Interaction of an infrared surface plasmon with an excited molecular vibration

Kenneth R. Rodriguez, Hong Tian, Joseph M. Heer, Shannon Teeters-Kennedy, and James V. Coe

Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1173

(Received 7 February 2007; accepted 20 March 2007; published online 18 April 2007)

The interaction of an infrared surface plasmon and an excited molecular vibration was investigated by using a square array of subwavelength holes in a Ni film which supports propagating, surface-plasmon-mediated, transmission resonances. The largest transmission resonance [the (1,0) resonance] was tuned through the rocking vibration of the hexadecane molecule (at 721 cm⁻¹) in a hexadecane film on the mesh by varying the thickness of the film. The interaction of the rocking vibration and surface plasmon is characterized spectroscopically by an increase in the intensity of the vibrational band by more than a factor of 2, variation of the vibrational line shape relative to the spectrum on a nonmetallic surface, and shifts in vibrational peak position by as much as 3.0 cm⁻¹. Relationships are developed between the transmission resonance position and the thickness and dielectric properties of the coating. © 2007 American Institute of Physics.

INTRODUCTION

Freestanding Ni metal films with square arrays of subwavelength holes (meshes) have been shown to exhibit Ebene’s extraordinary transmission effect in the infrared (IR), i.e., they have one or more resonances that transmit a higher fraction of incident light than the fraction of open surface area. There is clearly a role for propagating surface plasmons (SPs) and a similarity of the dispersion to that of SPs on smooth air metal interfaces, such as those involved in metal-coated prisms and attenuated total reflection (SP-ATR) experiments. The transmission resonances of freestanding mesh (even when excited at perpendicular incidence) exhibit behaviors analogous to SP-ATR experiments, including sensitivity to nanoscale changes in coating thickness and the interaction of molecular electronic excited states and SPs (Refs. 9 and 12) in the visible. In these experiments, the primary transmission resonance is tuned both by the thickness of a coating and the incident angle of a spectrometer’s beam in order to bring a molecular vibration into and out of resonance with an infrared SP-mediated transmission resonance.

THICKNESS TUNING

When a Ni mesh [geometry given in Fig. 1(a)] is removed from neat hexadecane solution, some of the solvent spreads out over the mesh and a film of micron-scale thickness remains. The coating may remain for weeks due to the low vapor pressure of the 16-carbon-atom-long hydrocarbon. When the coated mesh is placed in a Fourier transform infrared (FTIR) spectrometer, the transmission spectrum is dramatically altered as shown in Fig. 1(b) (dotted trace is before coating and the solid trace is after coating). Notice that upon coating with hexadecane, there is a large redshift and broadening of the (1,0) resonance as well as dips associated with molecular absorptions. Absorption spectra are obtained from the trace using a smoothed background from a spline of points along the trace avoiding the molecular absorptions [result shown in Fig. 1(c)]. A glow bar source heats the hexadecane film as the coated mesh sits in the FTIR and competition ensues between evaporation of the coating and heat...
Conduction from the mesh by the metal support. The film typically evaporates until conduction through the support overtakes evaporation leaving a coating of submicron thickness. Traces of the \((1,0)_{\text{primary}}\) transmission resonance were recorded before coating and successively in time after coating. Selected traces (numbered in time after coating) are shown in Fig. 2. Reduction in film thickness shifts the initial position of the \((1,0)_{\text{primary}}\) primary transmission resonance in this experiment from 628.2 cm\(^{-1}\) with the thickest coating (trace 1) to 733.8 cm\(^{-1}\) (trace 55) where the film has largely stopped evaporating (the resonance occurs at 754.2 cm\(^{-1}\) for uncoated mesh). Thickness tuning takes the SP resonance through the most intense \(\text{CH}_2\) rocking vibration of hexadecane at 721 cm\(^{-1}\). The traces in Fig. 2 were converted to absorption spectra which showed the coating getting smaller in time over most of the spectral region. To account for evaporation, all of the spectra were scaled to give an absorbance of 1.0 on the \(\text{CH}_2\) symmetric stretching vibration at 2854 cm\(^{-1}\). The \(\text{CH}_2\) rocking region has been expanded to see the differences when the \((1,0)_{\text{SP}}\) is resonant compared to the spectra on ZnSe. Inset is a picture of the 721 cm\(^{-1}\) rocking vibration.

