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ABSTRACT: The primary result of this work is the derivation and measurement of the average
“Decision Contribution Spectrum” using a mouse tumor sample data set and the linear support
vector machine (SVM) method from a perspective of spectroscopy. The “Decision Contribution
Spectrum” gives the average contribution to the decision (tumor/nontumor in this case) at each step
along the spectrum. A library of more than four thousand infrared (IR) spectra was obtained with a
Fourier Transform Infrared (FTIR) microscope imaging system on a frozen section of an SKH1
mouse tumor - an accepted murine model for studying squamous cell carcinoma in that it very closely
recapitulates the human disease. A linear SVM model was trained and tested avoiding overtraining
and offering simple feature selection. It was used to see how much data can be removed without
affecting the quality of decisions. Then, two further efforts are described to move IR spectroscopy
toward future use in human skin cancer detection: (i) the design of a reduced range and reduced
sampling for a fast and hand-held, mid-infrared spectral probe, and (ii) the use of a fiber-loop sensor
probe (with FTIR in this preliminary study) on live SKHI mice that had tumors to detect cancer
externally and show no ill effects on the mice. The combination of the latter efforts supports the feasibility of using a fiber-loop
sensor with a fast and hand-held mid-infrared spectral probe for the detection of skin cancer on humans. This work does not
demonstrate a working human skin cancer probe, rather it provides evidence for judging whether work on live human skin is
justified.

1. INTRODUCTION progress toward the ultimate goal of a probe for human skin
cancer. This work does not demonstrate the ultimate goal,
rather we take the current positive results as a necessary but
insufficient condition. We are judging whether work on live
human skin is justified. There were three parts to this study:
(1) Fourier transform infrared (FTIR) microscope imaging
was recorded on a frozen section of an SKH1 mouse tumor
yielding a library of 4064 IR spectra (2553 tumor spectra and
1511 nontumor). The efficacy of the linear SVM model was
determined by training on half the data and testing with the
other half. The “decision contribution spectrum” was then
extracted to get the average contribution to the tumor/
nontumor decision at each spectral step. (2) Data was removed
(reduced ranges and tolerable increases in spectral step) to
explore how much spectral data can be removed without
adversely affecting decisions. The ranges studied started with
H-stretching region vs the fingerprint region and ended with
popular quantum cascade laser (QCL) ranges. (3) Finally, IR

Spectral libraries and machine learning methods' offer
opportunities to extract spectral knowledge and classify
unknown samples. This work features binary tumor/nontumor
decisions from spectra. The most important scientific
contribution of this work is the development of a linear
support vector machine method from the perspective of
spectroscopy, i.e., the linear support vector machine (SVM)
equations from Cortes and Vapnik® have been rewritten in
terms of scaled spectra and used to derive the “decision
contribution spectrum” giving the average contribution to the
decision at each wavenumber step in the spectrum, i.e., each
spectral step. This work also describes how the output of only
three spectra and a constant allows the use of the decision
equation without the training data, which is a great benefit
when training is time-consuming or compared to methods
requiring on-site training. Machine learning techniques and
support vector machine methods are gaining wide attention for
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vibrational spectroscopy in physical chemistry”™’ and bio-

medical applications.”” "> Here we show the utility of linear Received:  October 16, 2025
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This work starts by deriving the “decision contribution
spectrum” and making the first measurement of it in the
context of mouse tumors. Then, the results are used to make
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spectra were recorded on live SKH1 mice that had tumors
induced by UV irradiation using an FTIR fiber optic adapter
and a fiber-loop sensor probe. The results were examined for
the ability to distinguish tumors on live skin with reduced
spectral range and reduced sampling within the range.

