurst in order to evaluate biome diversity, because the sum total global SSnL carbon 

does not vary seasonally (Figure 13).114 Regional mass totals summarize month to month 

variability. Observed carbon decreased in the Northwest Arabian Sea upwelling province 

(ARAB) from May to November. We also noted a decrease in Western Tropical Atlantic 

(WTRA) between the selected months. The South Pacific Subtropical Gyre (SPSG) is a 

relatively biologically quiescent region, but it is vast, so effects are amplified (Appendix 

C). By contrast, the California current (CCAL) is narrow and restricted but it is subject to 

coastal nutrient upwelling. 

Total SSnL carbon mass was determined by summing over all pixels of non-zero 

chlorophyll measurements. In both months, the calculated value was ~10-4 Gt. Monthly 

variability is minimal when we integrate across the entire globe since the hemispheres 

offset one another. We observe only a 4% difference. Therefore, the biogeochemically-

driven variability is seasonally symmetrical. Ultimately, we attribute consistent carbon 

concentrations to adsorption equilibria exerting primary control over the ratio of bulk 

concentration to SSnL carbon. 

Due to local seasonal variability shifting globally, the change in individual biomes 

does not have a strong impact on the global values. Seasonality reflects the geographic 
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scope of mixed layer productivity. The SSnL and SSML reservoirs must possess an 

ecological geography of their own consistent with several recent regional analyses.115,117 

The results assist in understanding the geocycling of surface pressure (reduced interfacial 

tension), which likely affects micrometeorological phenomena. From these results, we 

assert that global fluid dynamic parameters, such as the drag coefficient, are likely highly 

variable because there is significant carbon at the SSnL. 

These carbon enrichments are important to consider alongside other reservoirs 

within the Earth System, due to aerosol composition and boundary layer turbulence through 

interfacial roughness.22,24 If the contributions from the SSnL are omitted in determining 

environmental pathways of carbon, a planetary self-regulatory mechanism is neglected. 

We assert that molecules in the SSnL may have critical links between carbon, 

micrometeorology, biogeochemistry, and climate. 

4.4. Conclusions 

The role of a carbon rich region dividing the ocean and atmosphere remained vague 

in global studies recently, despite the tendency for carbon-rich molecules to organize at the 

SSnL. The ocean surface has unique carbon sequestration capability; therefore, we 

examined distributions and variability for the regional to global masses involved. 

Chlorophyll and zooplankton data from E3SM were used to calculate an integrated SSnL 

carbon mass for proxy compounds selected from among natural proteins and lipids. The 

computations were controlled by parameterizations for phytoplanktonic (primary) and 

zooplanktonic (secondary) production. We determined that SSnL carbon varies both 

temporally and geographically; however, the monthly total remains consistent at 
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approximately 10-4 Gt. Emphasis is placed here upon temporal and geographical 

fluctuations, which are estimated from remotely sensed observations. 

The small value we calculate is indicative of a large relative global geocycling 

impact. The molecular reservoir of the SSnL functions as a direct physical barrier and 

physicochemical moderator between ocean and atmosphere.15,104,145,146 For example, the 

roughness-driven drag coefficient is likely affected by surface pressure, since friction 

elements are reduced in the presence of amphiphilic species. Winds passing over the ocean 

“grip” the surface less effectively when the chemical complexity is enriched.147 The local 

variability of the SSnL thus results in a wide array of effects on global micrometeorology. 

The SSnL carbon mass is many orders of magnitude less than present day global 

anthropogenic CO2 emissions (about 10 Gt).96,144 Yet, the thin organic nanolayer12 appears 

to control the transfer of organics from ocean to atmosphere through aerosols. In aerosols, 

the organic molecules may act as ice nucleators or cloud condensation nuclei and will 

become acidified.148 

Overall, we conclude that impacts of the carbon enriched SSnL should be more 

thoroughly investigated. The model presented here relies heavily on simple assumptions 

regarding the molecular structure of typical surfactants, chlorophyll-a, and the food web 

concentrations. We know that the non-equilibrium of the ocean departs from our 

assumptions. A more complete understanding of organic chemistry focused at the SSnL 

requires that future iterations address, for example, the variability of phytoplankton 

taxonomy throughout upper layers, along with detailed species-by-species composition. 

Additionally, use of chlorophyll-a as a proxy for biological activity should be improved 
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upon, to account for the structural changes that may be relevant during ecological 

succession. A more complete view of chemical complexity should be adopted and tested 

by large-scale systems modelers. Comparison of the carbon models presented to global 

estimations of the SSnL and surface tension reduction should be done in the future to 

further advance our understanding of the ocean surface chemistry. The interaction of 

dissolved and adsorbed carbon through planetary scale surface chemistry is of 

direct relevance to many aspects of evolving contemporary climate, and we are hopeful 

that this initial examination of mass variation will provide a starting point. 
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Figure 8. Simplified schematics illustrating (a) relationships between the marine boundary 
layer (white), sea surface nanolayer (light blue), and sea surface microlayer (dark blue) and 
(b) highlighting some of the major oceanic processes that occur including vertical transport 
from the bulk, enrichment of organics at the surface nanolayer, adsorption of atmospheric 
aerosols and gases, and release of sea spray aerosols from the ocean to the atmosphere. 
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Table 5. Summary of variables used in calculation of total surface carbon mass including 
relevant references for literature values. 

Variable Description Value Unit Reference 
1 = protein 𝑖𝑖 Component molecule - -2 = lipid 

𝐶𝐶𝑖𝑖 
Carbon atom 
concentration of the 
ith molecule 

calculated 𝜇𝜇M 
carbon -

𝑔𝑔 
Zooplanktonic 
growth rate 1.0 d-1 Sarmiento 

1993141 

𝐶𝐶𝑧𝑧 

Concentration of 
carbon within 
zooplankton 

calculated 𝜇𝜇M 
carbon 

Gibson 
2020132 

𝐶𝐶𝑝𝑝 

Concentration of 
carbon within 
plankton 

calculated 𝜇𝜇M 
carbon 

Gibson 
2020132 

𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
Half saturation of 
ingestion 7.0 𝜇𝜇M 

carbon 
Sarmiento 
1993141 

Assimilation Sarmiento 𝛾𝛾 0.75 -efficiency 1993141 

𝑝𝑝𝑖𝑖,% 

Percentage of 
macromolecule 
within the SSnL 

𝑝𝑝1,% = 60 
𝑝𝑝2,% = 20 - Elliott 2019117 

𝜏𝜏𝑖𝑖 Lifetime of molecule 𝜏𝜏1 = 10 
𝜏𝜏2 = 2 d Ogunro 

2015118 

𝐶𝐶𝑖𝑖,𝑅𝑅𝑖𝑖𝑅𝑅 

Half saturation 
carbon atom 
concentration for the 

= 10𝐶𝐶1,𝑅𝑅𝑖𝑖𝑅𝑅 

= 0.5 𝐶𝐶2,𝑅𝑅𝑖𝑖𝑅𝑅 
𝜇𝜇M 
carbon Elliott 2019117 

ith molecule 
Effective shape of 𝑛𝑛1 = 0.5𝑛𝑛𝑖𝑖 - Elliott 2019117 
adsorption isotherm 𝑛𝑛2 = 1 
Fractional surface 

𝜃𝜃𝑖𝑖 coverage for the ith calculated - -
molecule 

𝑀𝑀𝑖𝑖𝑠𝑠𝑠𝑠𝑅𝑅 Carbon in the SSnL calculated g carbon -
Surface area of a m2𝐴𝐴𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑐𝑐 ~1010 -pixel 
Maximum surface Γ1 = 2 × 10−3 Graham Γ𝑖𝑖 excess of the ith g/m2 

Γ2 = 2.5 × 10−3 1979106 
molecule 
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Figure 9.Comparison of four field study DOC concentrations109,149–151 and the average 
mass of carbon each month in the region of 0-10 east longitudes and 78-80 north latitudes, 
which aligns with the regions studied in the Rossel et al., 2020 study. 
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Figure 10. Maps of normalized SSnL carbon for the months of March (3), June (6), 
September (9), and December (12) from E3SM output for the year 2005 are presented. 
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Figure 11. Normalized SSnL carbon for May 2005 (top, ‘5’) and November 2005 (bottom, 
‘11’) calculated from E3SM chlorophyll-a and zooplankton output. 
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Figure 12. Normalized SSnL carbon across (a) 0° and (b) 25 north latitudes for May and 
November 2021. Only locations where estimates are greater than zero are included (plots 
exclude land). Less seasonal variability is observed at the equator in (a), and coastal regions 
in (b) are well emphasized by the uptick in calculated surface carbon. As we approach land, 
carbon increases and then decreases in more open ocean regions. 
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Figure 13. Subset of Longhurst regions with SSnL carbon mass (g) between May and 
November 2021. Regions are ordered alphabetically by their four-letter standard codes. All 
values are presented in Appendix C and a subset is discussed in text to underscore key 
observations. Province acronyms are defined as follows: Northwest Arabian Sea 
Upwelling (ARAB), Archipelagic Deep Basins (ARCH), East Australian Coastal (AUSE), 
Western Australian and Indonesian Coast (AUSW), California Current (CCAL), Chile 
Current Coastal (CHIL), China Sea Coastal (CHIN), South Subtropical Convergence 
(SSTC), Sunda-Arafura Shelves (SUND), Tasman Sea (TASM), Western Pacific Warm 
Pool (WARM), and Western Tropical Atlantic (WTRA). 
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Chapter 5. New insights into cation and temperature driven protein adsorption to 
the air-water interface through infrared reflection studies of bovine serum albumin 

Reproduced in part with permission from Enders, A.A.; Clark, J.B.; Elliott, S. M.; Allen, 

H.C. “New insights into cation and temperature driven protein adsorption to the air-water 

interface through infrared reflection studies of bovine serum albumin”. Langmuir, 

resubmitted with revisions, 2023. Copyright 2023 American Chemical Society. 

5.1. Introduction 

Proteins are an abundant macromolecule in the ocean9,110,152 and are enriched within 

the sea surface microlayer (SSML).23,153 The SSML is operationally defined as the topmost 

1-1,000 μm of the ocean, where the atmosphere and ocean have a multitude of transport 

mechanisms between each other.12 Proteins and peptides are transferred into the 

atmosphere via sea spray aerosols (SSAs) that form through wave breaking and bubble 

bursting at the air-ocean interface.7,15,153–155 SSAs are known to contain particles that 

nucleate cloud16,156 and ice formation.7 The chemical composition of SSAs is directly 

controlled by the SSML chemistry.17,123,150,157,158 However, the processes controlling 

surface adsorption of proteins are not well understood,125,153,159 and thus requires further 

investigation into how surface-active compounds, in general, are promoted to the air-sea 

interface under variable conditions, including temperature, salinity, and presence of other 

organic molecules including surfactants. The observations presented herein may improve 
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climate models by providing insight into the chemical complexity of the ocean and its 

surface and aid in understanding the biogeochemical processes affecting the ocean 

surface.7,10,18,115,117,118 

Protein promotion, orientation, and organization at the air-water interface is well 

documented in the literature, which largely suggests denaturation as proteins form a 

monolayer on the water surface.155,160–162 Yet, knowledge is limited about the effect of 

physical properties on protein promotion to the air-water interface. Surface adsorption of 

proteins is a complicated phenomenon because of their tertiary structures163 which are 

controlled, in part, by hydrophobicity and hydrophilicity.164 This likely influences the 

propensity for monolayer formation by proteins at the air-water interface.163,164 The 

structure is also affected by the system’s temperature,165 which is variable across the 

ocean.166 Furthermore, the function of a protein may impact the adsorption process. For 

example, bovine serum albumin (BSA), our chosen proxy-protein, is a transport protein 

with well-known binding affinity for fatty acids, including stearic acid.167,168 

BSA is our proxy-protein of choice because of the abundance of previous literature 

investigations indicating that there is an abundance of proteins and amino acids in the 

ocean.169–172 BSA is frequently used in the literature as a proxy protein for surface 

studies100,173–175 because BSA captures slow adsorption within the air-ocean surface. While 

it does not completely capture the nuance of the ocean surface chemistry, the literature 

results and precedence strongly suggest that it is a suitable proxy for understanding 

fundamental adsorption changes. Most notably, Jarvis and colleagues presented surface 

pressure-area isotherms of BSA and upon comparison to ocean slick samples, their 

72 



 

 

  

   

   

  

  

  

   

 

  

  

  

  

  

  

  

  

 

    

  

 

 

observed surface pressure responses were strikingly similar, producing analogous 

isotherms.100 Meinders and coworkers previously reported observations and 

conformational information of protein surface adsorption, including studies of 𝛽𝛽-casein 

and egg serum ovalbumin, to the air-water interface via infrared reflection-absorbance 

spectroscopy (IRRAS).176–180 Additionally, the interaction with cations at neutral pH has 

been documented, but the effect they have on modulating protein surface adsorption varies 

in the literature.27,100,125 Langmuir and Waugh presented the first interfacial investigation 

of albumins, highlighting the irreversibility of films formed by proteins on pure water.27 

More recently, Li and coworkers presented evidence that BSA populates the surface in 

saline solutions more readily than in pure water.125 The unknown propensity for BSA to 

adsorb at the air-water interface yields motivation to probe more deeply the temperature, 

salinity, and monolayer effects and the relationships to interfacial structure. 

The tertiary structure of BSA at the air-water interface was studied through 

dilational surface rheology by Noskov and colleagues in 2010.173 They found that the 

protein underwent a conformational change at the surface where the protein unfolded and 

elongated along the x-axis, until surface pressures of about 12 mN/m when it began to 

“loop” into the water. Further work by Yuan and coworkers expanded on understanding 

the surface behavior of BSA by determining surface excess at variable concentrations of 

protein and sodium chloride salt.174 The observed “salting up” and “salting down” effects 

were a function of protein concentration; low and high concentrations have salting up 

effects and mid-range concentrations salting down. Ulaganathan and colleagues found that 

𝛽𝛽-lactoglobulin was more readily promoted to the surface in ionic solutions, but that the 
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effect diminished at higher concentrations (mM scale).181 These results indicate that there 

is at first a stabilizing effect that promotes proteins to the air-water interface in ionic 

solutions and the effect is not linear with ionic strength. The well-studied Hofmeister effect 

is further evidence of the salting out and salting in effects on proteins.182–186 Generally, 

anions have a greater effect than cations, yet the mechanism is still not fully understood. 

Current works hypothesized the disordering of water structure by the ions is the cause for 

the observed effect.187 

BSA surface adsorption at the air-water interface is also affected by surfactants. 

Noskov and Mikhailovskaya reported on the reduced globule charge density of BSA when 

sodium dodecyl sulfate (SDS) monolayers were formed at the interface.188 At very low 

surfactant concentrations, the surface adsorption of BSA was observed to decrease and the 

surface tension was more representative of expected values for SDS monolayers. Further 

surfactant work by Pedraz and colleagues characterized a two-step mechanism in which 

Langmuir biofilms were formed with arachidic acid and BSA.175 The process ultimately 

resulted in co-adsorption, where BSA interacted with the surfactant head groups in the 

solution phase rather than assembly at the interface. 

Global ocean modelling efforts have long used bovine serum albumin and stearic 

acid as stand ins for ocean organic matter stemming from seminal studies,100,115,132,189 and 

thus our proxy system implements these molecules. However, our experimental design is 

ultimately not comprehensive or exhaustive in its inclusion of all oceanic and atmospheric 

biological, chemical, or physical components. For example, our experiments exclude the 

influence of microbial communities,55,190–193 the diverse and complex array of molecules 
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adsorbed from biogenic15,191,194 or anthropogenic sources,9 and wind dynamics195 that are 

destabilized by decreased surface tension from adsorbed organic monolayers. Instead, the 

inclusion of salinity and temperature are used to understand the fundamental process of 

protein surface adsorption. Our results provide experimental evidence about these factors, 

which can be used to guide models that rely on laboratory experiments. Importantly, our 

results are not all encompassing of the oceanic and atmospheric non-equilibrium systems. 

The investigation presented herein requires the assumption of limited contributions 

from biological, chemical, or physical influence on the air-water interface. Our assumption 

is a limitation of the study and requires additional experimental parameterization be 

included in future investigations. Despite this, the use of a proxy that mimics some surface 

measurements (e.g., surface tension100) and conditions of the ocean provides necessary 

insight into the sparsely measurable ocean surface. Our results provide insight into the 

effect of temperature and ionic strength on surface adsorption of the ocean through the 

proxies of BSA and stearic acid. 

We present an investigation into the dynamic air-aqueous interfacial adsorption 

process that occurs when BSA is introduced into an aqueous system. To our knowledge, 

this is the first study that evaluates the impact on adsorption as a function of amide peak 

intensity with varying solution ionic strength, temperature, and adsorbed monolayer. We 

examine the surface structure and its changes through IRRAS measurements, which 

enables surface-sensitive characterization of the interfacial chemical composition. Our 

approach builds from the simplest system of BSA injected into pure water at 20°C and we 

compare the observed changes relative to this system. We extend our fundamental system 
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to include ionic strength (e.g., artificial sea water (ASW) solution) and temperature (e.g., 

surface temperature of 10°C), which is relevant to ocean systems. Ultimately, our findings 

provide insight into the fundamental chemical and physical properties affecting surface 

adsorption. 

