Plasmonic metal films with subwavelength hole arrays (mesh)4–12 can be used to capture an individual subwavelength particle13,15 (or cell14) in a hole of the mesh. A number of interesting effects occur due to trapping a subwavelength particle in a similarly sized metal channel. The mesh exhibits “extraordinary transmission”6 and can be considered a high-tech infrared (IR) window even though it is made of metal. Meshes have been described as inside–out fiber optics,16–18 meaning that light is made to run along the surface of the mesh. The light is moved around on a subwavelength scale; in this case, light from a larger area is manipulated to be concentrated at the hole where the particle is positioned. An individual subwavelength particle can be examined by recording a scatter-free, IR absorption spectrum using an imaging IR microscope,13–15 even though free and isolated particles of similar size as that of the wavelength usually exhibit severe scattering effects.19,20 In a crude sense, our method is like simultaneously getting an attenuated total reflectance (ATR) spectrum21,22 of the particle from the four sides of the hole, which reduces the ATR calibration problem for variable sample penetration with wavelength and angle.

Our previous work on a library of IR spectra of 63 dust particles from our laboratory air13 offered no imaging of the subject dust particles. This work demonstrates that one can obtain an SEM image of the same particle for which one has obtained a scatter-free IR spectrum, revealing details not available with an optical microscope. The most important difference between our single dust particle work and the spectra of bulk dust samples is a large set of narrow, crystalline peaks that apparently get averaged away in bulk samples. It is well-known that the shape, orientation, and crystalline nature of a single particle affect the intensity, position, and line shape of IR phonon bands. The ability to independently address shape, orientation, and crystalline nature will no doubt be critical in the interpretation of single-particle spectra. Unlike most literature studies of crystal IR spectra, the experimentalist does not get to choose the orientation of a dust particle; therefore, a large challenge for quantitative analysis of single-particle spectra will deal with predicting spectra at arbitrary orientation. The job of making the connections between the shape/orientation of a particle and its spectrum is underway in our lab. This work shows that the job is feasible. In addition to enabling scatter-free IR absorption spectra, the metallic mesh enclosure of a dust particle stores it for further incisive experiments. Interestingly, the metal keeps a dielectric dust particle from charging too much, allowing reasonable SEM images to be recorded without the necessity of gold coating. Other single-particle techniques23 abound and include electron microscope and X-ray methods,24–27 mass spectrometry,28–31 and Raman spectroscopy,32,33 but in many methods, the particle is lost or destroyed in the course of analysis. Single-particle infrared (IR) spectroscopy34 (with either synchrotron35–37 sources, ATRs,21,22 or mesh13–15) can serve as a quick and nondestructive method that identifies individual particles for further study with the more intensive, complementary methods.

Plasmonic Transmission Resonances of Mesh. Consider the transmitted diffraction pattern of spots10,38,39 produced by shining a visible laser pointer through a piece of mesh. As one shifts to a longer wavelength and into the IR, the spacing between the spots gets larger, and fewer spots are seen, that is, the spots come out at larger angles. Transmission resonances

Received: January 13, 2012
Accepted: February 22, 2012
Published: February 22, 2012
are observed at wavelengths where diffraction spots are bent so far that they come out parallel to the surface and are no longer transmitted. The evanescent waves run along the surface, interacting with the conducting electrons of the metal, producing surface plasmon polaritons (SPPs), a mixed state of light, and conducting electrons. At holes, the SPPs may either pass over or couple back out through the holes as light, without scattering from the incident beam. Transmission resonances are usually labeled by the diffraction spots that they would be at much shorter wavelengths. Particles in mesh holes experience a situation more like the evanescent wave of an ATR crystal, in contrast to the well-known Mie scattering of an isolated particle. The IR spectrum is described as scatter-free, which means that it does not show the broad and intense Mie scattering peak nor does it exhibit scattering distortions of vibrational line shapes (the Christiansen effect). However, these spectra still have difficulties associated with particle orientation (birefringence) and particle saturation effects (vibrational cross section bigger than the physical cross section).