The motivating question for this work is: Can direct infrared
(IR) absorption spectra, as obtained by touching live human
skin with a probe, detect skin cancer on a time scale useful
during a visit to the doctor’s office? Mid-IR vibrational
spectroscopy has long been known to be able to detect
cancer”' " 7?7 without the need for labels such as
fluorophores, radiolabels, and monoclonal antibodies,'>*°
and work on diagnostic methods provides a growing
foundation.'”***'™*> Fourier Transform Infrared (FTIR)
spectroscopy,’® a traditional IR method, has been previously
utilized for the detection of skin cancer,>”*® but current
designs are too slow for fast and inexpensive diagnostic work in
a doctor’s office. However, tunable IR lasers are increasingly
available such as the quantum cascade laser (QCL),”"*"™* yet
of greatly reduced range of tunability (compared to FTIR)
while multiple QCL systems are too expensive. Future devices
might employ a QCL for skin cancer®' as has been explored for
glucose detection.”* ™ The work presented here uses FTIR
data to design operational features of a fast QCL mid-IR
spectral probe. The work is directed toward the design only,
and the working probe is left for a future paper.

2. SVM DECISION EQUATIONS WITH SPECTRAL
LIBRARIES

The set of tissue spectra recorded for an experiment can be
used as a library of predictors and the corresponding pathology
assessments provide the response variables for training
machine learning decision equations. The model used in this
work is the supervised machine learning model called a
Support Vector Machine (SVM) of Cortes and Vapnik,” which
provides an optimal hypersurface for separating measurements
of two classes (such as tumor and nontumor) by fitting the
hypersurface to selected data called “support vectors” from the
Predictor subset of spectra which lie between the two
identified classes. Note that when using full IR spectra as the
data set, support vectors have the form of full-range, digital IR
spectra. A linear kernel function with spectral scaling
minimizes overfitting and provides simplicity and feature
selection, i.e., transfers best to future tests—at least for this
skin cancer data set. The linear SVM decision e(}uation value
(d) from the Cristianini and Shawe-Taylor text'’ can be re-
expressed for a full IR test spectrum (Test,;) as

SV, . — Train, | Test, ; — Train;
do=b+ Z ay i j J j

GTrain, oTrainl

(1)

where the index i is for support vectors, j for spectral steps (the
dot product index), and k for the spectrum to be tested.
Furthermore, b is the scalar bias constant, a; are the weights of
the support vectors (SV;;) chosen as spectra near the
separating hypersurface, and y; are the group membership
[class 1 (tumor) and class 2 (nontumor) of the binary
decision]. Since scaling is essential, the mean training spectrum
(Train) is subtracted from spectra (both support vectors and

the test spectra) with stepwise division of the result by the
standard deviation of the training set (o7, ). The expression
7

within the dot product brackets is called the “kernel” which
allows generalization to nonlinear models, but this work uses
only the linear option. Mathematically, d; is the perpendicular
distance from the separating hyperplane to a test spectrum as a
decision data point. To clarify, d; has the form of distance, but
there is a component for every step in the full IR spectrum, so
it is a distance with 1626 components in this case, i.e., a hyper
dimensional distance. Values of d; > 0 classify into one class
(such as tumor), and d; < 0 classify into the other (such as
nontumor). In order to use the decision equations in this form,
the spectral data file of every support vector needs to be
transmitted to the potential user and there can easily be
hundreds or thousands of support vectors—each a full IR
spectrum in this example.

Since many popular machine learning models produced
overtrained spectral results on this data set (high training
accuracy, low accuracy on new predictions or a failure to
generalize), a linear SVM model'”'”*~* was chosen to
represent these results (the “fitcsvm” function of the MATLAB
programming environment from MathWorks.com). A more
useable SVM form for spectroscopists is attained by moving
the support vector summation of eq 1 into the vector inner
product bracket and commuting the row and column of the
inner product. The decision equation is rewritten as

Test, ; — Train,
d=b+( —2—

aTrain/.