\text{FIG. 3. Absorption spectra corresponding to the transmission spectra of Fig. 2. All spectra were scaled to an absorbance of 1.0 on the \(\text{CH}_2\) symmetric stretching vibration at 2854 cm\(^{-1}\). The \(\text{CH}_2\) rocking region has been expanded to see the differences when the \((1,0)_{\text{SP}}\) is resonant compared to the spectra on ZnSe. Inset is a picture of the 721 cm\(^{-1}\) rocking vibration.}

\text{FIG. 3. Absorption spectra corresponding to the transmission spectra of Fig. 2. All spectra were scaled to an absorbance of 1.0 on the \(\text{CH}_2\) symmetric stretching vibration at 2854 cm\(^{-1}\). The \(\text{CH}_2\) rocking region has been expanded to see the differences when the \((1,0)_{\text{SP}}\) is resonant compared to the spectra on ZnSe. Inset is a picture of the 721 cm\(^{-1}\) rocking vibration.}

\text{FIG. 4. Position of two vibrations (\(\text{CH}_2\) symmetric stretch and \(\text{CH}_2\) primary rock) vs the position of the SP \((1,0)_{\text{SP}}\) transmission resonance. The \(\text{CH}_2\) symmetric stretch is largely unaffected (top plot) while the \(\text{CH}_2\) rock is pulled toward the resonance. The horizontal dotted lines are the positions of the vibrations on ZnSe and the almost vertical dotted line is the position of the SP resonance. The filled symbols correspond to the data set of Fig. 2 which had 28.4% transmission on the \((1,0)_{\text{SP}}\) resonance before coating. The open symbols are another data set recorded with a different mesh that had 40.6% transmission before coating. The larger transmission resonance gives a larger effect.}

\text{FIG. 4. Position of two vibrations (\(\text{CH}_2\) symmetric stretch and \(\text{CH}_2\) primary rock) vs the position of the SP \((1,0)_{\text{SP}}\) transmission resonance. The \(\text{CH}_2\) symmetric stretch is largely unaffected (top plot) while the \(\text{CH}_2\) rock is pulled toward the resonance. The horizontal dotted lines are the positions of the vibrations on ZnSe and the almost vertical dotted line is the position of the SP resonance. The filled symbols correspond to the data set of Fig. 2 which had 28.4% transmission on the \((1,0)_{\text{SP}}\) resonance before coating. The open symbols are another data set recorded with a different mesh that had 40.6% transmission before coating. The larger transmission resonance gives a larger effect.}
to propagating SPs. With angle tuning identified mechanism of extended absorption path length due sorption spectra of selected angles are shown in Fig. 6 enhancement is the micron-scale path lengths for absorption spectroscopy in addition to nance type of enhancement for mesh-based IR absorption film thickness is now constant. This suggests a new reso- vealing variations in absorption intensity even though the angle of the mesh to the incident spectrometer is maximally on resonance with the SP.

ANGLE TUNING

Evaporation effectively halts at some point in the hexadecane experiments and the mesh can be angled relative to the FTIR’s incident beam without appreciable change in the amount of absorbing material. Previously, we have observed that if the mesh is angled to disperse the SP transmission resonances, the enhanced IR absorption spectrum does not change much in the region from 900 to 3500 cm$^{-1}$, i.e., except the region of the most intense resonance. This previous work shows that one important part of the absorption enhancement is the micron-scale path lengths for absorption enabled by propagating SPs traveling along the surface. Absorption spectra of selected angles are shown in Fig. 6 revealing variations in absorption intensity even though the film thickness is now constant. This suggests a new resonance type of enhancement for mesh-based IR absorption spectroscopy in addition to (and distinct from) the previously identified mechanism of extended absorption path length due to propagating SPs. With angle tuning (as with the thickness tuning), there are vibrational band shifts toward the SP, line shape changes, and peak shifts. The line shapes are generally a few cm$^{-1}$ narrower than the full width at half maximum of 12 cm$^{-1}$ on ZnSe, with a 1–2 cm$^{-1}$ broadening when optimally on resonance with the SP (bold trace in Fig. 5).