5.2. Methods 

5.2.1. Materials and Sample Preparation 

Aqueous solutions were made using ultrapure water (MilliQ Advantage A10, 

resistivity 18.2 MΩ). All materials were used as received except for sodium chloride 

(Fisher Chemical, ≥ 99%, certified ACS) which was baked at 600°C for at least 10 hours 

to remove residual impurities and used to make 0.45 M NaCl in water.196 About 35.5 g of 

Instant Ocean salt (ion concentrations from manufacturer reported in Appendix E) was 

used to make 1 L solutions of artificial sea water (ASW) based on label recommendations. 

The ASW solution has 19,290 ppm Cl-, 10,780 ppm Na+, 2,660 ppm SO42-, 1,320 ppm 

Mg2+, 420 K+, and 400 ppm Ca2+, and all other included ions or elements are less than 400 

ppm. A 1 mM BSA (Sigma Aldrich, ≥ 98%, heat shock fraction, pH 7) solution in water 

was prepared for injection. BSA solutions of concentrations 1, 50, 100, 250, 500, and 750 

μM were also prepared for analysis via ATR-FTIR and IRRAS. Stearic acid (Sigma 

Aldrich, ≥ 98.5%, capillary GC) was dissolved in chloroform (ACROS Organics, ≥ 99.8%, 

ACS Reagent) to make a 3 mM solution for spreading. Solutions were prepared the day 

before measurements, stored in a glass Pyrex container, and equilibrated to lab conditions 

overnight. 
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5.2.2. Infrared Spectroscopy 

A PerkinElmer micro-ATR assembly (one bounce, diamond/KRS-5) and 

PerkinElmer FTIR (Spectrum 3, DTGS detector, and KBr windows) was used to obtain 

bulk measurements of the BSA solutions to confirm amide peak assignment. Infrared 

Reflection-Absorbance Spectroscopy (IRRAS) spectra were collected with a modified 

PerkinElmer Frontier FT-IR Spectrometer using a custom, lab-built reflection system with 

two gold mirrors (Figure 14). The sampling stage is contained within the sample 

compartment of the commercial instrument. After the IR source is modulated by the 

interferometer, it is directed to the sample compartment. The IR beam is incident on the 

first gold mirror which is angled such that the light is directed toward the sample surface 

at 48° relative to surface normal. The light reflected off the sample surface is collected 

using a second gold mirror and returned to the instrument and directed to a liquid-nitrogen 

cooled HgCdTe (MCT) detector. 

Surface-sensitive spectra are obtained by calculating reflectance-absorbance (RA) 

which is given as 𝑅𝑅𝐴𝐴 = −log(𝑅𝑅𝑀𝑀) , where RM is the reflectivity of the sample surface and 
𝑅𝑅0 

R0 is the reflectivity of the reference surface (background). As a result of the mathematical 

relationship, positive and negative vibrational modes are observed in the spectra. Negative 

RA response occurs when the sample surface reflectance is greater than the reference 

reflectance (𝑅𝑅𝑀𝑀/𝑅𝑅𝑂𝑂 >  1). For backgrounds with reflectance greater than the sample 

(𝑅𝑅𝑀𝑀/𝑅𝑅𝑂𝑂 < 1), positive RA responses are observed.197 Measurements were taken using 

unpolarized light in the single-beam mode and averaged over 400 scans at a resolution of 
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4 cm-1 . IR response was recorded from 4000-450 cm-1 at every 0.5 cm-1 . Samples were 

collected using a KSV NIMA Langmuir trough (~135 mL total volume) equipped with a 

surface tensiometer. 

Solutions at 20°C were added to the trough and equilibrated for 10 minutes prior to 

acquiring a background measurement. In lower temperature studies, a ThermoFisher 

Recirculating Chiller was used with a 60:40 water and ethylene glycol solution. The 

equilibration time was increased to 30 minutes to ensure complete cooling. For trials with 

fatty acid monolayers, 18 μL of 3 mM stearic acid in chloroform was spread dropwise onto 

the surface using a Hamilton gas-tight syringe and 10 minutes were allowed for solvent 

evaporation prior to measurement. To all solutions, 50 μL of 1 mM bovine serum albumin 

in MilliQ H2O was injected, which resulted in a final concentration of 0.37 μM. 

Measurements were taken immediately after injection. All data was taken in triplicate. 

Spectra presented were analyzed using custom Python codes, which included conversion 

from single beam to RA, linear background subtraction, and averaging. Experiments 

performed are summarized in Table 1. The concentration dependence of BSA surface 

adsorption was evaluated via IRRAS measurements after injection of a series of BSA 

concentrations at 20°C in H2O (Appendix E). The calculated value corresponds with the 

weight percent that has stable surface pressure observed in work by Graham and Phillips 

in 1979.  

5.3. Results and Discussion 

We examine protein adsorption to the surface as a function of temperature, ionic 

strength, and surface structure (preexisting monolayer). The amount of BSA adsorbed to 
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the aqueous surface corresponds to the intensity of the RA response. Our results indicate 

that BSA is surface active under all conditions, however the structure of the surface and 

amount that adsorbs is variable as conditions of the system are modified. Briefly, we 

evaluate temperature change in the system to understand the thermodynamic dependence 

of protein adsorption. In addition, we determine if ionic strength or presence of a 

monolayer (stearic acid) enables co-adsorption to the surface. The results provided insight 

into surface adsorption under variable conditions. Ultimately, these experimental data 

improve the accuracy of ocean-relevant computational models117,137,189,198 that rely on 

fundamental laboratory experiments for input parameters. Specifically, our results provide 

increased understanding of what promotes organics to the surface and the variation in 

adsorption that ultimately affects SSA organic fractionation. 

We first evaluated solution-phase measurements of BSA to confirm amide peaks 

for assignment (Figure 15). Amide I is assigned to 1660 cm-1 (𝝂𝝂C=O) and amide II to 1540 

cm-1 (𝛿𝛿N-H).199,200 We also note that the integrated absorbance is linear with increasing 

concentration and provide details regarding the nature of ATR as a bulk phase 

measurement with variable path length (Appendix E). Additionally, we ensure the ions in 

each solution does not significantly affect the O-H stretching or bending modes (Appendix 

E). 

5.3.1. Solution Effect 

The solution effect on surface adsorption is observed at 20°C (Figure 16a). The 

standard deviation of amide I peak intensities are provided in the SI. Surface adsorption is 

observed when BSA is injected into all three systems, however the intensity varies as a 
79 



 

 

 

  

  

   

  

  

 

   

   

   

  

  

 

   

     

  

 

   

   

     

function of ionic composition. At ocean relevant sodium chloride concentration (0.45 M), 

adsorption is increased resulting in more intense negative bands (1660 cm-1 and 1540 cm-

1). The addition of divalent cations in ASW results in a relatively small increase in intensity 

as compared to the NaCl solution consistent with the greater concentration of sodium 

relative to magnesium and calcium cation concentrations. We observe the intensity of the 

amide I and amide II bands increase with increasing ionic composition (H2O < NaCl < 

ASW), which is consistent with observations described in the literature.174,181 

5.3.2. Temperature Effect 

A decrease in the solution temperature resulted in decreased peak intensity in both 

amide bands (Figure 16c). We observe a slightly less intense amide I band at 1660 cm-1 

from carbonyl stretching (𝝂𝝂C=O) at 20°C for BSA in pure water. This slight change could 

be attributed to strengthening of H2O-BSA hydrogen bonds as the temperature is 

decreased.200 Between 20°C and 10°C for the water solution, the amide I and II peak 

intensities have only a ~1% difference. As shown in Figure 2c, the temperature effect on 

surface adsorption in pure water is minimal yet has a greater impact on ionic solutions. We 

observe a decrease in the 1660 cm-1 𝝂𝝂C=O peak intensity at 10°C compared to 20°C for both 

0.45 M NaCl and ASW. The percent difference between peak intensities at 20°C and 10°C 

for both 0.45 M NaCl and ASW are -5.5% and -5%, respectively. 

Compared with ultrapure water at 20°C, a solution with sodium chloride greatly 

increases the intensity of amide I and II bands (Figure 16a). Similar trends of increased 

intensity in ionic solutions are observed at 10°C, but the overall intensity is decreased 
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(Figure 16b), demonstrating that the cation stabilization of BSA at the interface is disrupted 

by the removal of thermal energy from the system. Our observation indicates that the 

addition of monovalent cations increases the propensity for protein surface adsorption in 

direct alignment with the “salting-out” effect that is described by the Hofmeister 

series.125,183,184 However, the ionic interactions and interfacial surface structure is 

destabilized at decreased temperatures. The effect of the solutions is further emphasized in 

Figure 17, where the area under the curve is analyzed for both amide bands. We assume 

constant transition moment dipole strength based on our ATR analysis (Appendix E); the 

observed intensity corresponds to surface adsorption as a result. 

BSA is negatively charged under neutral and alkaline conditions and appears to be 

stabilized at the surface by the sodium cations, in 0.45 M NaCl solution, at neutral 

pH.125,174,181 Increased intensity in the amide bands is attributed to the ionic strength of the 

solution. At 10°C, the increase in peak area is consistent with increasing ionic strength; 

from NaCl to ASW, the increase is relatively small. However, at 20°C, the increase is much 

larger between the two salt solutions. Also of note is the relatively equal peak area observed 

between the two temperatures in the sodium chloride solution. In the difference spectra we 

observe an amide I band consistent with a change in the adsorption at varying temperatures 

(Figure 16c). From previous literature studies, we assert this observation is occurring as a 

result of changing tertiary protein structure, including unfolding or denaturing, leading to 

a change in the observed intensity.201 We conclude that the surface adsorption of BSA is 

affected by both temperature and ionic strength and that there is an observed synergistic 

effect. 
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5.3.3. Monolayer Effect 

The presence of a stearic acid monolayer (~45 Å2/molecule, ‘gaseous’ phase) 

changes the surface adsorption of BSA at 20°C compared to the system with no monolayer 

at the same temperature (Figure 18a). The surface-IR spectra of the BSA/water system at 

the air-water interface with and without a surface adsorbed monolayer show minimal 

changes in peak intensity and shape. The presence of a surface adsorbed monolayer results 

in red-shifting of spectral peaks belonging to both the stearic acid monolayer and proxy-

protein, BSA. We observe a red-shift in the 𝝂𝝂C=O of 2.5 cm-1 (convolution of amide from 

BSA and stearic acid head group) and a 5 cm-1 red-shift in the 𝛿𝛿N-H mode, belonging to 

BSA, when a stearic acid monolayer is present. Vibrational shifts are generally attributed 

to changes in the intermolecular interactions (e.g., hydrogen bonding or ion-dipole 

interactions) or molecular environment (e.g., reduced thermal energy). The IRRAS spectra 

presented herein are surface sensitive therefore such shifts indicate stronger interactions 

are occurring at the surface when BSA and a stearic acid monolayer is present. This is 

indicative of greater surface organization, which is established in the literature through 

water surface measurements using Brewster angle microscopy (BAM)6,191 and surface 

pressure-area Langmuir isotherms.106,127,197,202 

The observed wavenumber shifts are not necessarily related to tertiary protein 

structure conformation change, but to a change in the water surface structure at the air-

water interface. When a stearic acid monolayer is present, our results are consistent with 

previous results presented in the literature for greater surface organization.180,203 The effect 

is reversed in a 0.45 M NaCl solution at 20°C and we observe a blue shift in each peak, 
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indicating the surface becomes more disordered. This is likely from cationic destabilization 

and disruption of the stearic acid headgroup hydrogen bonding with water molecules. For 

example, cations will interact with stearic acid at the interface through ion-dipole 

interactions that include ionic bonds, bridging, and chelation.20,197,202,204 Yet the stronger 

hydrogen bonding network achievable in non-ionic solutions is still disrupted in 

comparison. We note a 7% difference between ASW with and without a fatty acid 

monolayer, where the lipid monolayer results in less intense amide bands. 

The surface structure and IRRAS response becomes more complicated when the 

system is cooled to 10°C and a monolayer is spread (Figure 18). We observe similar 𝝂𝝂C=O 

and 𝛿𝛿N-H modes in water with similar intensities to 20°C with and without a monolayer. 

The 0.45 M NaCl solution has a much less intense 𝛿𝛿N-H mode and positive carbonyl stretch, 

which indicates that the protein is below the surface.130 We also observe a stronger response 

in the ASW solution compared to 0.45 M NaCl at 10°C; the 𝝂𝝂C=O mode is positive and 𝛿𝛿N-

H is more intense. As noted above, the positive and negative peaks originate from the 

mathematical conversion from single beam data to RA spectra.130 Therefore, positive peaks 

are indicative of a greater reflectance in the background. 

The observed derivative-like peak shape (Figure 18b) has been previously observed 

in the literature.176,203,205 Meinders and colleagues conducted a comprehensive examination 

of the IR response and specifically attribute the abnormal features to external reflection 

optical effects, not tertiary protein structure variations.206 In general, the peak shape is 

interpreted as a convolution of the bending mode of water (1650 cm-1 in neat water207) from 

the reference signal (R0) and perturbed O-H bending mode and amide I vibrational 
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contributions from the sample (RM). The resulting peak shape has an indeterminate origin. 

We interpret the spectral response to indicate a complex interfacial environment where 

equilibrized water organization is disrupted by proteins being promoted to the surface. 

From our experimental results, we assert that the BSA surface adsorption is 

modulated by salinity and temperature; this result is supported by literature.160,179,208,209 The 

changes that occur are not simple or independent of other system variables. Ionic strength, 

temperature, and lipid monolayers have compounding effects on the observed IR response. 

The least complex system is ultrapure water; amide I band intensity varies only slightly 

when temperature and monolayers are considered. Red shifting is observed, as noted, when 

the stearic acid monolayer is spread and when the temperature is reduced to 10°C. Thermal 

energy reduction of the system results in this observed wavenumber shift, which is 

visualized in Figure 19. While only a small change, observing the thermodynamic effect in 

water indicates that the temperature does alter the system and affects how surface 

adsorption and organization occurs. 

The observed results are summarized in Figure 20. Overall, we observe smaller 

negative intensities on the water and have more IR response in ionic solutions (more 

negative RA). The temperature dependence is evident when comparing 20°C and 10°C; 

decreasing temperature decreases the amount of BSA adsorbing to the surface. Our results 

indicate that temperature affects the surface structure: decreasing the system’s temperature 

decreases the protein adsorption to the surface as reflected in the lower IR response. 
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5.3.4. Application to Climate Models 

We assert that variable temperatures over the ocean surface must influence 

adsorption to the air-ocean interface and the effect should be considered in relevant ocean 

and climate models. Organic Compounds from Ecosystems to Aerosols: Natural Films and 

Interfaces via Langmuir Molecular Surfactants (OCEANFILMS),189 Energy Exascale 

Earth Systems Model (E3SM) research and development,115,132 and offline simulations of 

macromolecule surface activity118 among other models117,210 exclude or assume constant 

temperature. Our experimental results indicate that temperature does influence surface 

adsorption. It follows that decreased organic enrichment would result in SSAs formed with 

decreased enrichment of ice nucleating particles or cloud condensation nuclei. Other 

factors convolute ocean surface adsorption; for example, algal blooms and their subsequent 

senescence result in injection of organic molecules into the water column and enrichment 

of the surface layer.191 While not presently investigated, their effect is nonetheless present 

and impacting SSA chemistry.  

The methodology of our model system probing the proxy-protein BSA surface 

adsorption should be expanded to investigate temperature effects on more complex 

systems. In general, including temperature in models, such as measurements of surface 

temperature made by satellite imagery (e.g., NASA MODIS), would likely result in more 

relevant model output, especially for monolayer and surface chemistry modeling. As 

previously stated, our results are not exhaustive, but instead a framework for further 

investigating the role of temperature on surface adsorption. 
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5.4. Conclusions 

Herein, we have presented evidence supporting the surface activity and adsorption 

process of BSA to the interface under varying ionic strength and surface conditions. The 

amount of adsorbed BSA is dependent on the interfacial chemistry and solution ionic 

strength at the time it is injected into the system. We determine that even in pure water, 

BSA is surface active. However, ions promote more BSA to the surface; an observation 

consistent with results previously presented in the literature.125,168 Importantly, our results 

exhibit a cooperative effect of the monovalent and divalent ions from artificial sea water 

and increasing temperature promote greater protein surface adsorption. We also conclude 

that BSA is surface active and has a dynamic process through which it adsorbs to the 

surface that is relevant to proteins in the ocean adsorbing to the surface under variable 

conditions of fatty acid films and variable temperatures. Ocean relevant concentrations of 

monovalent and divalent cations facilitate and enhance the surface adsorption of BSA 

alongside increasing temperature. Stearic acid molecules adsorbed at the air-water interface 

constricts the adsorption process of BSA, further complicating the surface. 

The results presented provide a more nuanced understanding of the effects that 

ocean conditions have on the SSML and interfacial structure. It is necessary to 

acknowledge that observations drawn from our results are dissimilar to the ocean because 

the ocean is a non-equilibrium system. Future work should aid in determining the effect 

that the ocean’s dynamic nature has on the interfacial chemistry. Additional studies 

exploring the tertiary protein structural modifications at the surface under these conditions 

of variable temperature and ionic strength would provide interfacial insights. Ultimately, 
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greater understanding of the effects physical parameters have on adsorption of molecules 

to the air-water interface will provide improved global ocean and climate modeling. 
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Figure 14. Experimental design of IRRAS assembly combined with a Langmuir trough and 
temperature control via a recirculating chiller. 
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Table 6. Three different ionic strengths were used to evaluate the adsorption of BSA to the 
surface with and without a competing stearic acid monolayer at both 10º and 20ºC. 
Experiments outlined here are for IRRAS measurements. 