SV, . — Train;
where ﬂ] = Z ay Z !
i O-Train/ (2)

where f3; (the “fitcsvm.m” variable name) has the form of an IR
spectrum when using the full set of spectral steps for training.
The bracket at left indicates an inner dot product over spectral
steps. The SVM program essentially determines optimized
values for the bias offset b and f.In our opinion, the linear
SVM result seems to be more closely related to a least-squares
fit than popular machine learning models like deep neural
networks. We call f§; the “SVM f spectrum”. Once obtained,
the decision equation itself can be extracted (by outputting
three spectra and a constant, i.e., Train;, OTrainy Py and b) and

used independently of the programming environment to
classify new spectra. Notice that the SVM f spectrum has
contributions from all support vectors at each spectral step
(see the right-side of eq 2), but such contributions have been
separated-out of the left-side of eq 2. The multiplication of f3;
by a scaled spectrum reveals the wavelengths that are most
important in a specific decision regarding the chosen classes.

It is interesting to consider eq 2 in terms of the average class
1 (“T” for tumor) or class 2 (“NT” for nontumor) spectra, i.e.
T} and N—Tj, respectively. The average decision equation value

results can be written in terms of the individual spectral steps
for tumor and nontumor as

Jmax N'I} — Trainj

dNT =b+ ), s
j=1 GTrainj
j
a2 [T, — Train
I ]
anddT =b+ ) | —|8

j=1 O-Train/ (3)
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where j.. is the number of spectral steps. Examination of the
difference between d_Tl and dNT; at each spectral step gives the

average “Decision Contribution Spectrum”

GTraini ( 4)

at each spectral step j. The quantity A_d}- is determined by the

average difference between tumor and nontumor spectra as
scaled by the training set and multiplied by 3, the “SVM beta”
spectrum. Also note that each step of f; corresponds to the
summed contribution of all support vectors at that spectral

step. An examination of Eij across the spectrum identifies the

importance of spectral steps (wavenumbers in this case) which
is useful if one needs to reduce the number of wavelengths
employed in measuring a spectrum. This can be used for
feature selection in an average sense, i.e., the selection of the
most important wavenumbers on average. Conversely, it
indicates that measurements are not needed at all wave-
numbers, so some measurements need not be made. It is useful
to begin to learn about noise in the average “decision
contribution spectrum”. How important are big changes in
the IR spectral bands upon becoming cancerous vs
contributions of the SVM beta spectrum itself2 Which
vibrational bands are most important to decisions? This
formalism enables such questions to be investigated.

3. EXPERIMENTAL SECTION

Keratinocytic carcinoma (including basal cell and squamous
cell carcinoma) is the most prevalent form of any cancer in
humans.”® The SKHI1 mouse model of UV-induced cutaneous
squamous cell carcinoma (SCC) is an accepted murine model
for studsyin§ SCC development as it recapitulates the human
disease, 1753 50 the detection of SKH1 mouse tumors serves as
a good pretest for eventual use in humans for skin cancer. The
animal protocol was designed to minimize pain or discomfort
to the mice. All procedures were approved and performed in
accordance with the University PHS Welfare Assurance
number (A3261-01) and our Animal Care and Use
Committee (IACUC protocol 2010A00000083, approved 2/
4/16). An SKH-1 mouse developed tumors after exposure to
UV, three-times daily, for 14 weeks. One tumor was obtained
for a frozen section using FTIR microscope imaging and live
mice with tumors were probed with a fiber-loop sensor and
FTIR fiber optic adapter.

3.1. FTIR Microscope Imaging of a Frozen Section.
Full-range IR spectra were recorded on a frozen section of an
SKH1 mouse tumor using hyperspectral microimaging with a
PerkinElmer Spotlight 400 Fourier Transform Infrared (FTIR)
instrument as shown in Figure 1. Details of acquiring a ~3 pm
thick frozen section of an SKHI1 mouse tumor are given in
Supporting Information (see Figure S1). The red rectangle
(1.588 mm X 0.100 mm area) in Figure 1 of the frozen section
was imaged with 254 X 16 = 4064 square pixels each with 6.25
pum square edges. An FTIR spectrum was recorded at each
pixel (4000—750 cm™" spectral range, 4 cm™' resolution, 2
cm™! steps, 16 scans per pixel taking ~90 min, with a liquid
N,-cooled MCT detector). Afterward, the exact same tissue in
the same sample holder was stained with H&E* and imaged
with a different optical microscope. The result has been
overlaid in registry with the yellowish pre-IR imaging picture