TRANSMISSION RESONANCE SHIFTS AND COATING THICKNESS

Previous experiments have shown that the IR absorption spectrum away from the (1,0)$_{as}$ transmission resonances is largely unaffected by the angle of the mesh to the FTIR’s beam. The absorbances in the CH$_2$ stretch region appear to follow Beer’s law and are taken as proportional to hexadecane film thickness. The shifts of both the (1,0)$_{as}$ and (1,0)$_{as}$ transmission resonances are plotted versus the absorbance of the asymmetric CH$_2$ stretching vibration in Fig. 6. To analyze these results, we resort to an important and informative analogy to wavelength-fixed, angle-scanned SP-ATR experiments. These seemingly different experiments can be quantitatively compared if both are projected to the propagating SP dispersion curve (or curves) in momentum space. Pockrand has given a second order prescription revealing the effects on reflection resonances in SP-ATR experiments of adding absorbing coatings to thin metal films on prisms. The thinness of the metal films (d_1 in Fig. 7, on the order of $\sim 10–50$ nm) leads to a splitting of the reflection resonances due to coupling of SPs on each of the adjacent dielectric/metal interfaces. This coupling leads to extra radiation damping which, in turn, can be affected by coatings. Our mesh has a related coupling between the front and back surfaces as mediated through the holes, although it depends on the thickness of the holes relative to the incident wavelength and may not always be observed. Mesh transmission resonances are labeled by $(i,j)_\pm$, where i,j are steps along the reciprocal lattice (diffraction spots no longer transmitted when SPs are excited) and “±” indicates the symmetric or asymmetric resonance of the split pair [see Fig. 1(b1)] associated with front-back coupling. Although the $(i,j)_\pm$ resonances of our mesh are considerably less intense than the air

\[
\varepsilon_0
\]

coating

\[
\varepsilon_2 = \varepsilon_2^{\text{air}} + \varepsilon_2^{\text{coating}}
\]

metal

\[
\varepsilon_1 = \varepsilon_1^{\text{metal}} + \varepsilon_1^{\text{dielectric}}
\]

FIG. 7. Complex dielectric properties (ε) and geometry (d is thickness) of typical SP-ATR setup used in Pockrand’s theory for reflection resonance shifts.
(i,j) resonance, they are easier to model because they are not affected by radiation damping and the interaction of coatings with radiation damping. Use of Pockrand’s SP-ATR parameters (as defined in Fig. 7: subscripted “1,” metal film; “2,” coating, and “0” and “3,” the surrounding dielectrics) leads to the following relation for frequency shifts in the “+” transmission resonances at perpendicular incidence upon coating and after collecting terms in coating thickness \(d_2\):

\[
\Delta \tilde{\nu}_+ = - C \tilde{\nu}^2 d_2 - D \tilde{\nu}^3 d_2^2,
\]

\(\Delta \tilde{\nu} = C \tilde{\nu}^2 d_2 - D \tilde{\nu}^3 d_2^2 \)

second terms make comparable contributions \(\sim 750\) cm\(^{-1}\), a second order treatment will be needed for shifts of transmission resonances of submicron thicknesses.

CONCLUSIONS

In addition to the previous enhancements that we have reported associated with the micron-scale path lengths of SPs propagating along the surface, we now show enhancements associated with the interaction of propagating SPs and excited vibrational states. SPs can change the intensity, line shape, and position of a vibrational feature in a traditional FTIR spectrometer. These discoveries required the tuning of SP positions by variation of the coating thickness and angling of the mesh relative to the spectrometer’s incident beam. Equations have been presented and initially investigated showing that it is possible to determine the thickness and dielectric properties of thin film coatings on metal mesh with subwavelength arrays of holes.

ACKNOWLEDGMENTS

The authors thank the National Science Foundation for support of this work under Grant No. CHE-0413077 and the ACS PRF under Grant No. 42452-AC5.

9 H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).