MilliQ H2O 0.45 M NaCl Instant Ocean 
No Stearic 

Acid 
Stearic Acid No Stearic 

Acid 
Stearic Acid No Stearic 

Acid 
Stearic Acid 

10ºC 20ºC 10ºC 20ºC 10ºC 20ºC 10ºC 20ºC 10ºC 20ºC 10ºC 20ºC 
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Figure 15. FTIR of BSA in water at increasing concentrations measuring solution-phase 
concentrations starting from 1 μM to 1000 μM shown in the amide region, presented with 
error of one standard deviation. The value of the standard deviation is so small it is 
approximately the thickness of the line of each spectrum. The sharp features likely result 
from gas phase water present in ambient conditions. 
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Figure 16a-c. Surface-IR responses in amide region (1800-1450 cm-1) after bovine serum 
albumin (BSA) injection into the H2O, 0.45 M NaCl, and the artificial seawater solutions 
at a) 20°C, b) 10°C, c) difference spectra of 20°C – 10°C. Here, reflectance-absorbance 
bands are observed as negative peaks. 
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Figure 17. Integrated peak area for amide-I (1660 cm-1) and amide-II (1540 cm-1) bands at 
10°C (dark, solid) and 20°C (light, diagonal lines). As noted, the peak area and intensity is 
a result of surface adsorbed protein as confirmed through bulk measurements via ATR-
FTIR. 
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Figure 18a-b. IR response in amide region (1800-1500 cm-1) after bovine serum albumin 
(BSA) injection into each solution with a stearic acid monolayer (~45 Å2/molecule) on the 
surface at a) 20°C and b) 10°C. 
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Figure 19. Spectra of ultrapure water surface after injection of bovine serum albumin 
(BSA) at variable temperature with and without stearic acid monolayer to emphasize the 
minimal intensity change in the water system. Spectra are offset horizontally for clarity. 
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Figure 20. Observed maximum intensity of amide I band (1660 cm-1) for each solution at 
varying temperatures. IR responses from each solution with stearic acid monolayer at 10°C 
are not included due to the variability in the amide I and II region. 
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Chapter 6. Saccharide Concentration Prediction from Proxy-Sea Surface 
Microlayer Samples Analyzed via ATR-FTIR Spectroscopy and Quantitative 

Machine Learning 

6.1. Introduction 

The sea surface microlayer (SSML) is a multifaceted, deeply complex region of the 

ocean.8,12,145,146,157,211,212 As the interface between the Earth’s atmosphere and ocean, the 

SSML performs vital functions that affect climate108,146,166,202 and ice formation.13–15,211 

Because of unique interfacial anisotropy,130,197,213,214 the physical and chemical properties 

of the SSML are of interest for their divergence from bulk water behavior. Generally, the 

SSML is enriched with lipids, proteins, and saccharides (also referred to as sugars or 

carbohydrates) that are all components of dissolved organic carbon (DOC).21,112,125,215,216 

Understanding the chemical composition of the SSML provides insight into the biological 

activity and productivity within the SSML and enables predictions of cloud condensation16 

or ice nucleation,211 ultimately aiding climatological models.10,115,117,118 Recent analyses of 

saccharide concentrations in SSML have shown that a concentration of about 500 nM from 

eight unique compounds is observed.21 The dynamic nature and chemical complexity of 

the SSML make monitoring the region equally more difficult and more necessary. 

Our work is motivated by the need for fast, accurate analysis of SSML samples to 

establish a method that enables exponentially more SSML chemical measurements. 

Current methods to analyze SSML samples are limited to mass spectrometry,122,146,217 
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which requires extensive organic, solid-phase extraction processes; nevertheless, these 

methods have provided invaluable information on SSML (and sea spray aerosol) chemical 

composition. To reduce the sample preparation process and expedite analysis of results, we 

developed methods that utilize attenuated total reflectance Fourier transform infrared 

(ATR-FTIR) spectra to estimate the saccharide concentration via machine learning (ML) 

implementations. ATR-FTIR spectroscopy also provides concentration and chemical 

composition, although we note lower detection limits are well known for IR methods as 

opposed to the high sensitivity for mass spectrometry. Rather than mass separation, IR 

probes bond vibrational responses at specific wavenumbers.218 

ML provides a unique avenue to explore relationships among data that cannot be 

otherwise deduced and the applications to improve or expand chemical systems are broad 

and present throughout all chemistry fields. Materials design,219,220 novel drug 

discovery,221,222 catalyst optimization,223,224 and clean energy production225,226 are some of 

the many fields where knowledge has expanded because of ML. Recent work emphasizes 

the improved application of FTIR spectroscopy, and more broadly vibrational 

spectroscopy, for qualitative and quantitative assignment, especially when combined with 

ML models.227,228 Takamura and colleagues explored methods to identify donor biological 

sex from urine samples.87 They presented several ML applications, including partial least-

squares discriminant analysis with and without a genetic algorithm, to explore the chemical 

information contained in their FTIR spectra. They found that the increased computational 

complexity of an artificial neural network resulted in comparable results to their 

discriminant analysis model’s predictive power. Butler and coworkers presented successful 
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use of support vector machines (SVM) in predicting brain cancer from ATR-FTIR 

spectra.229 Their high-throughput approach featured high sensitivity and specificity in the 

prediction of benign versus malignant samples. 

SVMs have also been employed in classification of Raman spectra to identify 

Alzheimer’s Disease in mice; a relevant features map is utilized to identify pertinent peaks 

that are from molecules known to be associated with the disease. A study from 2022 reports 

comparable classification accuracy of microplastic Raman microscopy samples from k-

nearest neighbors (KNN), multi-layer perceptron (MLP), and random forest (RF) 

models.230 These literature examples highlight the diverse applications of ML and develop 

techniques that expand the applications of chemistry, as we present herein. 

We chose ML methods of increasing complexity to evaluate the training data and 

investigate new data, including field samples with unknown composition. More 

specifically, while not quantitative, principal component analysis (PCA) provides a useful 

unsupervised classification technique.231 PCA is common in chemometrics;40 examples in 

the literature include identifying trace elements in wheat,232 analysis of time of flight-

secondary ion mass spectra from organic monolayers,42 detecting sparse compounds via 

FTIR spectra,39 and identifying peak shape changes in chromatography.41 Specifically, 

PCA does not mathematically consider a known value, such as concentration, when fitting 

data. Instead, the matrix of wavenumbers and corresponding intensity for each sample 

spectrum goes through a dimensionality reduction such that the most variance is explained 

by the first component. Successive components explain less variance than the previous 

component. In chemistry applications, the chemical system has some known, or estimated, 
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number of species that provide a baseline for determining the number of principal 

components. 

Fitting data to a linear model, or LR, is common for absorbance data, such as fitting 

to the Beer-Lambert Law to determine physical constants or identify concentrations of 

unknown samples.233 Absorbance FTIR spectra follow a linear relationship of intensity 

with respect to concentration, which is advantageous for determining new sample 

composition. Recent work has utilized multiple LR to identify heavy metals, including 

investigating the effect of surface chemistry on vanadium37 and lead38 toxicity. However, 

the simplicity of the method ultimately restricts the model usefulness in more complex, 

dynamic systems. 

Of the techniques considered, SVR is the most mathematically advanced ML 

model.234 SVR fits training data to the best function by minimizing the distance of each 

value from the fitting equation to be able to predict discrete values, rather than a group 

assignment. Not all data is appropriate for SVR, but in cases where concentration is being 

predicted and it is linearly correlated with absorbance SVR can be a well-suited model. A 

2020 report by Mohammadi and colleagues presented an application of SVR to predict 

different functional group fractions in crude oil.235 As another example, ATR-FTIR and 

SVR were employed by Chen et al. 2022 to predict bio-oil characteristics quickly.236 Our 

review of the literature and ML methods indicates that the SVR model will perform best 

for predicting saccharide concentration. 

The work described herein provides a discussion on an improved approach to 

monitoring the SSML. We explore ML approaches to achieve precise and accurate 
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quantitative analysis of proxy-samples of glucose and egg serum albumin (ESA) with a 

relatively simple training dataset. Glucose is used as our saccharide proxy for training data 

as it is commonly observed in field measurements and saccharides are frequently reported 

as a concentration of glucose.22,217,237 We also use ESA in our training set because ESA, 

our SSML protein proxy, has been shown to have surface activity and form insoluble 

monolayers on aqueous interfaces, despite being a water soluble protein.27,178,182 While an 

unlikely protein to find in field samples, ESA provides a complex framework of amino 

acids that are abundant in the ocean’s water column.146,169,171,212,238 The utilization of ML 

in conjunction with vibrational spectroscopy enables greater exploration of chemical space 

and identifying connections between data. Our results present, to our knowledge, a first 

account of predicting saccharide concentration from FTIR spectra of proxy-SSML samples 

using ML. 

6.2. Methods 

6.2.1. Training Solution Preparation, Data Collection, and Data Preprocessing 

All chemicals were used as received and all solutions requiring water were prepared 

using ultrapure water (18 mΩ) from a MilliQ system. For training spectra, stock solutions 

of 1M glucose (Sigma Aldrich, ≥99.5% (GC)) in ultrapure water and 5 mg/mL egg serum 

albumin (ESA) (Sigma Aldrich, 62-88%, agarose gel electrophoresis) in ultrapure water 

were prepared. The solution matrix was produced by dispensing the relevant amount of 

each stock solution via auto pipette and diluting with the relevant amount of water. Specific 

details of each solution, including concentration, relative ratio, and volume of stock 
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solution are provided in the SI. Briefly, we selected this system and concentrations to have 

reasonable complexity. 

Both the protein and saccharide have IR responses from 1800 to 900 cm-1. The 

peaks were well resolved, with minimal convolution of responses. Inorganic salts were 

excluded in our matrix, but we provide spectra of the O-H stretching region in the SI to 

emphasize the limited effect that they have on the IR response. Concentrations were 

selected based on literature precedent from field study results.115,117,122 Solutions were 

measured in triplicate via ATR-FTIR spectroscopy on a PerkinElmer Spectrum 3 with a 

single beam KRS-5/diamond ATR assembly. Spectra were acquired in the “SingleBeam” 

mode without the use of a continuous reference and a liquid nitrogen cooled HgCdTe 

(MCT) detector over 32 scans (approximately one minute) from 4000 to 450 cm-1 with a 

resolution of 1 cm-1. Spectra were converted to absorbance with a water background using 

the established relationship of -log(R/Ro). Background correction was done using a linear 

fit model for the baseline to correct for inconsistent baseline between measurements. Water 

backgrounds were obtained every 5 sample measurements. Triplicate measurements were 

used as individual spectra, rather than an average of the three, to provide more machine 

learning training and testing data (Figure 20). 

6.2.2. Proxy-Sample and Real Sea Surface Water Preparation and Sampling 

For test data, stock proxy-solution was prepared to have 0.1 M sucrose (Sigma 

Aldrich, ≥99.5% (GC)), 0.1 M glucose, 0.5 mg/mL ESA, 3.323 mg/mL bovine serum 

albumin (BSA) (Sigma Aldrich, ≥ 98%, heat shock fraction, pH 7), and 0.1 M 1-butanol 
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(Sigma Aldrich, 99.9%). Two additional solutions were prepared via dilution of the stock. 

The higher concentration dilution was 7.5 mL of stock and 2.5 mL of water and the lower 

was 5 mL of stock and 5 mL of water. The three solutions were analyzed using the data 

collection and preprocessing described above. 

6.2.3. Field Sampling 

We operationally define the surface microlayer (SML) as the top 1 mm of the 

sampled water and bulk surface water (BSW) as the top 1 m of the sampled water. Water 

was collected from two locations in Cocoa Beach, Florida in January 2023. Sampling site 

one was the Atlantic Ocean and site two was the Banana River. The Banana River is a 

brackish waterway connected via ocean inlet with mangrove shorelines; the conditions 

provide a unique aqueous environment on the west side of the Florida barrier islands. All 

samples were stored at room temperature and shipped; once received, samples were stored 

at 2°C until analyzed. 

Sea and river BSW samples from Cocoa Beach, Florida were collected. Briefly, sea 

samples were collected within 10 meters of the ocean shoreline (28.314885 N, 80.607818 

W) and river samples were acquired approximately 2 meters from land (28.309917 N, 

80.614893 W) on January 10th and 11th 2023. BSW was collected by first copiously rinsing 

a glass jar, replacing the lid, submerging the covered jar, and finally removing the lid 

underwater. Jars were filled to avoid head space. 

SML water was collected according to methods detailed by Harvey and Burzell.239 

Briefly, a clean hydrophilic glass plate (Millipore Sigma, unframed, H × W × D 200 mm 

× 260 mm × 4 mm) was submerged perpendicular to the surface to about the top inch, the 
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plate was then withdrawn from the water at a rate of approximately 20 cm/s. Adsorbed 

water and organics were collected via silicon squeegee into a copiously rinsed glass jar. 

ATR-FTIR spectra were acquired for all field samples as described in the data 

collection and preprocessing methods section. In addition, DOC was extracted from the 

samples using the method detailed by Dittmar et al. and described in the SI.240 Extracted 

DOC was analyzed via gas chromatography-mass spectrometry (GC-MS) to identify 

organic components (Appendix F). 

6.2.4. Machine Learning Methods 

All machine learning (ML) methods were implemented using Python scripts. These 

are available online at the Allen Lab GitHub: https://github.com/Ohio-State-Allen-

Lab/Sea-Surface-Microlayer-MachineLearning. PCA was used to elucidate any 

relationships between the data in the training set as a qualitative approach. Using the PCA 

method in the SciKit-Learn decomposition package, the principal components were 

determined based on the chemical system having four known components. We estimate 

that the glucose, ESA, and perturbed water contribute three components and a fourth 

component is included for error. The components were compared to each other to 

determine if a relationship exists for concentration or relative ratio. 

To provide quantitative analysis of the sample concentrations, we implement linear 

regression (LR) of the FTIR training data set. The linear model method from SciKit-Learn 

was used to fit absorbance and concentration for the data. A SVR model was initialized 

using the support vector machine package from SciKit-Learn and trained using the FTIR 

training data set. Proxy and real SSML samples were evaluated via the SVR model to 
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predict concentration. The SVR model parameters were optimized by evaluating ε, 

threshold tolerance, and C, regularization parameters to reach a minimization of mean 

squared error (MSE) (Appendix F). For the LR and SVR, a train-test split of 80:20 was 

used to randomly withhold data, which was determined by minimizing MSE and based on 

literature evidence (Appendix F). The MSE and R2 values were calculated using the SciKit-

Learn Metrics package to compare all models. New data, including the proxy and real 

SSML samples, were evaluated with both LR and SVR models to predict concentration.  

We evaluate a proxy solution and a real sample spectrum using pre-trained models 

from our previous work1 to determine the functional groups present and confirm the 

predictive accuracy of the prior model on liquid-phase, mixtures samples. Previously, 

convolutional neural networks (CNN) were trained on gas-phase FTIR spectra to predict 

present and absent functional groups, and we expand on this in detail in the Supporting 

Information. We compare the known functional groups in our proxy solution and the model 

predictions to gain insight into the generalizability of the CNN models and deduce 

information about our unknown field sample. 

In addition, feature extraction is presently being performed to further analyze the 

discrepancies between the chemically important wavenumbers and the ML relevant 

wavenumbers. These results will be included in the final publication of this work. 

6.3. Results and Discussion 

The chemical complexity of the SSML is explored via ATR-FTIR spectroscopy 

and quantitative machine learning approaches to develop a simple method of analysis. The 

FTIR spectra provide chemical information about the sample components and their 
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concentrations, which have a linear correlation with absorbance. The correlation diverges 

from a linear relationship at high absorbance values, which was not of concern in the 

presently studied concentration ranges. Figure 21 is an example spectrum of a training 

sample with peaks assigned to the protein and glucose for reference. The two solute 

components of the training samples were well resolved from one another. The separation 

improved the likelihood that ML approaches were successful. A single figure containing 

all the acquired spectra is presented in Appendix F. 

PCA provides a qualitative, or classification, model from an unsupervised 

dimensionality reduction. The resulting principal components (PCs) can be used to 

reconstruct a spectrum. We compare PC one and PC two to deduce information about the 

training spectra (Figure 22). Our relative ratio definition is such that ‘0’ is equivalent to no 

glucose, or protein only, and ‘1’ indicates that there is only glucose, or no protein. The 

resultant dimensionality reduction and comparison of PC1 and PC2 is expected given the 

input data is a gradient matrix of glucose and ESA concentrations. As a result of the input 

data, the PCA method provides us with less classification accuracy. We determine that PC1 

largely represents the contribution of glucose to a spectrum and PC2 represents ESA 

contributions. Classification of a sample with more glucose, or greater relative ratio, would 

be concentration dependent. 