gn Level 2

Figure 1. An unstained frozen section of ~ 3 um of thickness was
positioned on a ZnSe IR window (yellow underneath image) for
examination under an IR microscope. The red rectangle indicates a
region that was subjected to microscopic IR hyperspectral imaging.
Afterward, an H&E stain (top reddish overlay) was obtained of the
exact same tissue and imaged under an optical microscope. The two
images were scaled, oriented, and overlaid in registry. Epidermis (skin
exterior) is to the right, dermis (skin interior) is to the left. The tumor
(right) stained dark red, while the nontumor (left) was much lighter.
A white line shows the separation between tumor and nontumor to
establish the response variables. Note that the dermis side of the
dermis/epidermis interface was punctuated with hair follicles
(vertically down the center).

by means of scaling and a slight counterclockwise rotation.
Note that the H&E image had a ZnSe yellow color cast which
was removed and then contrast-adjusted using Adobe
Photoshop Elements 2.0 (“Enhance” tab, “Adjust Color”
option, and “Color Cast”). The epidermis stained dark red
with H&E, as did the tumor. Pixels to the right of the white
line were indexed as tumor class, while pixels to the left were
indexed as nontumor class for use as response variables for
machine learning routines. The clear delineation between
tumor and nontumor regions made for an ideal data set for
fitting an SVM p spectrum, group decision equations, and
feature selection.

3.2. Live Mouse Spectra. A fiber optic coupler (Harrick
FiberMate 2) was placed in the sample region of a PerkinElmer
Spectrum 100 FTIR (Figure 2a) and connected to an ATR
fiber-loop probe sensor”*® (Art Photonics, Figure 2b). Mid-
IR radiation flows through the fiber-loop sensor (zoom in
Figure 2c) including a component that travels a few
wavelengths outside of the loop as an evanescent wave before
heading back to the spectrometer’s detector. After a back-
ground spectrum is recorded with the fiber-loop in air, then the
fiber-loop is touched to skin (see Supporting Information and
Figure S2) which absorbs IR from the evanescent wave due to
the vibrational bands of tissue proteins, lipids, and other
biomolecules yielding a sample spectrum. The negative log of
the ratio of the spectrum signal (touching skin) to the
background (air) gives an absorption spectrum of skin tissue.
Fiber optics limited the useable range of the PerkinElmer
Spectrum 100 FTIR to 1800—700 cm™" (the FTIR instrument
is typically 4000—700 cm™") and spectra were recorded on and
off tumors using 25 scan averages, 1 cm™! steps, 4 cm™!
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Figure 2. (a) Fiber optic coupler (Harrick FiberMate2) is placed in the sample compartment of a PerkinElmer Spectrum 100 FTIR. (b) An Art
Photonics fiber-loop ATR probe sensor is coupled to the FTIR with mid-IR fiber optics. (c) Zoomed image of the fiber-loop sensor through which
IR light travels from and back to the FTIR. The IR includes an evanescent component traveling a few wavelengths outside of the loop allowing

spectra to be recorded of things that the probe touches.