LR provided a mathematically simple fitting of the training data but does not 

accurately predict on more complex samples (Figure 23a). We chose to evaluate the 

effectiveness of the fit with the data because absorbance is linear with concentration, 

especially in the low concentration regime of the SSML. As can be observed in Figure 23a, 
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the fit is exceptional for the training and testing data with an R2 value of 100 % and no 

mean squared error. However, when more complex samples containing both glucose and 

sucrose were evaluated, the model is unable to predict the concentration of sugar. Notably, 

the true concentration values have a slope that is greater than that of the training data. While 

we have selected the absorbance at 1036 cm-1, the LR is performed using all wavenumbers 

from 1800 to 900 cm-1, which eliminates feature selection biases. 

In comparison to the LR, the SVR fits the training data and closely predict the 

concentration of sugar in more complex solutions (Figure 23b). Rather than fitting to a 

linear equation, SVR employs iterative fitting to find an equation that captures data and 

creates boundaries for which data should fall in. The higher-level mathematical complexity 

of the fit creates a more suitable model for predicting on more complex solutions, as 

observed in Figure 23b. 

The SVR and LR models were directly compared via the relative difference in the 

predicted versus true concentration of saccharides (Table 7). Our SVR model correctly 

predicts the concentration for the three complex samples within tens of mM accuracy. In 

contrast, the LR model fails to achieve any predictive power. Despite the LR having a 

greater R2 value (100 %), the SVR computational complexity results in a slightly lower R2 

and significantly improved regressive predictions. The positive relative difference 

highlights that samples A and B were under-predicted from their true concentration, while 

the negative relative difference for sample C indicates a predicted concentration higher 

than the true value. 
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The LR and SVR model fit results are presented in Table 8 for comparison. Despite 

the exceptional training metrics of the LR model, its predictive power does not translate to 

more complex samples. The SVR training metrics were slightly lower than the LR, but the 

SVR model outperforms in predictions on new, more complex data. More interestingly, 

the mean squared error of the SVR model, 0.02 M, is greater than the error in determining 

the discrete sugar concentration of the proxy samples, where the error was 10 mM or less 

from the true concentration value. Ultimately, these results suggest that the training metrics 

of the LR could be misleading as to success on future sample concentration prediction and 

that the decreased, but still excellent, metric values for SVR indicate the model is more 

suitable for applications including complex solution spectra. Thus, SVR is the model of 

choice for predicting sugar concentration. 

We analyzed sea and river samples that were collected in January 2023 from Cocoa 

Beach, Florida to determine if the model could successfully identify saccharides in real 

ocean samples. The FTIR spectra of the samples are included in Appendix F. All the 

samples were predicted to have concentrations of saccharides in the mid to high mM range 

(70-100 mM) (Figure 25). Literature values range from 10-25 mM;150 the predicted values 

are on the same order of magnitude albeit a factor of 2 to 4 times higher than what one 

might expect. The predicted concentrations for the known samples (Table 7) were within 

10% of the true value, so we approximate that our predictions for unknown, real field 

samples may have a similar uncertainty. Further analysis via GC-MS of the unknown 

Florida samples was performed to investigate the samples more closely (Appendix F). 

Specifically, we employed GC-MS to confirm the presence of DOC and identify if 

107 



 

  

   

 

 

     

  

    

    

   

  

  

  

   

 

 

    

  

 

  

 

 

      

characteristic saccharide fragmentation was observed. As a general observation of the 

FTIR spectra, the absorbance at 1036 cm-1 for the Cocoa Beach, Florida samples closely 

aligns with the training data. The alignment of the unknown samples with the data indicates 

that the model is suitable for saccharide concentration prediction. 

The SVR feature weights are shown in Figure 26; the figure, while resembling an 

FTIR spectrum, is representing the importance of each wavenumber to the model success. 

For example, a value of zero indicates no influence in model prediction, a positive value 

indicates that the feature (wavenumber) is aiding in model prediction, and the converse is 

true for negative values. In conjunction with Figure 22, we can observe chemically relevant 

weighting of the SVR model. Wavenumbers above 1500 cm-1 have a negative impact on 

the model; these wavenumbers are not associated with vibrational modes of the saccharide 

or protein in solution. The O-H bend of liquid water is centered at 1650 cm-1. A pure water 

spectrum is used as the background for the ATR measurements, so an FTIR response in 

this region is a result of water structure perturbation in solution. Thus, we posit that the 

region is ineffective for the mathematical model to predict saccharide concentration in 

comparison to the much more influential wavenumber region of about 980 cm-1 to 1180 

cm-1. Of equal interest is the importance of wavenumbers in the region of the protein amide 

vibrations (1300-1500 cm-1). The computational relevance may be partially explained by 

O-H bending of alcohol (1330-1420 cm-1) from glucose. 

To further investigate the model success, we limited the wavenumbers to the 

primary regions of importance according to the feature extraction. Feature importance for 

wavenumbers from 900-1500 cm-1 is shown in Figure 27. Reducing the input features from 
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900 wavenumbers to 600 wavenumbers did not impact feature importance. We observed a 

nominal increase in the MSE of 5 mM. Most notably, between both feature analyses, two 

wide bands of features (wavenumbers) remain important for the model to make saccharide 

concentration prediction. The analysis presented herein of one wavenumber to represent 

the model success is a shortcoming of our capabilities to accurately portray the model fit. 

It follows that the model predictions for the Florida samples are not well defined by one 

wavenumber and the corresponding absorbance, yet instead it is only a snapshot of one 

feature and the correlation to the predicted concentration. 

We utilized CNN functional group assignment models from our previous work to 

determine if correct assignments could be achieved and explore the unknown sample 

(solution of bovine serum albumin, ESA, glucose, sucrose, and 1-butanol in water) further. 

The proxy sample with known composition is correctly assigned (Table 9). Only four 

functional groups were misassigned out of 17 groups; and three of those were predicted 

absent rather than present. The differentiation indicates that the model is underpredicting 

functional groups that were present (e.g., predicting alcohol is not present when it is). This 

incorrect assignment is likely due to the characteristic differences in the O-H vibrational 

peak in gas- versus liquid-phase spectroscopy. Liquid-phase O-H stretching is broadened 

from hydrogen bonding, which could occur between the water, protein, and other sugar 

molecules in the known proxy solution. The solution complexity most likely results in a 

broad O-H region in comparison to the neat, gas-phase spectra. Overall, the functional 

group assignment has 78% accuracy. Importantly, the model predicts that the Banana River 

FTIR spectrum has an aromatic functional group, which is consistent with the observed 
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mass of 77 m/z in the GC-MS (Appendix F). In addition, the CNN model predicts several 

nitrogen-containing functional groups (amide, nitrile, and nitro) in the Banana River 

sample, which is consistent with the several observed odd nominal masses (Appendix F). 

Sensitivity, specificity, positive predictive value, and negative predictive value 

were calculated according to the definitions presented by Trevethan in 2017 (Table 10).241 

Specificity, or how well the model correctly assigns negative cases, is determined to be 

90%. Sensitivity, with a value of 57%, indicates that the model is not optimal for 

identifying positive cases; however, the positive predictive value is 80%. The Florida field 

sample results provide insight into the composition of the spectrum and respective sample. 

The results provide qualitative insight about the samples and further confirms the presence 

of organics in the field sample. The correct functional group assignments and minimal 

misassignments emphasizes the utility of our prior model that was trained on neat, gas-

phase spectra. A larger, more diverse mixture training data set would increase all the 

analyzed metrics, as well. 

Overall, the results from the CNN provide contextualization of the samples without 

the requirement of a lengthy extraction process to identify DOC (Appendix F). The 

generalizable models from our 2021 publication provide a framework for improving upon 

the current analysis methods utilized for ocean surface samples. Furthermore, the 

prediction of functional groups provides qualitative insights into field samples with a 

simple sampling methodology. The approach detailed herein serves as a supplement to 

field analysis for faster qualitative observations. 
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Our quantitative results indicate that a computationally inexpensive model, SVR, 

provides predictions of sugar concentration within 10 mM of the true value. In comparison 

to LR, the SVR has a slightly lower coefficient of determination but provides much more 

accurate concentrations on elaborate test samples. Even with increased sample complexity, 

including additional sugar, protein, and lipid molecules, the SVR model accurately predicts 

the total sugar concentration. When tested on field samples, the SVR model predicts sugar 

concentration within the expected values that have been presented in the literature for 

carbohydrates.150 Samples were successfully examined via the functional group assignment 

model previously developed, which informs as to the presence of organic carbon in 

unknown samples, including real field samples.  

6.4. Conclusions 

Several ML methods were applied to ATR-FTIR spectra to determine concentration 

and chemical composition of aqueous samples to develop efficient, less-expensive 

analytical techniques for analysis of the SSML. Our multifaceted approach includes 

examining LR and SVR for quantitative analysis, PCA for quasi-quantitative grouping, and 

a CNN for qualitative assignment of functional groups. Our results indicate that SVR is 

viable for complex solutions, especially considering the training sample data is relatively 

simple. The repurposed, generalizable CNN provides valuable insight into the functional 

groups present in the samples and validates the SVR assignment by confirming the 

presence of organics in the field sample. The research presented herein provides a unique 

approach to studying the SSML utilizing the advanced computational tools available and 

reduces the time needed to perform analyses of field SSML samples. Further work should 
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focus on finding an optimal training data set, investigating other concentration 

quantification, and intercalating other spectroscopic or spectrometric data, to name a few. 

An improved understanding of the SSML is achievable, wherein more frequent 

measurements and analysis can occur, ultimately providing more information about the 

productivity of the SSML and its effects on our atmosphere and climate. 
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Figure 21. Schematic flow chart of data collection process to the ML pipeline. 
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Figure 22. ATR-FTIR spectrum of 0.6 M glucose and 2 mg/mL egg serum albumin. The 
labels are provided to emphasize that the components do not compound on one another and 
are well resolved, despite being in a similar wavenumber region. 

114 



 

 
 

 
 

  

 

 

Ratio 

0.10 I • 0.0 

---

• 0.2 

• 0.4 

0.05 •• • 0.6 

••• • 0.8 
N ' . . \ • 1.0 u ,. I I , I :. a.. 0.00 

• • I • • • •• ·' I • 
-0.05 • I • • • • -0.10 • 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 
PCl 

Figure 23. Principal components (PCs) one and two from the data dimensionality reduction 
performed using principal component analysis (PCA). The relative ratio is respective to 
glucose. Solutions with a relative ratio of ‘1’ have no ESA. PC1 mainly captures glucose 
response and PC2 mainly captures ESA response. 

115 



 

 
     

   
  

 
   

 
  

 

 
 
 
 
 
 

0.7 • Test Data True 

• Test Data Predicted 
0.6 X Proxy Solution True 

• Proxy Solution Predicted 
~ 0.5 0 

C 

E o.4 
~ 

~ 0.3 0 
u 
C 
0 
u 0.2 X 

X 

0.1 X 

0.0 • ••• a 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 
Absorbance (arb. units, 1036 cm- 1 ) 

0.8 • Test Data True 
Test Data Predicted 

e(J 0.7 Proxy Solution True . 
~ 0.6 Proxy Solution Predicted 

~ :a .-§ 0.5 ., 
.:; 

b o.4 • • 
C 
Q) 

~ 0.3 
0 
u 

0.2 

0.1 

0.0 b 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 
Absorbance at 1036 cm- 1 

Figure 24. Linear regression (LR) (a) fits the experimental training data well with a 100 % 
R2 and no mean squared error. ‘True’ indicates the known concentration of saccharide 
while ‘predicted’ is the model’s estimate. Proxy sample saccharide concentrations are not 
correctly predicted, as shown with the teal ‘X’ demarcating the known saccharide 
concentration. Support vector regression (SVR) (b) results show that the test data 
accurately follows the training data. Predicted concentrations for the known complex 
samples are much closer to the true concentration. The training results in an R2 of 97.1%. 
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Table 7. Predicted sugar concentration (M) in more complex samples containing glucose, 
sucrose, ESA, bovine serum albumin (BSA), and 1-butanol are predicted by the SVR and 
LR model. Values are the average predicted concentration (M). The SVR model predicts 
reasonable concentration values in the range of the true concentration, while the LR model 
predictions do not provide any reasonable estimates of concentration. 

Average Average Concentration Sample Label Predicted Predicted of sugar (M) SVR (M) LR (M) 
A 0.200 0.182 -0.002 
B 0.150 0.143 -0.003 
C 0.100 0.109 0 
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Table 8. R2 and mean squared error of linear regression (LR) and support vector regression 
(SVR) models after training. 

Metric LR SVR 
R2 (%) 100 97.1 

Mean Squared Error (M) 0.00 0.02 
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Figure 25. Support vector regression (SVR) model predictions on unknown field samples 
are closely aligned with the training and test data although are in the low absorbance range. 
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Figure 26. Feature extraction for SVR model. Positive values indicate strong influence on 
model prediction and negative values indicate negative impacts on model success. 
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Figure 27. Feature extraction for SVR model with reduced features. The model uses similar 
features for prediction and the negatively impacting features have been removed. 
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Table 9. Functional group analysis of proxy sample and unknown SSML sample. Red text 
indicates that the model incorrectly predicted (e.g., nitrile is predicted present for the proxy 
sample, yet it is not present). An asterisk (for Banana River sample only) indicates that the 
GC-MS of the sample has characteristic m/z values for that functional group identification. 

Prediction Proxy Sample Banana River Surface 
January 2023 

Present alkene, amide, ester, alcohol, alkyne, amide*, 
methyl, nitrile aromatic*, nitrile*, nitro* 

Absent acyl halide, alcohol, acyl halide, aldehyde, 
aldehyde, alkane, alkyl alkane, alkene, alkyl 
halide, alkyne, amine, halide, amine, carboxylic 
aromatic, carboxylic acid, acid, ester, ether, ketone, 
ether, ketone, nitro methyl 
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Table 10. Sensitivity, specificity, positive predictive value, and negative predictive value 
for model results on proxy sample prediction of functional groups. These metrics provide 
a more thorough analysis of how the model performs and detail the model’s performance 
more holistically. 

Metric Value (%) 
Sensitivity 57 
Specificity 90 

Positive predictive value 80 
Negative predictive value 75 
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Chapter 7. Conclusions 

The presented studies provide an improved understanding of the ever-complex sea 

surface and interfacial region. Each approach was explicitly defined to target the various 

options for investigating the SSML. While complex and multifaceted, the approaches 

converge over a theme of computational approaches that advance the understanding of 

laboratory and model data from the ocean’s surface. 

ML provides a useful tool for producing quick, efficient, and accurate functional 

group predictions from gas-phase FTIR spectra. The fundamental work conducted for this 

study proves that the analysis of FTIR spectra is sufficiently handled by a ML model. While 

not full structure prediction, the primary purpose of many FTIR spectra is functional group 

analysis. This is improved upon by eliminating the need for a bulky searching library. The 

models are even capable of evaluating spectra of molecules that have not been included in 

the training dataset and provide correct identification. 

Global models, such as E3SM, provide an avenue for predictions of the ocean 

surface composition through the application of Gibbs free energy, biological relationships, 

and surface adsorption equations. While these models are indirect measurements, they are 

guided by field observations and literature data to provide suitable estimations. Utilizing 

the global model output and novel arrangement of established relationships, global surface 
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carbon is estimated to ~10-4 Gt. The impact of the model being that these results can be 

used to further estimate physical properties of the surface and provide feedback to the 

model for future iterations to improve the modeling.  

Experimental techniques are explored to gain additional fundamental information 

about the physical chemistry of an air-water interface. As expected based on literature 

results, the most important factor affecting surface adsorption is ionic strength. 

Temperature and presence of a lipid monolayer have less significant effect on the surface 

structure; slightly more protein adsorbs at higher temperatures and a preexisting monolayer 

minimally decreases surface adsorption.  

The results from each study guided the investigation into the best computational 

method for predicting unknown sugar concentrations to reduce the amount of preparation 

required to study real SSML samples. SVR proved most accurate at predicting unknown 

sugar concentrations when trained on a labeled mixture of protein and sugar FTIR spectra 

dataset. When tested on increasingly complex samples with known sugar concentration, 

the SVR model successfully predicted total sugar concentration. These results help guide 

the development of techniques to evaluate the SSML more frequently while reducing 

sample workup required. 

Ultimately, the use of computational methods, including modeling and ML, 

enabled a cohesive, collaborative examination of the ocean’s surface. The results presented 

herein can be extended to increasingly more complex systems and provide a basis for future 

work. The SSML itself is a chemically and physically complex system that requires a 

holistic investigation through which laboratory and computational results guide the 
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comprehensive understanding of the surface and its effect and impact on the global climate, 

atmosphere, and environment. As humans face the inevitable changes from 

incomprehensible carbon emissions, the science of the SSML should not be ignored in 

consideration for reparations and restoration. The ocean’s surface will surely have a vital 

role in global climate change. 
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Appendix A. Computational Methods Utilized in Chapter 3 for FTIR Functional 
Group Analysis 

A.1. Obtaining Spectra 

Retrieving the FTIR spectra: A web scraping implementation was developed in 

Selenium to retrieve the FTIR spectra from the NIST Chemistry WebBook. Spectra were 

downloaded using the CAS number identifier in the jcamp-dx format and SMILES keys 

for each of the downloaded spectra were saved separately in a text file. With RDKit Python 

implementation, the functional groups were parsed from the spectrum’s associated key. 

A.2. Spectral Processing 

After downloading the FTIR data from NIT, the following processes are completed 

by running the preprocess_subprocess.py script. To run this script after downloading from 

our GitHub, the following command line prompt should be used: “python 

preprocess_subprocess.py”. The script will complete eleven processes necessary to 

completing the training of the models. 

A.2.1 Creating Directories on Computer 

The functional group directories are created if not present in the working directory 

at the beginning of the subprocess script. 
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A.2.2. Removing Spectra not in Absorbance or Wavenumbers 

Using the jcamp reader from github.com/nzhagen/jcamp, each downloaded FTIR 

spectrum is opened and read to confirm the x-axis of the trace is in wavenumber and the y-

axis is in absorbance. Any spectrum that does not meet these conditions is removed from 

the directory. The subprocess calls on the script “check_file_in_absorbance.py”. 

A.2.3. Convert from ‘jcamp-dx’ to ‘csv’ 

Spectra in absorbance and wavenumbers are converted from jcamp-dx to csv using 

the jcamp reader. The subprocess calls upon the “jcamp_to_csv.py” script and completes 

the conversion while maintaining the original jcamp file and creating a csv file. 

A.2.4. Move ‘csv’ Files 

Using the script “move_file.py”, the csv files are moved to a new directory. 

A.2.5. Normalize ‘csv’ Files 

Each spectrum is normalized with respect to the most intense peak in the spectrum 

using the “normalize_csv.py” script. After normalizing, a new csv file is saved to preserve 

the unnormalized spectrum. 

A.2.6. Convert ‘csv’ to ‘jpg’ and move Spectra Images 

With the script “convert_to_jpg.py”, the normalized csv files of the spectra are 

converted to jpg images of the spectra. The ML method used is chosen for the image-based 
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approach; the spectra are plotted as they would be for a chemist’s analysis. Images are 

moved from the directory containing the csv files for separation in the following step. 

A.2.7. Copy Spectra Images to Functional Group Directories 

Using the SMARTS key, the functional groups for each spectrum were determined. 

A spectrum of a compound containing a functional group is copied to the directory for that 

functional group. For example, an alcohol-containing compound’s spectra is copied into 

the alcohol containing directory. If a compound does not contain a functional group, the 

spectrum is copied to the not-containing directory.  

A.2.7. Separation of Test Images and Setting Equivalent Examples per Class 

Five spectra from each of the containing and not containing functional groups 

directories are moved to a directory within the functional group directory for testing of the 

models after training and validation. After, the directory with more spectral images is 

reduced to have an equal number of images as the smaller directory. Spectra are randomly 

deleted from the larger directory to achieve equal examples per class. 

A.3. Model Training 

Running “train_ml_subprocess.py” in the command line will train the models. 

Functional group models are trained using the subprocess script to call upon and train the 

modified Inception V3 network for each group. The training occurs over 20,000 steps with 

a learning rate of 0.01. Results are saved in the functional group’s respective directory. 
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A.4. Analysis of Models 

Trained model graphs and logs are opened via Tensorboard. The accuracies and 

cross entropies are retrieved for analysis. 

A.4.1. Classify 

Running “python classify_subprocess.py” in the command line classifies the 

segmented test images that were not used for training. The results are saved in a csv file as 

an accessible format. 

A.4.2. Pearson’s Correlation Coefficient 

The Pearson’s correlation coefficient is used to determine if there is a linear 

relationship between the number of spectra in a class and the accuracy and cross entropy 

in training or validation of the model. The coefficient was calculated using the SciPy 

“pearsonr” implementation. 

A.4.3. Plotting 

All plots, pie charts, and confusion matrices are plotted using Matplotlib PyPlot 
implementations. 
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Appendix B. Inception V3 Architecture and Optimization Functions Utilized in 
Chapter 3 for FTIR Analysis 

?x?x3 ?x?x3 1x?x?x3 1x299x299x3 1x299x299x3 1x299x299x3 

Decode 
JPEG Cast Expand 

Dimensions 
Resize 

Bilinear Subs�tute Mul�ply 

Contents Dimensions Size y y 

Figure 28. Overview of preprocessing steps included in model training. Dimensions of the 
output jpeg image file after each step. 

2D 
Convolu�onPreprocessing 

Convolu�on 

2D Convolu�on 
parameters 

Batch 
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Check 
numerics 

Control 
Dependencies 
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Convolu�on 

gamma 

beta 

Moving Variance 

Moving Mean 

Figure 29. Summary of convolutional layer; gamma and beta are weights for the neuron 
nodes. Additionally, circles denote constant parameters (may be adjusted before or after 
but remain constant during the step with the arrow pointed at it.) 
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Stochastic gradient descent is given as 

𝑤𝑤𝑘𝑘+1 = 𝑤𝑤𝑘𝑘 − 𝛼𝛼∇𝑓𝑓(𝑤𝑤𝑘𝑘 ) 

Equation 47 

Weights (w) are adjusted in the direction of the negative gradient and decay, α, has a 

commonly used value of 0.9.  

Momentum is given as 

𝑧𝑧𝑘𝑘+1 = 𝛽𝛽𝑧𝑧𝑘𝑘 + ∇𝑓𝑓(𝑤𝑤𝑘𝑘 ) 

Equation 48 

where w is adjusted via 
=𝑤𝑤𝑘𝑘+1 𝑤𝑤𝑘𝑘 − 𝛼𝛼𝑧𝑧𝑘𝑘+1 

Equation 49 

and weights are adjusted similarly to stochastic gradient descent and an additional 

component is added in the direction of the updated weight. 

The dynamics can be written as 

𝑤𝑤𝑘𝑘+1 = 𝑤𝑤𝑘𝑘 − 𝛼𝛼∇𝑓𝑓(𝑤𝑤𝑘𝑘 ) + 𝛽𝛽(𝑤𝑤𝑘𝑘 − 𝑤𝑤𝑘𝑘−1) 

Equation 50 

where the momentum, 𝛽𝛽, has a commonly applied value of 0.9. 
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“RMSProp” uses the relationship 

−2 2𝑔𝑔𝑘𝑘+1 = 𝛼𝛼𝑔𝑔𝑘𝑘−2 + (1 − 𝛼𝛼)𝑔𝑔𝑘𝑘 

Equation 51 

where decay, α, is set to 0.9. Momentum, β, is set to 0.9. 

The described relationships can be written to give w as 

𝜂𝜂 
𝑤𝑤𝑘𝑘+1 = 𝛽𝛽𝑤𝑤𝑘𝑘 + 

−2 
∇𝑓𝑓(𝑤𝑤𝑘𝑘 )

+ 𝑐𝑐 �𝑔𝑔𝑘𝑘+1 

Equation 52 
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Appendix C. Global carbon maps and additional figures from Chapter 4 

C.1. Maps of Surface Concentrations for Proteins and Lipids, Fractional Surface 
Coverage, and Non-normalized SSnL Carbon 

Figure 30. Modeled SSML lipid concentrations (μM) for May 2005. 
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Figure 31. Modeled SSML lipid concentrations (μM) for November 2005. 
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Figure 32. Modeled SSML protein concentrations (x 10 μM) for May 2005. 
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Figure 33. Modeled SSML protein concentrations (x 10 μM) for November 2005. 
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Figure 34. Modeled fractional surface coverage for May 2005. 
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Figure 35. Modeled fractional surface coverage for November 2005. 
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Figure 36. Modeled SSnL carbon mass (x107 g) for May 2005. 
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Figure 37. Modeled SSnL carbon mass (x107 g) for November 2005. 
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C.2. Longhurst Region Carbon Results 

Table 11. Longhurst regional codes and the sum total carbon in the region for the months 
of May and November 2005. 

Longhurst Region May Nov Difference % Difference 
ALSK 6E+08 1E+09 -4E+08 -79% 
ANTA 2E+10 1E+10 7E+09 39% 
APLR 7E+09 4E+09 3E+09 46% 
ARAB 4E+09 4E+09 3E+08 9% 
ARCH 9E+09 9E+09 5E+08 5% 
ARCT 3E+09 5E+09 -3E+09 -95% 
AUSE 1E+09 1E+09 -2E+08 -21% 
AUSW 2E+09 2E+09 -1E+08 -5% 
BERS 4E+09 6E+09 -3E+09 -75% 
BRAZ 1E+09 1E+09 -9E+06 -1% 
CAMR 9E+08 1E+09 -1E+08 -11% 
CARB 2E+09 3E+09 -5E+08 -22% 
CCAL 2E+09 3E+09 -5E+08 -20% 
CHIL 2E+09 2E+09 2E+08 9% 
CHIN 3E+08 2E+08 5E+07 16% 
CNRY 7E+08 8E+08 -7E+07 -9% 
EAFR 1E+09 1E+09 -3E+08 -22% 
ETRA 6E+09 6E+09 5E+08 8% 
FKLD 1E+09 1E+09 2E+08 16% 
GFST 3E+08 3E+08 -1E+07 -4% 
GUIA 4E+08 5E+08 -8E+07 -21% 
GUIN 9E+08 8E+08 3E+07 4% 
INDE 1E+09 9E+08 2E+08 16% 
INDW 1E+09 9E+08 9E+07 9% 
ISSG 1E+10 1E+10 -6E+08 -5% 

KURO 1E+09 1E+09 2E+08 15% 
MEDI 2E+09 2E+09 -2E+08 -13% 
MONS 1E+10 2E+10 -1E+09 -7% 
NADR 4E+09 5E+09 -2E+09 -53% 
NASE 4E+09 5E+09 -2E+08 -4% 
NASW 2E+09 2E+09 -1E+08 -6% 
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NATR 4E+09 4E+09 -3E+07 -1% 
NECS 1E+09 3E+09 -1E+09 -83% 
NEWZ 1E+09 1E+09 2E+08 17% 
NPPF 7E+09 7E+09 5E+08 7% 
NPSW 1E+10 1E+10 2E+09 12% 
NPTG 1E+10 2E+10 -1E+09 -10% 
PEQD 2E+10 2E+10 -1E+09 -7% 
PNEC 1E+10 1E+10 -1E+09 -10% 
PSAE 3E+09 5E+09 -2E+09 -57% 
PSAW 3E+09 3E+09 -4E+08 -15% 
REDS 8E+08 6E+08 1E+08 15% 
SANT 2E+10 2E+10 4E+09 20% 
SARC 2E+09 3E+09 -1E+09 -80% 
SATL 9E+09 9E+09 -3E+08 -3% 
SPSG 4E+10 4E+10 2E+09 4% 
SSTC 1E+10 1E+10 6E+07 1% 

SUND 5E+09 5E+09 3E+08 5% 
TASM 1E+09 1E+09 3E+07 2% 
WARM 1E+10 1E+10 -3E+08 -2% 
WTRA 5E+09 6E+09 -8E+08 -15% 
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C.3. Normalized SSnL Carbon Maps for the Year of 2005 

Figure 38. Modeled SSnL carbon normalized to the highest observed mass over all months 
for January (‘1’) through December (‘12’) in 2005 calculated from E3SM output. 
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Appendix D. Attenuated Total Reflectance FTIR Absorbance Analysis and Details 
Regarding Pathlength Variability Discussed in Chapter 5    

Figure 39. Maximum observed absorbance in amide I region (1653 cm-1) as a function of 
concentration. The dashed black line is a linear fit with an R2 value of 0.99 (inset). 
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Figure 40. Integrated peak area for amide region is linear with increasing concentration. 

Attenuated Total Reflectance (ATR) measurements are an accessible and simple 

sampling method to obtain FTIR spectra. However, the limitation of ATR includes an 

unknown and variable path length of the IR measurement. The pathlength in ATR is 

variable over all wavenumbers and changes based on the refractive index of the sample 

and crystal, or internal reflection element (IRE). The pathlength is also polarization 

dependent. Yet, our observed maximum absorbance in the amide region is at relatively low 

AU values (well below 1). The lack of strong absorption (well above 1 AU) should provide 

reliable and consistent pathlengths at a given wavenumber. Averett and colleagues describe 

in significant detail the computations necessary to determine the pathlength.34 
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For our experiment, we assert that the low absorptivity and linearity observed in 

both the maximum peak absorbance and integrated peak area as a function of concentration 

corresponds to a consistent pathlength. The data indicate Beer’s Law is followed here and 

our bulk measurements via ATR are reasonably acceptable. 

Bovine serum albumin (BSA) has a known molar extinction coefficient of 43,824 

cm-1M-1 . Given the extinction coefficient, we confirm that the pathlength is consistent 

using 𝐴𝐴 = 𝜀𝜀𝜀𝜀𝜀𝜀. The pathlength at 1653 cm-1 is 7.2 ± 0.9 μm. We determine the standard 

deviation as the difference in calculated pathlength at each concentration, excluding 1 μM 

because of the negligible observed absorbance at this low concentration. It is worth noting 

that this also confirms the assertions from Averett and colleagues that the penetration depth 

(determined by the IRE) is not a sufficient substitute for effective pathlength because the 

penetration depth of a single reflection diamond ATR IRE is about 2 μm. 
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Figure 41. O-H stretching region for water, 0.45 M NaCl, 1 M NaCl, and artificial sea water 
(ASW). Standard deviation is shown and it is approximately the thickness of the line of the 
peak. 

Figure 42. O-H bend of each solution. Standard deviation is shown and is approximately 
the thickness of the line. 
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Appendix E. Bovine Serum Albumin Concentration Dependent IRRAS from 
Chapter 5 

Table 12. Ion/element concentrations for Instant Ocean from manufacturer. 

Ion Instant Ocean (ppm) 
Cl- 19,290 
Na+ 10,780 

SO42- 2,660 
Mg2+ 1,320 
K+ 420 

Ca2+ 400 
CO32- /HCO3- 200 

Br- 56 
Sr2+ 8.8 

B 5.6 
F- 1.0 
Li+ 0.3 
I- 0.24 

Ba2+ Less than 0.04 
Fe Less than 0.04 
Mn Less than 0.025 
Cr Less than 0.015 
Cu Less than 0.015 
Ni Less than 0.015 
Se Less than 0.015 
V Less than 0.015 
Zn Less than 0.015 
Mo Less than 0.01 
Al Less than 0.006 
Pb Less than 0.005 
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Ion (Cont.) Instant Ocean (ppm) 
(Cont.) 

As Less than 0.004 
Cd Less than 0.002 

Nitrate None 
Phosphate None 
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Figure 43. Maximum observed absorbance in amide I region (1653 cm-1) as a function of 
concentration. The dashed black line is a linear fit with an R2 value of 0.99 (inset). 
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Figure 44. Integrated peak area for amide region is linear with increasing concentration. 

Attenuated Total Reflectance (ATR) measurements are an accessible and simple 

sampling method to obtain FTIR spectra. However, the limitation of ATR includes an 

unknown and variable path length of the IR measurement. The pathlength in ATR is 

variable over all wavenumbers and changes based on the refractive index of the sample 

and crystal, or internal reflection element (IRE). The pathlength is also polarization 

dependent. Yet, our observed maximum absorbance in the amide region is at relatively low 

AU values (well below 1). The lack of strong absorption (well above 1 AU) should provide 

reliable and consistent pathlengths at a given wavenumber. Averett and colleagues describe 

in significant detail the computations necessary to determine the pathlength.34 
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For our experiment, we assert that the low absorptivity and linearity observed in 

both the maximum peak absorbance and integrated peak area as a function of concentration 

corresponds to a consistent pathlength. The data indicate Beer’s Law is followed here and 

our bulk measurements via ATR are reasonably acceptable. 

Bovine serum albumin (BSA) has a known molar extinction coefficient of 43,824 

cm-1M-1 . Given the extinction coefficient, we confirm that the pathlength is consistent 

using 𝐴𝐴 = 𝜀𝜀𝜀𝜀𝜀𝜀. The pathlength at 1653 cm-1 is 7.2 ± 0.9 μm. We determine the standard 

deviation as the difference in calculated pathlength at each concentration, excluding 1 μM 

because of the negligible observed absorbance at this low concentration. It is worth noting 

that this also confirms the assertions from Averett and colleagues that the penetration depth 

(determined by the IRE) is not a sufficient substitute for effective pathlength because the 

penetration depth of a single reflection diamond ATR IRE is about 2 μm. 
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Figure 45. Background-corrected IRRAS showing O-H stretching region changes at 
variable BSA concentrations (given in μM). Injections of 1 and 50 μM solutions do not 
have a significant IR response as evidenced by the low intensity. 

Figure 46. Maximum absolute value of reflectance-absorbance for O-H stretch at 3585 cm-

1 . While data for 1 and 50 μM are presented, the conclusions that can be drawn from the 
observed IR response are limited because of the limit of detection. 
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Figure 47. Background-corrected IRRAS showing amide I region changes at variable 
BSA concentrations (given in μM). Injections of 1 and 50 μM solutions do not have a 
significant IR response as evidenced by the low intensity. 

Figure 48. Maximum absolute value of reflectance-absorbance for amide I (𝝂𝝂C=O) at 1640 
cm-1 . While data for 1 and 50 μM are presented, the conclusions that can be drawn from 
the observed IR response are limited because of the limit of detection. 
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Figure 49. Standard deviation of RA for each solution at minimum peak intensity for 
amide I mode. 
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Appendix F. Explanation of Machine Learning Specifications, Plots of all Matrix 
Samples, Plots of Real Field Samples, and Optimization Results for SVR used in 

Chapter 6 

We utilize principal component analysis (PCA) as an unsupervised method and its 

prominence in chemistry applications. Linear regression (LR) and support vector 

regression (SVR) models are chosen for qualitative analysis. LR is a mathematically simple 

fit and relies on linear relationships of data, while SVR fits data to a chosen function and 

has tolerance boundaries. 