T

T N T
a) 3+Raw Spectra per Pixel b -
(0]
[&] |
52 ‘ Tumor / \/ .
2 N Nontumor Y
o \ ,
2 1 i y W\\v\ 4
0F_ — 4
1 1 1 1 1
4000 3500 3000 2500 2000 1500 1000
v (cm'1)
T T T I T T
b) 3-Preconditioned Spectra per Pixel ‘ -
3 ? ! Tumor Y |
é 1 \»\/ ““v,\ Nontumor ‘ \AA,/\\\A ]
‘ Difference J 1
4000 3500 3000 2500 2000 1500 1000
v (cm'1)

Figure 3. (a) Raw average tumor (red) and nontumor (green) spectra of an SKH1 mouse frozen section. (b) Since the baselines were quite
different, a baseline correction was applied before machine learning analysis. The tumor and nontumor difference (black trace) shows significant

differences between the tumor and nontumor spectra.

resolution, with a liquid N,-cooled MCT detector, requiring
about 2.5 min each. The tumors had thick keratinized tops so
that the probe could not push into the tumor as it could for
normal skin, so these spectra had much less intensity because a
smaller surface area of the fiber-loop probe touched sample.
Note that tumors are often stiffer than normal tissue.””>* We
obtained 16 nontumor and 12 tumor spectra for analysis.

4. RESULTS

4.1. FTIR of SKH1 Tumor Frozen Section Results. The
tissue section had a clearly indicated transition from tumor to
nontumor (white line in Figure 1) which was used to define
the response variables. There were 2553 tumor spectra and
1511 nontumor spectra for a total of 4064 full-range spectra—
each corresponding to a 6.25 um X 6.25 um pixel. Figure 3a
shows the average raw IR spectra of the tumor (red) and
nontumor (green) regions on a per pixel basis. The SKH1
mouse tumor shows an average increase in lipid CH, fat chains
(2924 cm™" and 2852 cm™', matching spectra of monooleate
and lard) as has been seen in some other cancers.””*’ It is
interesting that the class baselines (probably due to scattering)
were so different. Consequently, the spectra were precondi-
tioned with a baseline correction as shown in Figure 3b. The
absolute intensities are meaningful (as they are on a per pixel
basis—unlike the live mouse spectra) and there are definitive

differences between the tumor and nontumor regions as
highlighted by the black trace in Figure 3b which is the average
difference spectrum. As a first test, the set of 4064 spectra were
randomly divided into two groups with ~half for training and
the remainder for testing. A linear SVM routine (MATLAB’s
“fitcsvm” function with scaling “Standardize” option) was
trained on one-half and tested with the other. Histograms of
the decision equation values [d;, see eq 2] from three
successive random partitions are overlaid for training in Figure
4a and for testing in Figure 4b. The nontumor results are
plotted with green and the tumor results in red. Notice that
there is no overlap between green and red for the trainings, so
there are no errors in any of the trainings. Upon testing, notice
a very small amount of overlap corresponding to small errors
(0.34% in one run). A 10-fold cross validation was done using
the 50% training results showing an error of 0.35 + 0.41%. The
histograms provide visual evidence of an excellent model (of
course it is only one tissue sample).

The average contribution to the tumor/nontumor decision
at each spectral step j, Ej, is given in Figure S (blue trace)

using the full spectral library of baseline corrected spectra.
Extended sections labeled “Noise” with blue arrows have little
difference in the tumor and nontumor spectra due to the lack
of fundamental vibrations in these regions. They contribute
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Figure 4. (a) The linear SVM decision equation value histograms of
three random training runs (random ~50% of the spectra) are
overlaid with true tumor (red) and true nontumor (green). The cyan
line is the decision equation dividing line and the dotted cyan lines
correspond to + a standard deviation of the scaled support vectors.
There are no training errors as illustrated by no overlap of the green
and red distributions. (b) The corresponding testing for each of three
runs shows a small amount of overlap which averages to an error of
0.35%, i.e. accuracy is 99.65%.