While gas-phase spectra would not be expected to generate a model with predictive 

power for aqueous or liquid samples, there are examples in the literature where gas-phase, 

neat spectra training data produced models capable of accurately identifying components 

in liquid-phase, mixture spectra.242 It is of interest to further evaluate if neat spectra can 

produce sufficient classification ML models because it would significantly reduce the 

amount of data needed for analyzing complex mixtures, such as those from the ocean’s 

surface. 
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Table 13. Glucose concentration (M) of training samples. 

A B C D E F G H I J 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
0.09 0.18 0.27 0.36 0.45 0.54 0.63 0.72 0.81 0.9 
0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 
0.07 0.14 0.21 0.28 0.35 0.42 0.49 0.56 0.63 0.7 
0.06 0.12 0.18 0.24 0.3 0.36 0.42 0.48 0.54 0.6 
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4 
0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0 0 0 0 0 0 0 0 0 0 

Table 14. Egg serum albumin concentration (mg/mL) for training data solutions. 

A B C D E F G H I J 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0 0 0 0 0 0 0 0 0 0 
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2 1.35 1.5 
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 

0.35 0.7 1.05 1.4 1.75 2.1 2.45 2.8 3.15 3.5 
0.45 0.9 1.35 1.8 2.25 2.7 3.15 3.6 4.05 4.5 
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
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Figure 50. Composite spectra of all 100 samples used for training in each machine 
learning model. 
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Figure 51. Average spectra of real ocean samples from Cocoa Beach, Florida. Standard 
deviation is shown but is approximately the thickness of the line. 
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Figure 52. Average spectra of ocean and river samples from Cocoa Beach, Florida for 
comparison of sampling sites. Standard deviation is shown but is approximately the 
thickness of the line. 
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(Text File) +El Scan (rt: 1.035-1.279 min, 9 scans) C.D 

Name: +El Scan (rt: 1.035-1.279 min, 9 scans) C.D 
MW: N/A ID#: 3502 DB: Text File 
8 largest peaks: 

186 999 I 94 926 I 91 509 I 77 486 I 64 4161 78 2791 105 145 I 129 1281 
8 m/z Values and Intensities: 

64 416 I 77 486 I 78 279 I 91 509 I 94 9261 105 145 I 129 128 I 186 9991 
Synonyms: 
no synonyms. 

Figure 53.MS of GC retention for January 11, 2023, ocean surface sample from Cocoa 
Beach, Florida. 
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95 631 96 231 97 181 102 19 I 103 271 104 291 105 7351 106 461 107 831 108 21 I 

109 59 I 110 402 I 111 27 I 115 228 I 116 36 I 111 10 I 118 46 I 119 50 I 120 16 I 121 41 I 
122 4081 123 68 I 124 171 126 251 127 871 128 1331 129 1971 130 481 131 651 133 521 
134 23 I 135 26 I 136 191 137 271 138 20 I 139 771 141 641 144 271 145 20 I 147 371 
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185 1571 186 9991 187 83 I 193 59 I 199 23 I 202 19 I 207 461 209 171 267 161 278 2231 
279 231 

Synonyms: 
no synonyms. 

Figure 54. MS of GC retention from January 11, 2023, river surface sample from the 
Banana River in Cocoa Beach, Florida. 
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Figure 55. MS of bulk surface water sample from Banana River in Cocoa Beach, Florida 
on January 10, 2023. 
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Figure 56. Optimization of regularization parameter C for the support vector regression 
(SVR). Variability shown is that of changing ε, the tolerance limit, which varies little 
compared to the optimization of C. 
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Figure 57. Optimization of train-test size split for the SVR. Minimization of MSE is 
prioritized for model performance. An 80/20 split minimizes MSE and has literature 
precedence. 
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Appendix G. Chemometric Investigation via Factor Analysis of Phosphate Raman 
Spectra to Elucidate Phosphate Monomer and Oligomer Spectral Components 

The work discussed in this appendix is my contribution to collaborative research 

with the following people, in alphabetical order. Affiliations are given for the associated 

institution that each person was at during the collaborative work. 

Heather Allen1, Shelby Brantley2, Steven Corcelli2, James Dobscha3, Abigail 

Enders1, Amar Flood3, Douglas Vander Griend4, Jennifer Neal1, Liwei Yan1 

1) Ohio State University, 2) University of Notre Dame, 3) Indiana University-

Bloomington, 4) Calvin University 

–Polarized Raman spectra of aqueous H2PO4 solutions from 0.01 to 4 M were 

analyzed via factor analysis to deconvolute the contributions of monomer, dimer, trimer, 

and tetramer phosphate structures. Using Python programming language and preinstalled 

packages, the spectra were decomposed into five components: four phosphate signatures 

and one noise component. The code is reproduced, in full, below. Figure 49 shows a subset 

of the phosphate Raman spectra. The four contributing factors are presented in Figure 50. 

To confirm the factor analysis was reasonable in its decomposition, reconstruction of a few 

sample concentrations was completed (Figure 51). 
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""" 
Created on Thu Jul 9 10:04:30 2020 
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html 
@author: AbbieEnders 
""" 
# import packages 
import pandas as pd 
from sklearn.decomposition import NMF 
import os 
# location of datafile 
path = '[INSERT PATH HERE]' #path to directory containing datafile 
filename = '[INSERT CSV NAME HERE].csv' #filename 
newfilename = '[INSERT NEW FILE NAME HERE].csv' 
os.chdir(path) # change directory 
df = pd.read_csv(filename, header = 0) # read in the csv 
# if there is no 
wl = df['Wavelength'] # remove, convert wavenumber column to dataframe series 
del df['Wavelength'] # remove wavenumbers from "training" data 
# model we are using: NMF = non-negative matrix factorization 
model = NMF(n_components=5, init = 'nndsvda', solver = 'cd', alpha = 1.) # init. method 
model_fit = model.fit_transform(df) # fit model and transform using "training" data 
model_fit_df = pd.DataFrame(data=model_fit[0:,0:]) # convert model to dataframe to write to csv 
model_fit_df.insert(0, 'Wavelength', wl) # reinsert wl column 
model_fit_df.to_csv(newfilename) # write to a new csv file 
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Figure 58. Select range of concentrations of phosphate ion Raman spectra. 

Figure 59. Resultant factor spectra after dimensionality reduction via factor analysis. 
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Figure 60. Reconstructed spectrum for 1M phosphate from factors and original 1M 
spectrum. The factors are reasonably similar. 
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Appendix H. General Python Codes and GitHub Resources 

Python codes are described with use and relevant output, where appropriate. 

H.1. Support Vector Regression 

""" 
Created on Wed Sep 14 17:53:00 2022 
@author: AbbieEnders 
""" 
import matplotlib.pyplot as plt 
import pandas as pd 
import os 
import numpy as np 
from sklearn.svm import SVR 
from sklearn.preprocessing import StandardScaler 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import mean_squared_error 

# functions 
# create list function 

def createList(r1, r2, i): 
return np.arange(r1, r2+1, i) 

def list_of_zeros(l): 
return [0] * l 

path = r'[Insert Path to Directory Here]' # path to data files 
unknown = '[Insert Unknown Sample File Name Here].csv' # unknown spectra for prediction 
filename = '[Insert Training Data File Name Here].csv' # spectral data for training 
conc = '[Insert File With Known Training Data Concentrations Here].csv' # glucose conc 

figname = '[Insert Plot Name].svg' 

os.chdir(path) 
# read datafiles 
df = pd.read_csv(filename, index_col=False) 
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concs = pd.read_csv(conc, index_col=False) 
unse = pd.read_csv(unknown, index_col=False) 
index_vals = createList(1,900,1) 
unse = unse.set_index(index_vals) 
conc_unknown = list_of_zeros(8) 
conc_unknown = pd.DataFrame(conc_unknown) 

#make list of concentrations (triplicate measurements), if not triplicate, do not repeat this 
conc_list = list(concs.iloc[:, 0]) 
conc_l2 = [] 
c = 0 
for i in conc_list: 

while c < 3: 
conc_l2.append(i) 
c += 1 

c = 0 
conc = pd.DataFrame(conc_l2) 

#set up spectra data 
fdata = df.iloc[1:, 1:] 
fdata = pd.concat([fdata,unse],1) 
fdata = fdata.iloc[:900,:] 

# scale data 
sc_X = StandardScaler() 
sc_y = StandardScaler() 
plt.savefig('all_data.jpg',dpi=300) 

# transpose data so samples are wavenumbers 
X = np.transpose(fdata) 
# use scaler on x,y data 
X = sc_X.fit_transform(X.values.astype(float)) 
y = sc_y.fit_transform(conc.values.astype(float)) 

#remove 'unknown' data now 
x_unknown = X[300:,:] 
X = X[:300,:] 
y_unknown = y[300:,:] 
y = y[:300,:] 

# train test data split 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) 
# initialize regressor & fit 
regressor = SVR(kernel='rbf') 
regressor.fit(X_train,y_train) 

193 



 

     
 

     
     

 
   

 
         

       
     

      
     
     

  
   

  
   

 
    

   
      

 
 

  
 

 
 

  
 

    

 

 

 
  

   
 

 
      
           
       

 
 

score = regressor.score(X_test,y_test) # get R2 value for fit 

y_pred = regressor.predict(X_test) # predict on new data 
y_un_pred = regressor.predict(x_unknown) # predict on new data 

mse = mean_squared_error(y_test, y_pred)# mean squared error 
print(mse) 
# transpose data back into og values for easier understanding (like it will give us a useful conc.) 
X_test_trans = pd.DataFrame(np.transpose(X_test)) # transpose X data from test split 
y_pred = y_pred.reshape(-1,1) # reshape y test data 
y_pred_new = sc_y.inverse_transform(y_pred) # transform predicted y vals 
y_un_pred = y_un_pred.reshape(-1,1) # reshape y unknown data 
y_un_pred = sc_y.inverse_transform(y_un_pred) # reshape predicted y data from unknowns 
x_test = sc_X.inverse_transform(X_test) 
x_test = pd.DataFrame(np.transpose(x_test)) 
x_unknown_test = sc_X.inverse_transform(x_unknown) 
x_unknown_test = pd.DataFrame(np.transpose(x_unknown_test)) 

# plotting to see how well fitting does, examine prediction 
plt.scatter(fdata.iloc[765,:300],conc,c='#d8b365',marker= '.',label='All Data') 
plt.scatter(x_test.iloc[765,:],y_pred_new,c='#80cdc1', marker = '.', label='Test Data') 
plt.scatter(x_unknown_test.iloc[765,:],y_un_pred,c='#018571',label='Predicted Concentration') 
plt.legend(frameon=False) 
plt.xlabel('Absorbance at 1036 $cm^{-1}$') 
plt.ylim(-0.01,0.21) 
plt.xlim(-0.001,0.02) 
plt.ylabel('Concentration (M)') 
plt.savefig(figname, dpi=120) 

Output: One figure with training data, line of best fit, and predicted values from unknown 

spectra plotted 

H.2. Work-Up of IRRAS Data 

""" 
@Author: AbbieEnders 
# Work-up IRRAS Data 

**Dependencies** 
* data needs to be in a ascII format 
* change the path to your path on your computer (see cell with "Bring in data" as header) 
* need to be connected to your local run time 

Imports 
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""" 

# Commented out IPython magic to ensure Python compatibility. 
import pandas as pd 
import os 
import numpy as np 
from lmfit.models import LinearModel 

def get_index(subset, shift): 

return min(range(len(subset)), key=lambda i: abs(subset[i]-shift)) 

#define the peak integration method 

def fit_background(x, y, basestart1, peakstart1, peakend1, baseend1, plotnumber): 

#creates peak integration function to be called whenever needed from loop 
# return peakintegration 
# convert the peak shifts into indices using fn above and code below 

basestart = get_index(x, basestart1) 
peakstart = get_index(x, peakstart1) 
peakend = get_index(x, peakend1) 
baseend = get_index(x, baseend1) 

#seperate the peaks from the baseline to get the area where we think we have baseline 
xbase = np.zeros((basestart-peakstart)+(peakend-baseend)) 

# can print if need to reference how many data points are in the area, not required 
xbase[0:(basestart-peakstart)] = x[peakstart:basestart] 
xbase[(basestart-peakstart):(basestart-peakstart) + 

peakend-baseend] = x[baseend:peakend] 

#get the y part of the data for the fit 
ybase = np.zeros((basestart-peakstart)+(peakend-baseend)) 
#again, can print if a reference is needed 
ybase[0:(basestart-peakstart)] = y[peakstart:basestart] 
ybase[(basestart-peakstart):(basestart-peakstart) + 

peakend-baseend] = y[baseend:peakend] 

#create the model of the background (currently assuming it is linear, but can adjust based on 
needs, should proceed well enough with linear) 

prodbackground = LinearModel(prefix="prodback_") 
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pars = prodbackground.guess(ybase, xbase) 
#put the model together from the different components coded thus far 
model = prodbackground 
#fit the model with the input file data 
out = model.fit(ybase, pars, x=xbase) 
xsubset = x[baseend:basestart] 
# generates new x,y data so the background correlation doesn't affect plot 
ysubset = y[baseend:basestart] - (out.params["prodback_slope"].value * 

x[baseend:basestart]+out.params["prodback_intercept"].value) 

return prodbackground, xsubset, ysubset 

"""IRRAS data workup walk-through: 

1. calculate absorbance 
2. average spectra 
3. calculate standard deviation 
4. plot average with standard deviation shading 

Data is brought in 
""" 

"""Filenames""" 

# REQUIRED USER INPUT, input your data file names in asc 
water_1 = '.asc' 
water_2 = '.asc' 
water_3 = '.asc' 
data_1 = '.asc' 
data_2 = '.asc' 
data_3 = '.asc' 
newfile = '.csv' 
path = r'[Insert Path Name Here]' 
os.chdir(path) 
# bring in data 
water_1 = pd.DataFrame(np.genfromtxt(path+'/'+water_1, skip_header=25)) 
water_2 = pd.DataFrame(np.genfromtxt(path+'/'+water_2, skip_header=25)) 
water_3 = pd.DataFrame(np.genfromtxt(path+'/'+water_3, skip_header=25)) 
data_1 = pd.DataFrame(np.genfromtxt(path+'/'+data_1, skip_header=25)) 
data_2 = pd.DataFrame(np.genfromtxt(path+'/'+data_2, skip_header=25)) 
data_3 = pd.DataFrame(np.genfromtxt(path+'/'+data_3, skip_header=25)) 

"""Data workup (as described above)""" 
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# calculate absorbance 
spectrum_1 = -np.log10(data_1.iloc[:, 1]/water_1.iloc[:, 1]) 
spectrum_2 = -np.log10(data_2.iloc[:, 1]/water_2.iloc[:, 1]) 
spectrum_3 = -np.log10(data_3.iloc[:, 1]/water_3.iloc[:, 1]) 

# background fit peaks of interest (H2O peak, etc) 
# base start, peak start, peak end, base end 
bsa_peak1 = [900, 980, 1750, 1800] 

bp1s1_fit, bp1x1, bp1y1 = fit_background( 
water_1.iloc[:, 0], spectrum_1, bsa_peak1[0], bsa_peak1[1], bsa_peak1[2], bsa_peak1[3], 1) # 

BSA peak 1, spectrum 1 
bp1s2_fit, bp1x2, bp1y2 = fit_background( 

water_1.iloc[:, 0], spectrum_2, bsa_peak1[0], bsa_peak1[1], bsa_peak1[2], bsa_peak1[3], 1) # 
BSA peak 1, spectrum 1 
bp1s3_fit, bp1x3, bp1y3 = fit_background( 

water_1.iloc[:, 0], spectrum_3, bsa_peak1[0], bsa_peak1[1], bsa_peak1[2], bsa_peak1[3], 1) # 
BSA peak 1, spectrum 1 

frames = [pd.Series(spectrum_1), pd.Series(spectrum_2), pd.Series(spectrum_3), 
pd.Series(bp1y1), pd.Series(bp1y2), pd.Series(bp1y3)] 

data = pd.concat(frames, axis=1) 
data['wn'] = water_1.iloc[:, 0] 
data.to_csv(path+'/'+newfile) 

Output: data fit within specified region saved to one file with original data 

H.3. Calculating SSnL Carbon Using Chlorophyll and Zooplankton data from E3SM 
Model 

""" 
Created on Tue Nov 23 13:27:19 2021 

@author: AbbieEnders 
""" 
# adjusting the 
import pandas as pd 
import os 
import math 
import numpy 
import re 
import glob 
# rotating matrix 
def rotate_180(array, M, N, out): 
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for i in range(M): 
for j in range(N): 

out[i, N-1-j] = array[M-1-i, j] 

# equation 
# Ci = GCz(Cp/(Ck,inges + Cp))(1-a)(pi%)(ti)(o) 
# variables 
# Ci = carbon of ith species 
# G = 1/day zooplanktonic growth rate 
# Cz = uM carbon zooplankton concentration 
# Cp = uM carbon planktonic carbon atom concentration 
# Ck,inges = uM carbon half saturation for ingestion 
# a = assimilation efficiency 
# pi% = percentage of the ith macromolecule content in a typical planktonic cell 
# ti = day lifetime of the ith macromolecule, total restricted to 2 
# o = coating of the surface based on partial adsorption 
# ChlA = remotely sensed by NASA MODIS 
# Cmr = chlorophyll mass ratio (multiply ChlA by 50 to get Cp) 

# variables defined 
a = 0.75 
G = 1 
#Cz = 0.5 
Ckinges = 7 
tprot = 10 
tlip = 2 
pprot = 0.6 
plip = 0.2 
Cmr = 50 
C_ratio = 0.5 
CpRef = 10 # carbon protein reference uM 
ClRef = 0.5 # carbon lipid reference uM 
np = 0.5 
nl = 1 
ap = 1 
al = 1 

mol_mass_carbon = 12.01 # g/mol 
ocean_surf_area = 3.60580510*10**14 #m^2 

earth_surf_area = 5.10082000*10**14 # m^2 
num_of_instances = 180 *360 #1 steps in lat and lon 
a_pixel = earth_surf_area/num_of_instances 
surfprot = 0.002*a_pixel # grams 
surflip = 0.0025*a_pixel # grams 
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# relate num of instances over ocean surface area 

# new dataframe 
# math 
# if ChlA = 99999 do nothing 
path = '[Insert Path to Data]’ 
os.chdir(path) 
all_files_chl = glob.glob(path + "/*chl.csv") 
#print(all_files_chl) 
all_files_zoo = glob.glob(path + "/*zoo.csv") 
#lat_list = list(range(-90, 91,0.5)) 
lat_list = numpy.arange(-90,91,0.5).tolist() 
#lat_list.append(list(range(90,-1))) 
#print(lat_list) 
os.chdir(path) 
for filename in all_files_chl: 

data = pd.read_csv(filename, index_col=0) 
Cp_temp = Cmr*data 
Cz = re.sub('chl','zoo',filename) 
zoo = pd.read_csv(Cz, index_col = 0) 
zoo = zoo/1000 
C_prot_temp = G*zoo*(Cp_temp/(Ckinges + Cp_temp))*(1-a)*(pprot)*(tprot) 
C_lip_temp = G*zoo*(Cp_temp/(Ckinges + Cp_temp))*(1-a)*(plip)*(tlip) 
C_sum_temp = C_prot_temp + C_lip_temp 

theta_prot = (((1/CpRef)**np)*((ap*C_prot_temp)**np))/(1 
+((((1/CpRef)**np)*((ap*C_prot_temp)**np))+(((1/ClRef)**nl)*((al*C_lip_temp)**nl)))) 

theta_lip = (((1/ClRef)**nl)*((al*C_lip_temp)**nl))/(1 
+((((1/CpRef)**np)*((ap*C_prot_temp)**np))+(((1/ClRef)**nl)*((al*C_lip_temp)**nl)))) 

sums = 0 
counter = 0 
my_dict = {} 
for i in lat_list: 

i=float(i) 
C_total = theta_lip.iloc[counter,:]*surflip*math.cos(numpy.deg2rad(abs(i))) + 

theta_prot.iloc[counter,:]*surfprot*math.cos(numpy.deg2rad(abs(i))) 
my_dict[i]=(abs(C_total)) 
sums = sums + C_total.to_numpy().sum() 
counter += 1 

savefile = re.sub('chl','carbon_w_zoo',filename) 
C_total = pd.DataFrame.from_dict(my_dict, orient = 'index') 

Output: carbon on the ocean surface in csv file 
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H.4. Principal Component Analysis 

""" 
Created on Mon Feb 28 15:05:24 2022 

@author: AbbieEnders 
""" 
import numpy as np 
import pandas as pd 
import os 
import matplotlib.pyplot as plt 
from sklearn.decomposition import FactorAnalysis, PCA 
from sklearn.linear_model import LinearRegression 
from sklearn.metrics import mean_squared_error, r2_score, explained_variance_score 
from sklearn.model_selection import train_test_split 
from factor_analyzer import FactorAnalyzer 
from factor_analyzer.factor_analyzer import calculate_bartlett_sphericity 
from factor_analyzer.factor_analyzer import calculate_kmo 

path = r'[Insert Path to Directory with Data]' 

os.chdir(path) 
fa_data_file = '[Insert File Name].csv' 
glucosedata = '[Insert Concentration File Name].csv' 
datasavefile ='[Insert Name For Save File].csv' 
plotsavefile = '[Insert Name For Plot File].svg' 
# get data 
factor_data = pd.read_csv(fa_data_file,index_col=False) # rename a copy of dataframe to work with 
glucose_columns = pd.read_csv(glucosedata,index_col=None) 
glucose_columns = list(glucose_columns['list']) # make sure you have a column named list 
#PCA 
pca_model = PCA(n_components= 4) 
pca_fitx = pca_model.fit(factor_data).transform(factor_data) 
pca = pca_model.fit(factor_data) 
pca_fit = pca.transform(factor_data) 
pca_fit_df = pd.DataFrame(data = pca_fit[0:,0:]) 
pca_loadings = pd.DataFrame(pca.components_, columns = glucose_columns) 
pca_loadings.to_csv(datasavefile) 
# plot 
df = pd.read_csv(datasavefile,index_col = None) 
plt.scatter(pca_loadings.iloc[0,0:],pca_loadings.iloc[1,0:], color = 'b')#,label = 'Real') 
plt.ylabel('PC2') 
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plt.xlabel('PC1') 
plt.legend(frameon=False) 
plt.savefig(plotsavefile,dpi = 120) 

Output: Loadings, or components, of the PCA saved to a file and a figure with the first 
two principal components compared to each other to determine their relationship 

H.5. Support Vector Machine 

""" 
Created on Mon Feb 28 15:05:24 2022 

@author: AbbieEnders 
""" 

import pandas as pd 
import os 
import matplotlib.pyplot as plt 
from sklearn import svm 
import numpy as np 
from sklearn import preprocessing 
from sklearn.model_selection import train_test_split 
from sklearn import metrics 
from sklearn.pipeline import Pipeline 
from sklearn.preprocessing import StandardScaler 
from sklearn.inspection import DecisionBoundaryDisplay 

path = r'[Insert Path to Directory for Data]' 
#newfilename = 'absorbance.csv' 
os.chdir(path) 
fa_data_file = '[Insert Data File Name].csv' 
factor_data = pd.read_csv(fa_data_file,index_col=0) # rename a copy of dataframe to work with 
factor_dataT = factor_data.transpose() 
glucose_columns = pd.read_csv('[Insert Concentration Data File Name].csv',index_col=None) 
y = list(glucose_columns['list']) 

X = factor_dataT.iloc[:,:2] 

# fit the model, don't regularize for illustration purposes 
clf = svm.SVC(kernel="linear", C=100) 
clf.fit(X, y) 

plt.scatter(X.iloc[:, 0], X.iloc[:, 1], c=y, s=30, cmap=plt.cm.Paired) 
plt.axis([0.2, .23, -.5, .5]) 
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# plot the decision function 
ax = plt.gca() 
DecisionBoundaryDisplay.from_estimator( 

clf, 
X, 
plot_method="contour", 
colors="k", 
levels=[-1, 0, 1], 
alpha=0.5, 
linestyles=["--", "-", "--"], 
ax=ax, 

) 
# plot support vectors 
ax.scatter( 

clf.support_vectors_[:, 0], 
clf.support_vectors_[:, 1], 
s=100, 
linewidth=1, 
facecolors="none", 
edgecolors="k", 

) 
plt.show() 

Output: Plot of SVM results 

H.6. FTIR Spectrum Calculations Based on Angle of Incident Light 

""" 
Created on Tue Apr 20 16:02:46 2021 

@author: AbbieEnders 
""" 

# imports 
import math 
import numpy as np 
import csv 
import os 
import matplotlib.pyplot as plt 
import pandas as pd 

# variables 
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path = r'[Insert Path to Directory Here]' 
os.chdir(path) 
filename = '[Insert File with Imaginary Refractive Index].csv' 
file_H2O = '[Insert File Real Imaginary H2O Index Data].csv' 
df = pd.read_csv(filename, header = 0) 
df_H2O = pd.read_csv(file_H2O, header = 0) 
data_dict = {} 
nfn = '[New File Name].csv' #filename 

def createList(r1, r2, i): 
return np.arange(r1, r2+1, i) 

angle0 = createList(45, 55, 1) # list for angle of incidence 
n2 = df_H2O['n'] 
k2 =df_H2O['k'] 
k = df['k'] 
wl = df_H2O['wavelength'] 
wavenumber = df['Wavenumber'] 
i = 0 
d = 2.5 #nm #depth of monolayer/surface 
y = [] 

while i < len(wavenumber): 
y.append((1/wavenumber[i])*10**7) 
i += 1 

for angle in angle0: 
data_list = [] 
counter = 0 #start with first thing (0) 
for wavelength in y: 

kappa = k2[counter]/n2[counter] 
k_monolayer = k[counter] 
n = complex(1.42545,k_monolayer) 
I = (n**2 - n2[counter]**2)*d 
# Equation 14 Reflection Absorbace for s polarized light 
RAs_top = (16*math.pi*kappa*math.cos(angle)*I) 
RAs_bottom = (wavelength*((n2[counter]**2)-1)**2) 
RAs = RAs_top/RAs_bottom 
data_list.append(RAs) 
counter += 1 # counter = counter + 1 

data_dict[angle] = data_list 

X = [x.imag for x in data_dict[angle]] 
plt.plot(wavenumber, X) 
plt.text(0,1,angle) 
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plt.title('Calculated Reflectance Absorbance at Given Angle') 
plt.xlabel('Wavenumber ($cm^{-1}$)') 
plt.ylabel('Reflectance-Absorbance of s-Polarized Light') 
plt.savefig(str(angle)+'fig.svg') 
plt.show() 

with open(nfn, 'w') as csvfile: 
writer = csv.writer(csvfile) 
writer.writerow(data_dict.keys()) 
writer.writerows(zip(*data_dict.values(), y)) 

Output: Figures with calculated spectrum and a datafile to use these spectra 

H.7. Linear Regression Model 

""" 
Created on Wed Sep 14 17:53:00 2022 
@author: AbbieEnders 
""" 
# imports 
import matplotlib.pyplot as plt 
import pandas as pd 
import os 
import numpy as np 
from sklearn import linear_model 
from sklearn.metrics import mean_squared_error, r2_score 

# functions 
# create list function 

def createList(r1, r2, i): 
return np.arange(r1, r2+1, i) 

path = r'[Insert Path to Directory With Data]' 
unknown = '[File for Unknown Data].csv' # unknown data file 
filename = '[File for Training Data].csv' 
conc = '[File with concentration values].csv' # glucose conc 
savefigfile = '[File for figure after model fit].svg' 
os.chdir(path) 
df = pd.read_csv(filename, index_col=False) 
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concs = pd.read_csv(conc, index_col=False) 
unse = pd.read_csv(unknown, index_col=False) 
unse = unse.iloc[:,:9] 
conc_unknown = [0.200203929,0.200203929,0.200203929, 

0.150152947,0.150152947,0.150152947, 
0.100101964,0.100101964,0.100101964] 

conc_unknown = pd.DataFrame(conc_unknown) 

#make list of concentrations (triplicate measurements) 
conc_list = list(concs.iloc[:, 0]) 
conc_l2 = [] 
c = 0 
for i in conc_list: 

while c < 3: 
conc_l2.append(i) 
c += 1 

c = 0 
conc = pd.DataFrame(conc_l2) 

#set up spectra data 
fdata = df.iloc[1:, 1:] 
# transpose df 
fdata = fdata.transpose() 
# train test splits of x y data 
X_train = fdata[:-20] 
X_test = fdata[-20:] 
y_train = conc_l2[:-20] 
y_test = conc_l2[-20:] 

#create linear regressor 
lreg = linear_model.LinearRegression() 
# Fit to training data 
lreg.fit(X_train, y_train) 
# predict on test data 
y_pred = lreg.predict(X_test) 

# predict on "new" data 
unknown = unse.transpose() 
y_pred_un = lreg.predict(unknown) 

# get coef of model 
#print('coef: \n', lreg.coef_) 
# print mean sq. err 
print('mean sq. err: %.2f' % mean_squared_error(y_test, y_pred)) 
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print('coef of determ: %.2f' %r2_score(y_test,y_pred)) 

plt.scatter(X_test.iloc[:,765], y_test, color="#d8b365", marker = '.',label='Experimental Conc.') 
plt.scatter(X_test.iloc[:,765], y_pred, color="#80cdc1", marker = '.', label = 'Predicted Conc.') 
plt.scatter(unknown.iloc[:,765],conc_unknown, color = '#018571', marker='o',label = 'Unknown 
True') 
plt.scatter(unknown.iloc[:,765],y_pred_un, color='#018571',marker='x', label = 'Unknown 
Predicted') 

plt.xlabel ('Absorbance (arb. units, 1036 cm$^{-1}$)') 
plt.ylabel ('Concentration (M)') 
plt.legend(frameon=False) 

diff = conc_unknown - pd.DataFrame(y_pred_un) 
diffper = 100*(diff/conc_unknown) 
plt.savefig(savefigfile,dpi=120) 

Output: figure of model fit with concentration versus absorbance 

H.8. Subprocess Script for Preprocessing NIST FTIR Spectra 

""" 
Created on Sun Nov  8 09:46:55 2020 
@author: AbbieEnders 
""" 
#IMPORTS 
import subprocess 
import os 

# here we will call on each of our processes 
# Step X: Run X 
# subprocess.run(['python', 'filename.py'], shell=True) 
#VARIABLES 
path = 'jcamp_files' 
bad_path_1 = 'cond_not_met' 
bad_path_2 = 'in_trans' 
path_to_csv = 'unnormalized_csv' 
path_to_dest = 'csv' 
path_to_images = 'images' 
ext_1 = '/*.csv' 
ext_2 = '/*_n.csv' 
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ext_3 = '/*.jpg' 
top_dir = ['nitrile','ketone','ether','ester','carboxylic_acid','aromatic', 

'amine','amide','alkyne','alkane','alkene','alcohol', 
'nitro','alkyl_halide','acyl_halide','methyl','aldehyde'] 

func_groups = ['nitrile','ketone','ether','ester','carboxylic_acid','aromatic', 
'amine','amide','alkyne','alkane','alkene','alcohol', 
'nitro','alkyl_halide','acyl_halide','methyl','aldehyde', 
'not_nitrile','not_ketone','not_ether','not_ester','not_carboxylic_acid','not_aromatic', 
'not_amine','not_amide','not_alkyne','not_alkane','not_alkene','not_alcohol', 
'not_nitro','not_alkyl_halide','not_acyl_halide','not_methyl','not_aldehyde'] 

# Step #1: Create directories if they don't exist 
for i in top_dir: 

if not os.path.exists(top_dir): 
os.mkdir(os.path.join(top_dir, top_dir)) 
not_dir = 'not_'+top_dir 
os.mkdir(os.path.join(top_dir, not_dir)) 

# Step #2: Move any files that are not in absorbance\wavenumbers 
subprocess.run(['python', 'check_file_in_absorbance.py', path, bad_path_1, bad_path_2]) 

# Step #3: convert from jcampdx to csv 
subprocess.run(['python', 'jcamp_to_csv.py', path]) 

# Step #4: move csv to their own folder 
subprocess.run(['python', 'move_file.py', path, path_to_csv, ext_1]) 

# Step #5: normalize each spectrum 
subprocess.run(['python', 'normalize_csv.py', path_to_csv, path_to_dest]) 

# Step #6: move normalized spectrum 
subprocess.run(['python', 'move_file.py', path, path_to_csv, ext_2]) 

# Step #7: turn each csv file into a jpg image 
subprocess.run(['python','convert_to_jpg.py',path_to_dest]) 

# Step #8: move jpg images 
subprocess.run(['python', 'move_file.py', path_to_dest, path_to_images, ext_3]) 
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# Step #9: copy files to the folder for functional groups 
for d in top_dir: 

dst_for_images = d 
#for fg in func_groups: 
listname = d+'.csv' 
dst_for_images = os.path.join(d, d) 
subprocess.call(['python','copy_file_to_ndir.py', path_to_images, listname, dst_for_images], 

shell=True) 
# then do the same but for "not_X" 
listname = 'not_'+d+'.csv' 
dst_for_images = os.path.join(d, 'not_'+d) 
subprocess.call(['python','copy_file_to_ndir.py', path_to_images, listname, dst_for_images], 

shell=True) 

# Step #10: "even" out folders and remove files for validation 
for d in top_dir: 

dst_for_images1 = os.path.join(os.getcwd(), d, d) 
n = 'not_'+d 
dst_for_images2 = os.path.join(os.getcwd(), d, n) 
val = 'test_images' 
dst_for_val = os.path.join(os.getcwd(), d, val) 
# dst_for_val = d+'\test_images' 
subprocess.call(['python','random_number_files.py', dst_for_images1, dst_for_images2, 

dst_for_val], shell=True) 

# Step 11: create functional group directory in each functional group's directory to move photo 
directories to 
for direc in top_dir: 

d = direc 
n = 'not_'+d 
subprocess.call(['python', 'make_functional_group_directory.py', 'functional_group', d, n]) 