much noise to the tumor decision and might be profitably
eliminated from the machine learning input. The important
signals are in the H-stretch and fingerprint regions. Prominent
peaks in the Decision Contribution Spectrum are labeled with
vertical labels in cm™ in Figure 5. In the fingerprint region,
there are strong negative features at 1106, 1120, 1646, 1656,
and 1714 cm™ and strong positive features at 938, 1018, 1162,
1344, 1456, 1540, and 1736 cm™". In the H-stretch region,
there are strong negative peaks at 3102, 3128, and 3300 cm ™
and strong positive ones at 2930, 3314, and a broad positive
range from 3314 to 3642 cm™'. These must be considered
relative to the absorption bands in the FTIR spectra, but they
often do not occur at the absorption band maxima. The largest
integrated feature is the negative peak at 1120 cm™" extending
from 1044 to 1142 cm™' which corresponds to a region with
the PO, symmetric stretch of many phosphorylated molecules
(~1083 cm™") and C—O bands of carbohydrates like glycogen
(1008 cm™"). The most intriguing feature is the sharp negative
peak at 1714 cm ™! extending from 1702 to 1732 cm™" which is
in the region of ester-linked lipids (~1741 cm™"). Finally, there

is much positive and negative structure in the amide I and II
band regions suggesting protein band shape changes upon
becoming cancerous. There does not seem to be one peak that
dominates the decision; and all the bands in the H-stretch and
fingerprint regions make contributions to the tumor decision,
so in theory “the more, the better”. However, practical probe
design considerations might favor one region over another.
Which regions are best?

4.2. Identifying Probe Ranges and Spectral Steps for
Spectral Devices. The regions 3670—2790 cm™"' (Region 1)
or 1860—760 cm™' (Region 2) of Figure S are good for
decisions because they correspond to fundamental vibrational
bands of biomolecules.' " Region 1 is the H stretching region
(OH, NH, and CH stretches) with strong protein bands
(amide A and B) and lipid bands (C—H stretches of CH,
chains and CH,), while Region 2 is sometimes called the
“fingerprint” region which has lipid, amide I and II, phosphate,
glycogen bands and many other biomolecules. If FTIR was too
slow and complex (moving optical parts, liquid nitrogen
detectors), then a QCL might be employed for a medical
device with the disadvantage of a limited spectral range. So,
which range is better for a limited range spectral device? Mittal
and Bhargava62 addressed this issue with breast tissues and
found only small differences with “the fingerprint region-based
classifiers consistently emerging as more accurate.” Region 2
seems to have strong and sharp changes in A_d]- (see Figure S)

at the amide I and II bands and a big downward feature near
phosphate and glycogen bands. Note that regions with some
wavenumbers good for tumor decisions and others for
nontumor are likely best for cancer decisions. The linear
SVM calculations were repeated using only spectral data from
each region, i.e. removing all data not in the specified range.
Region 1 gave a training error of 0.27% (full data set was 0%)
and had a 10-fold cross-validation error of 0.54 + 0.34%.
Region 2 gave a training error of 0% (same as full range set)
and a 10-fold cross-validation error of 0.10 + 0.17%. Again,
like Mittal and Bhargava,®” the fingerprint region is found to be
more accurate.

QClLs are available in the fingerprint region (Region 2), but
not the OH, NH, and CH stretch region (Region 1). Consider
that they frequently have only 200 cm™! tuning ranges,
although larger ranges are possible.”® So, a program using
linear SVM was written to calculate the accuracy using only a
200 cm™" range of data and then that range was scanned across
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Figure 5. Average contribution to the tumor/nontumor decision (blue trace) at each spectral step j for the SKH1 mouse frozen section. The black
trace is the difference between the averaged and preconditioned spectra of tumor and nontumor. The regions label “Noise” are regions where there

is little difference in spectra as there are no fundamental vibrations of biomolecules in these regions. The regions from 1860 to 760 cm™

! and

3670—2790 cm™' show important positive and negative contributions to the tumor decision.
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Figure 6. Training error using only a 200 cm™' range (red) of the full set as that range is tuned across the spectrum. The smallest errors are in

Regions 1 and 2, but the errors in Region 2 (fingerprint region) are smaller than Region 1.

the spectrum. The training error results are shown in Figure 6.
Again, like Mittal and Bhargava,62 limited ranges in the
fingerprint region are found to be more accurate—although
both regions are useable.

Which of the four common single QCL ranges (that are
often configured to work as one unit in IR microscopes®”) is
best for skin cancer work? The ranges 1850—1644 cm™’,
1642—1352 cm™, 1350—986 cm™, and 984—780 cm™' were
investigated by using only data from each spectral step (2 cm™
intervals) in these regions to obtain decisions. The Training
errors and 10-fold cross-validation errors are given in
Supporting Information (Table S1). The second (amide
band region) and third region had the lowest errors, i.e., 10-
fold cross-validation errors of 0.30 + 0.30% and 0.05 + 0.16%,
respectively. More importantly, it is clear that one need not
make measurements at each spectral step. Calculations were
done using every other step (4 cm™' intervals), every fifth step
(10 cm™ intervals), and every 10th step (20 cm™ intervals).
There is roughly a doubling of error when only every 10th step
is used (90% of the data are dropped) vs use of all data. Details
are in Supporting Information, Table S1. As an example, a
QCL operating from 1350 to 986 cm™' could measure at 37
wavelengths in 10 cm ™" steps obtaining a result as good as the
full spectrum training. Therefore, in addition to reducing the
range for a spectral cancer probe, one can also reduce the
number of wavenumbers measured. In fact, 9 out of 10
measurements were dropped in analysis without significantly
degrading decisions.

4.3. Spectral Evaluation of Live Tissue. The above
results involved scanning tumor directly, now consider a
situation closer to our desired application—namely probing
the skin of a living entity. Raw spectra of living mice are shown
in Figure 7 in which all the nontumor spectra were of higher
absorbance intensity. Examination of the raw spectra in Figure
7 shows that there is perfect separation of tumor and
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Figure 7. Raw probe FTIR spectra at the base of tumors (red) and off
tumors (nontumor, green).

nontumor spectra based on the absolute intensity of the
spectra. However, this is not useful as the probe can be pushed
into tissue differently—by different investigators or on
different occasions by the same investigator. Spectral
preprocessing was guided by the previous imaging work and
involved subtracting the baseline average in the region from
1800 to 1770 cm™" and normalizing the result to control for
different probe pressure and tissue elasticity as shown in Figure
8a. The averages of the preconditioned spectra are given in
Figure 8b showing significant differences (black trace) in spite
of normalization. Finally, a linear SVM decision equation was
trained with the 28 preconditioned spectra, and the
corresponding histogram of the decision equation values is
given in Figure 8c showing zero errors upon training. One can
still discriminate tumor and nontumor on live skin even if the
tumor elasticity hint is removed by normalization and the
decision equations are different than that for frozen sections.

The average contribution to the tumor/nontumor decision
at each spectral step [A_d}. of eq 4] is plotted in Figure 9 with

blue. The sharpness of the features was surprising with widths
of ~4 cm™! matching the FTIR resolution. The most intense
features are in the amide I and II band regions although there
is a concentration of smaller features in the 1130—950 cm™!
region of glycogen and phosphorylated biomolecules. This
type of feature analysis suggests that a probe for live skin might
work best in the amide I and II band region. Also, one might
not need to measure signals where Eij is close to zero which

means that spectra could be more quickly recorded by only
measuring wavenumbers labeling the maxima and minima of

Ad; or at large and equal steps across the region.

5. CONCLUSIONS

The large FTIR microscope imaging spectral data set (2553
full-range tumor spectra and 1511 full-range nontumor
spectra) of the frozen section of the SKH1 hairless mouse
tumor showed significant differences between the average
tumor and nontumor spectra—even after baseline correction.
The absolute intensities are meaningful as all spectra
correspond to the same pixel area and tissue thickness,
however the desire for use in more applications led to
preconditioning with baseline correction and normalization.
The data were analyzed with a linear SVM model which both
avoids overtraining and offers simple feature selection of the
“decision contribution spectrum”. Training randomly on ~50%
and testing on the remainder (~50%) gave zero training errors
and small testing errors (0.34% in one run). A 10-fold cross
validation on the full library using the 50% training gave error
of 0.35 + 0.41%. The errors of cross-validation and testing
were small and similar, suggesting that linear SVM gave good
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Figure 9. Average contribution to the tumor/nontumor decision (blue trace) at each spectral step j for the SKH1 mouse frozen section. Many
maxima and minima are labeled in units of cm™'. The average preconditioned spectra of tumor (red) and nontumor (green) are plotted for
reference. The largest contributions to tumor decisions seem to come from the amide I and II band regions.