Output: preprocessed spectra in separated directories for training and testing 

H.9. Check that Spectrum is in Units of Absorbance 

""" 
Created on Sun Nov  8 17:19:16 2020 
@author: AbbieEnders 
""" 
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import jcamp 
import os 
import glob 
import shutil 
import sys 
# This is where your data is coming from and going to 
# The following lines will find all of the files of a given type in the path's folder 

path = os.path.join(os.getcwd(), sys.argv[1]) 
destination = os.path.join(os.getcwd(), sys.argv[2]) 
final_dest = os.path.join(os.getcwd(), sys.argv[3]) 
# you are probably not moving the py file around, so just change directory to look\touch in 
correct folder 
# Here are the files that fit your criterion that are within the path file 

extension = 'jdx' 
all_files = glob.glob(path + "\*.jdx") 
# read jcampdx file and check absorbance and wavenumbers units 
# return false if not in micrometers (wavenumbers does not equal micrometers = True) 
# return false if not in absorbance (y-units in absorbance = True) 

for file in all_files: 
data = jcamp.JCAMP_reader(file) 
wavenumbers = data.get('x_units', r'N\A').lower() != 'micrometers' 
absorbance = data.get('yunits', r'N\A').lower() == 'absorbance' 
# move file if wavenumbers is in micrometers 

if wavenumbers == False: 
print('bad apple') 
shutil.move(file, destination) 

# move file if not in absorbance 
if absorbance == False: 

shutil.move(file,final_dest) 

Output: moves any spectrum files that are not in absorbance mode 
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H.10. Copy a Given File to a New Directory 

""" 
Created on Wed Aug 26 09:09:56 2020 
@author: AbbieEnders 
""" 
# move files based on the functional group present 
from shutil import copyfile 
import csv 
import re 
import glob 
import os 
import sys 
#path to spectra csv files 

path = os.path.join(os.getcwd(), sys.argv[1]) 
path_to_list = os.path.join(os.getcwd(), sys.argv[2]) 
dst = os.path.join(os.getcwd(), sys.argv[3]) 

# read list from file with names of files containing or not containing a functional group 
with open(path_to_list, newline='') as f: 

reader = csv.reader(f) 
filenames = list(reader) 

os.chdir(path) 
extension = 'jpg' # extension of the file you are searching for 

#results = glob.glob(path + extension) 
#print(results) 
os.chdir(path) 
results = glob.glob('*.{}'.format(extension)) 
print(results) 
#Here are the files that fit your criterion that are within the path file 

for file in filenames: 
file = str(file) 
file = re.sub('\[','',file) 
file = re.sub('\'','',file) 
file = re.sub('\]','',file) 
file = file+'.jpg' 
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if file in results: 
print('file in list') 
src = os.path.join(path, file) 
dest = os.path.join(dst, file) 
print(dest) 
copyfile(src, dest) 

Output: specified files are moved to a new directory 

H.11. Convert File From ‘csv’ to ‘jpeg’ Format 

""" 
Created on Tue Aug 25 09:24:53 2020 
@author: AbbieEnders 
""" 

#create a jpg of each spectrum 

import pandas as pd 
import matplotlib.pyplot as plt 
import os 
import glob 
import re 
import sys 
#path to spectra csv files 
path = os.path.join(os.getcwd(), sys.argv[1]) 

extension = 'csv' # extension of the file you are searching for 
os.chdir(path) # change the working directory so you can access this from anywhere on your 
computer 
result = glob.glob('*.{}'.format(extension)) 
#Here are the files that fit your criterion that are within the path file 

for filename in result: 
df = pd.read_csv(filename, index_col=False, header=0) 
filename = re.sub('_n.csv','',filename) 
filename=filename+".jpg" 
fig = df.plot(df.columns[0], df.columns[1], color='black', legend=None) 
fig.set_xlabel(None) 
fig.set_xlim(4000, 600) 
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plt.savefig(filename) 
plt.close() 

Output: specified csv files converted to jpeg files 

H.12. Convert Specified File From ‘jcampdx’ to ‘csv’ File 

""" 
Created on Mon Jun 15 17:53:29 2020 
@author: AbbieEnders 
Using jcamp.py from GITHUB 
############################################################################ 
######### 
########################NOTES############################################## 
########## 
############################################################################ 
######### 
RUN IN COMMAND LINE: 1 ) python -m pip install git+https://github.com/nzhagen/jcamp 
numpy version: pip install numpy==1.19.0 
(install git, pip if you don't have it) 
2) python jcamp_to_csv.py 
############################################################################ 
######### 
""" 
# read in jcampdx file to dict and write list to csv file 
import jcamp 
import os 
import glob 
import csv 
import re 
import sys 

#This is where your data is coming from and going to 

path = os.path.join(os.getcwd(), sys.argv[1]) 
#The following lines will find all of the files of a given type in the path's folder 
extension = 'jdx' 
os.chdir(path) #you are probably not moving the py file around, so just change directory to 
look\touch in correct folder 
#Here are the files that fit your criterion that are within the path file 
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result = glob.glob('*.{}'.format(extension)) 
all_files = glob.glob(path + "\*.jdx") 
for file in all_files: 

data = jcamp.JCAMP_reader(file) 
nfn = re.sub('.jdx','.csv',file) #nfn = new filename 
with open(nfn, 'w', newline = '') as f: 

writer = csv.writer(f, delimiter = ',') 
writer.writerow(('x','y')) 
writer.writerows(zip(data['x'], data['y'])) 

if not f.closed: 
f.close() 

Output: specified jcampdx files are converted to csv files 

H.13. Make Directory Given Keywords for Naming 

""" 
Created on Mon Nov 16 19:41:52 2020 
@author: AbbieEnders 
""" 

import os 
import sys 
import shutil 
# directory to create inside the original directory 
target_dir = os.path.join(os.getcwd(), sys.argv[2], sys.argv[1]) 
move_dir1 = os.path.join(os.getcwd(), sys.argv[2], sys.argv[3]) 
move_dir2 = os.path.join(os.getcwd(), sys.argv[2], sys.argv[2]) 

os.mkdir(target_dir) 
shutil.move(move_dir1, target_dir) 
shutil.move(move_dir2, target_dir) 

Output: creates directories given input details 

H.14. Move File to Different Directory 

""" 
Created on Fri Nov 13 12:54:59 2020 
@author: AbbieEnders 
""" 
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# move csv files to new folder 

import shutil 
import os 
import sys 
import glob 
extension = '.csv' # file format 
og = os.path.join(os.getcwd(), sys.argv[1]) # original 
new = os.path.join(os.getcwd(), sys.argv[2]) # destination 
os.chdir(og) # change directory 
# get all of the files in the folder that match the extension 
results = glob.glob('*.{}'.format(extension)) 
for file in results: 

og = os.path.join(og, file) 
new = os.path.join(new, file) 
shutil.move(og, new) # move 

Output: moves files based on specifications 

H.15. Normalize Data 

""" 
Created on Mon Jun 15 19:27:00 2020 
@author: AbbieEnders 
Normalize csv data and save as a new csv file, preserving og data 
""" 
import pandas as pd 
import numpy as np 
import os 
import glob 
import csv 
import re 
import sys 
import shutil 
#This is where your data is coming from and going to 
path = os.path.join(os.getcwd(), sys.argv[1]) 
dst = os.path.join(os.getcwd(), sys.argv[2]) 
#The following lines will find all of the files of a given type in the path's folder 
extension = 'csv' 
os.chdir(path) 
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result = glob.glob('*.{}'.format(extension)) 
#Here are the files that fit your criterion that are within the path file 
li = [] 
for filename in result: 

#read in file 
df = pd.read_csv(filename, index_col=False, header=0) 
#rename file 
filename = re.sub('.csv','_n.csv',filename) 
#normalize with respect to max y value in file 
df['y']= (df['y']/np.amax(df['y'])) 
li.append(df['y']) 
#write normalized files to a new csv 
with open(filename, 'w', newline='') as file: 

writer = csv.writer(file, delimiter = ',') 
writer.writerow(('cm-1', 'I')) 
writer.writerows(zip(df['x'],df['y']) ) 

if not  file.closed: 
file.close() 

src = os.path.join(os.getcwd(), filename) 
dst = os.path.join(os.getcwd(), filename) 
shutil.move(src, dst) 

Output: normalized data for given directory and filetype 

H.16. Plot Confusion Matrix 

""" 
Created on Wed Nov 18 15:48:46 2020 
@author: AbbieEnders 
""" 

c = 'present' 
b = 'not present' 
# do you want the user to state a title for the graph? If not remove line 11 
# title = 'Confusion Matrix for Carboxylica Identification' 
import numpy as np 
import matplotlib.pyplot as plt 
from matplotlib import cm 
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conf_arr = [[5,0], 
[0,5]] 

norm_conf = [] 
for i in conf_arr: 

a = 0 
tmp_arr = [] 
a = sum(i, 0) 
for j in i: 

tmp_arr.append(float(j)/float(a)) 
norm_conf.append(tmp_arr) 

fig = plt.figure() 
plt.clf() 
ax = fig.add_subplot(111) 
ax.set_aspect(1) 
res = ax.imshow(np.array(conf_arr), cmap=cm.summer, 

interpolation='nearest', vmin=0, vmax=5) 

for x in range(2): 
for y in range(2): 

ax.annotate("{:.0f}".format(conf_arr[x][y]), xy=(y, x), 
horizontalalignment='center', 
verticalalignment='center', 
color ='black', 
size = '12') 

cb = fig.colorbar(res) 
#plt.title(title) 
plt.xlabel('Predicted Group') 
plt.ylabel('Actual Group') 
plt.xticks(range(2), [c,b]) 
plt.yticks(range(2), [c,b]) 
plt.savefig('perfect_10000_0_01.svg', format='svg') 
plt.show() 

Output: saved confusion matrix for provided results 
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H.17. Remove Random Files Until Directories are Equal in Files 

""" 
Created on Sun Nov  8 14:14:59 2020 
@author: AbbieEnders 
""" 
''' 
########################################################################### 
#### 
########################TO RUN IN THE CONSOLE 
################################# 
########################################################################### 
#### 
python random_number_files.py [path_to_directory_1] [path_to_directory_2] 
''' 
# imports 
import os 
import sys 
import random 
import shutil 

# randomly delete files in folder that has excess images 
dir_1 = os.path.join(os.getcwd(), sys.argv[1]) #this should be POSITIVE\CONTAINING 
functional group for naming purposes 
dir_2 = os.path.join(os.getcwd(), sys.argv[2]) #this should be NEGATIVE\NOT CONTAINING 
functional group for naming purposes 
dest_dir = os.path.join(os.getcwd(), sys.argv[3]) 

len_dir_one = len(os.listdir(dir_1)) 
len_dir_two = len(os.listdir(dir_2)) 
num_of_validation_files = 5 
i = 0 
# first we will randomly move five files each to be used as validation files 

while i < num_of_validation_files: 
print('Im here') #is this meaningful? 
f_d1 = os.path.join(dir_1, random.choice(os.listdir(dir_1))) # file for directory 1 
f_d2 = os.path.join(dir_2, random.choice(os.listdir(dir_2))) # file for directory 2 
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shutil.move(f_d1, dest_dir) 
shutil.move(f_d2, dest_dir) 
i += 1 

if len_dir_one > len_dir_two: 
# get difference of files in the two directories and remove random files to 
# get the directories to equal lengths 
dif = len_dir_one - len_dir_two 
for file in random.sample(os.listdir(dir_1),dif): 

os.remove(os.path.join(dir_1,file)) 
elif len_dir_one < len_dir_two: 

# get difference of files in the two directories and remove random files to 
# get the directories to equal lengths 
dif = len_dir_two - len_dir_one 
for file in random.sample(os.listdir(dir_2),dif): 

os.remove(os.path.join(dir_2, file)) 
else: 

exit() 
Output: given two directories, equivalent number of files will be present in each 

H.18. Train Model to Predict Functional Group Subprocess Code 

""" 
Created on Mon Nov 16 20:14:05 2020 
@author: AbbieEnders 
""" 

# run the machine learning for each compound 
import os 
import shutil 

cwd = os.getcwd() 
top_dir = ['nitrile','ketone','ether', 

'amine','amide','alkyne','alkane','alkene','alcohol', 
'nitro','alkyl_halide','acyl_halide'] 

for d in top_dir: 
#shutil.copytree(os.path.join(cwd,'scripts'), os.path.join(cwd,d,'scripts')) 
os.chdir(os.path.join(cwd, d))

    os.system('python scripts/retrain.py --image_dir functional_group --output_graph 10000-
0.001_graph.pb'+ 
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' --output_labels 10000-0.001_labels.txt --summaries_dir 10000-0.001_sum --
how_many_training_steps'+ 

' 10000 --learning_rate 0.001 --architecture inception_v3') 

Output: trained models from retrain python code 

H.19. Classify Unknown Images in Batches 

""" 
Created on Tue Nov 17 08:37:12 2020 
@author: AbbieEnders 
""" 

import tensorflow as tf, sys 
import csv 
from os import walk 
import numpy as np 

image_dir = sys.argv[1] 
output_file = sys.argv[2] 
#DO YOU WANT THESE PATHS TO BE ARGUEMENTS TOO? 
graph_path = '20000-0.01_graph.pb' 
labels_path = '20000-0.01_labels.txt' 

#Create list of files in given directory 
image_list = [] 
for (dirpath, dirnames, filenames) in walk(image_dir): 

image_list.extend(filenames) 
break 

#Open output (.csv) file to be written to 
csv_header = ['Image Name', 'Containing Fn Group', 'Not Containing Fn Group'] 
with open(output_file, 'w') as csvFile: 

writer = csv.writer(csvFile) 
writer.writerow(csv_header) 
csvFile.close() 

for image_path in image_list: 
# Read in the image_data 
image_name =  image_path # save image name for column 
image_path = image_dir + '/' + image_path #TEST: build correct img path 
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image_data = tf.gfile.FastGFile(image_path, 'rb').read() 

# Loads label file, strips off carriage return 
label_lines = [line.rstrip() for line 

in tf.gfile.GFile(labels_path)] 

# Unpersists graph from file 
with tf.gfile.FastGFile(graph_path, 'rb') as f: 

graph_def = tf.GraphDef() 
graph_def.ParseFromString(f.read()) 
_ = tf.import_graph_def(graph_def, name='') 

# Feed the image_data as input to the graph and get first prediction 
with tf.Session() as sess: 

softmax_tensor = sess.graph.get_tensor_by_name('final_result:0') 
predictions = sess.run(softmax_tensor, 
{'DecodeJpeg/contents:0': image_data}) 

# Sort to show labels of first prediction in order of confidence. Later, sorted by image 
name. 

top_k = predictions[0].argsort()[-len(predictions[0]):][::-1] 
score_list = [[]] # Clear list 
score_list[0].append(image_name) 

for node_id in np.sort(top_k): 
human_string = label_lines[int(node_id)] 
score = predictions[0][int(node_id)] 
score = format(score, '.5f') #Format score 
print('TEST----------------------') 
score_list[0].append(score) 
# print('%s (score = %.5f)' % (human_string, score)) 

with open(output_file, 'a') as csvFile: 
writer = csv.writer(csvFile) 
writer.writerows(score_list) 
csvFile.close() 

image_path = ' ' 

# Ensure output file is properly closed 
if not csvFile.closed: 

csvFile.close() 
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Output: predicted class for the unknown images 

H.20. GitHub Resources 

https://github.com/Ohio-State-Allen-Lab 
https://github.com/AbbieEnders/AbbieEnders 
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Appendix I. Sea Surface and Bulk Sampling of Atlantic Ocean and Banana River in 
Florida in January 2023  

Work done on this trip was done alongside Jessica B. Clark and Nicole M. North. 

I.1. Precleaning the Glass Sample Vessels 

The glass sample vials were cleaned via dishwasher with a surfactant solution 

followed by another rinse in the dishwasher with only water. Both times the dishwasher 

was run on the “Sanitize” mode. When removed from the dishwasher the glass sample 

vessels were only handled with nitrile gloves. 

I.2. SSML/ Surface Sampling 

The surface water was sampled using a method established by Harvey and 

Burzell.239 A glass slide (MilliporeSigma, unframed, H × W × D 200 mm × 260 mm × 4 

mm), held by a clip, was submerged vertically into the water and withdrawn quickly (~1 

second). Film was transferred from the glass to the glass storage vessel using a repurposed 

squeegee. Repeated sampling enabled collection of sufficient volume. 

I.3. Sea Foam Sampling 

Sea foam was collected by placing the glass slide on the surface of the water and 

“picking” up the foam. Using a squeegee, the foam was transferred to a glass storage vessel. 

I.4. Bulk Ocean Sampling 

The jars were rinsed 10 times in the sample water. The lid was then used to cover 

the glass vessel as it was submerged under the surface approximately 6 inches, the lid was 

then removed to collect a bulk sea sample without sampling the SSML. 
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Figure 61. Photo of Abbie rinsing glass vessel in accordance with protocol for collecting 
bulk samples. 
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Figure 62. Picture of Abbie (light blue) with glass slide on Banana River, assisted by Nicole 
(gray long sleeve) holds the kayak steady and Jess (gray short sleeve) operates the squeegee 
and glass storage vessel. 
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Figure 63. Jess squeegees the glass slide, held by Abbie, after it was dipped in the Banana 
River during surface sampling. 
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Figure 64. Nicole (left) and Jess (right) collect sea foam/surface in Atlantic ocean by 
placing slide on surface squeegeeing off the water into glass storage vessel. 
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