decision equations. The average Decision Contribution
Spectrum regarding the tumor/nontumor decision [Ad}- of eq

4] is given in Figure S. There is noise in ranges devoid of
vibrational bands. The largest integrated feature in the
Decision Contribution Spectrum comes as a negative peak at
1120 cm™" corresponding to the PO, symmetric stretch of
many phosphorylated molecules, carbohydrates and/or poly-
saccharides. There is a sharp negative peak at 1714 cm™" with
rapid changes in intensity which is in the region of ester-linked
lipids (~1741 cm™"). There is also much positive and negative
structure in the amide I and II band regions suggesting protein
band shape changes upon becoming cancerous. There does not
seem to be one peak that dominates the decision; and all the
bands in the H-stretch and fingerprint regions make
contributions to the tumor decision.

Given good training and testing results, the effects of
removing data were examined. Two spectral regions had sharp

positive and negative features with rapidly changing trends that
indicate where fundamental vibrations in tissue change upon
becoming cancerous. Region 1 was the H stretching region
(3670—2790 cm™!, amide A and B, lipid CH, chains and CHj,)
and Region 2 was the “fingerprint” region (1860—760 cm™,
lipid, amide I and II, phosphate, glycogen bands and many
other biomolecules). Both regions can discriminate tumor
from nontumor, but Region 2, the fingerprint region, does so
with more accuracy (Figure 6). The fingerprint region was
further divided into subregions commonly covered by popular
commercial QCL systems. Such systems can be integrated, i.e.
programing or tuning like one broadly tunable laser, but they
are expensive. Considering that a device for medical practice
might only be able to have one QCL, four subregions were
tested, and each was found to do a decent job at discriminating
tumor. The subregion from 1350 to 986 cm™' was most
accurate. Then, each subregion was studied as spectral steps
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were dropped revealing only a doubling of the error rate even
after removing 90% of the data. This implies that practical mid-
IR spectral probes can be designed with just one QCL (a very
reduced range compared to FTIR) and that the device might
measure with 10 or 20 cm™ steps or sampling intervals (at a
higher resolution than FTIR) allowing fast and decisive spectra
to be recorded on live human skin.

Finally, spectra were recorded on the outer skin of live mice.
In this part of the study, 16 nontumor and 12 tumor spectra
from live SKH1 hairless mice were recorded in the region from
1800 to 700 cm™" and there was excellent separation of tumor
and nontumor spectra based on the absolute intensity.
Preconditioned spectra were successfully trained with linear
SVM which made no training errors in distinguishing tumor.
The average Decision Contribution Spectrum of Figure 9
reveals the most critical wavenumbers in the protein and lipid
region for live skin assay. It identifies critical wavenumbers that
should and need not be measured. Since the mid-IR fiber
optics filtered away the OH, NH, and CH stretching region,
this work shows that a reduced range in the fingerprint region
compared to that of traditional full-range FTIR can be viable in
distinguishing cancer. Of course, the frozen section work
already revealed greatly reduced ranges and increased sampling
intervals that look promising. These results show that it is
possible to detect skin cancer externally and with no ill effects
on the living entities. The current positive results are necessary
but insufficient conditions for demonstration of the ultimate
goal of probing live human skin. We conclude that the
combination of a fiber-loop sensor with a fast mid-infrared
spectral probe (of reduced range and increased sampling
interval relative to FTIR) is worthy of examination for live
human skin. Clinical trials of this device are warranted on skin
cancer in humans.
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