Motivation for Studying Dust. Microparticles have great significance in health and science. The EPA sets a 24 h standard of 35 μg/m³ for particulate matter (PM) smaller than 2.5 μm (PM2.5) and 150 μg/m³ for PM smaller than 10 μm (PM10), although this standard is only 50 μg/m³ in the EU. More information in the size range between 2.5 and 10 μm would be particularly useful in light of conflicting studies. PM10−2.5 includes the largest particles that get past our noses and throats, making it into our lungs. Because the airborne lifetime of particles decreases as the particle diameter increases, particles of ~4 μm in diameter are expected to be more correlated with the local environment and particularly important in health as they are breathed into the lungs. Substances like elemental carbon, calcium, vanadium, and organic carbon material in PM have shown strong positive correlations with respiratory health effects; therefore, it is desirable to know the chemical identity of these elements, an area where IR spectroscopy can be very useful. Increases in particulate matter are correlated with asthma, bronchitis, silicosis, asbestosis, pneumonia, lung cancer, and cardiovascular diseases. A dramatic illustration of this is the “London Smog” of Dec. 4–9, 1952, in which approximately 300 times the normal amount (7000 μg/m³) of particulate matter is thought to have killed 12,000 people. Airborne particles are mostly natural, but 6–23% are anthropogenic and, therefore, diagnostic for human effects on the environment. Particulate matter abounds in space, our atmosphere, our houses, water, and soil and includes contributions from pollen, bacteria, spores, organic debris, sea salt, wind-raised soil, and pollutants (insecticides, tire rubber, car exhaust, fuel combustion, coal dust, paint chips, etc.). Dust is even collected and studied from interstellar space.

The capture of a dust particle in a mesh hole is described in Figure 1 and the Experimental Section at the end. The infrared spectra of the previously airborne particles, called Abby1 and Abby2, are shown in Figures 2 and 3, respectively. Astronomers tend to name the particles for which they made great efforts to obtain IR spectra, so one of us, Matthew McCormack, named our particles after his beloved dog. The IR spectra were taken with a Perkin-Elmer Spotlight 300 IR microscope, which is equipped with an array of 16 liquid-nitrogen-cooled mercury–cadmium–telluride (MCT) detectors. The spectral data were acquired in image mode, which means that a full FTIR spectrum was acquired at each 6.25 μm square pixel within the imaging region, as shown with a pink box on the left side of Figure 1. The box for Abby1 was 81 × 81 μm², corresponding to 169 separate spectra, and it was 81 × 75 μm² for Abby2, corresponding to 156 separate spectra. Each spectrum had 4 cm⁻¹ resolution and 512 scans. False color maps of absorption (chemimaps) at 1033 cm⁻¹ (with a 2 point baseline) for each spectra are shown in the middle inset of Figures 2 and 3, identifying the particles. Boxes of 3 × 3 pixels (as shown in the top middle inset of Figures 2 and 3) were constructed about each particle and an empty hole nearby. The average of the nine transmission spectra within the particle box (sample) were ratioed to that of a nearby empty box (background) to obtain the absorption spectra at the bottom of Figures 2 and 3. After the IR spectra were recorded, the mesh containing the particles was transported to a JEOL JSM 550 SEM. The particles were located by characteristic rips, as shown in Figure 1. A zoomed SEM image of each particle is inset at the top right of the corresponding single-particle IR spectra in Figures 2 and 3.

Abby1 is globular, ~4.5 μm in diameter, and appears as an agglomeration of multiple smaller particles (note the hole at the particle center). The large broad IR peak at 1033 cm⁻¹ with broad water-like OH stretching (3200–3700 cm⁻¹) and sharper OH⁻ bands from 3616 to 3696 cm⁻¹ suggests that the largest component is clay. The sharp bands at 710 and 869 cm⁻¹ with stronger bands at 1413 and 1441 cm⁻¹ suggest carbonate. The peaks at 2852 and 2924 cm⁻¹ are characteristic of CH₂ chains of organic material and may be correlated with the band at 1618 cm⁻¹. The peak just out of range to the low wavenumber and the peculiar rise increasing at 2000 cm⁻¹ are similar to...
suggest a large component of quartz. The narrow peak at 879 cm$^{-1}$ with a broad peak at 1436 cm$^{-1}$ suggests some dolomitic carbonate. The organic component of Abby2 is more apparent than that with Abby1. In addition to the characteristic CH stretching bands at 2848, 2918, and 2942 cm$^{-1}$, there are protein-like amide I and II bands at 1673 and 1598 cm$^{-1}$, as well as a NH stretching band (3410 cm$^{-1}$) on top of the broad water-like OH stretching band. This is biological material that has started to decay. Again, Abby2 is a very typical airborne dust particle.

In order to better understand the scatter-free spectra of single dust particles, our future work will involve recording spectra of pure particles of known components of dust for calibration. There are two interesting spectral aspects that must be incorporated into the analysis before volume fractions of components can be quantified. (1) Many common mineral components of dust are birefringent or tri refringent. For example, quartz is birefringent and has a different IR spectrum for the ordinary and extraordinary beams. The peaks at the literature48 frequencies of 778 (extraordinary) and 797 cm$^{-1}$ (ordinary), which are seen in Figure 3, change their intensity with different orientations of the quartz particle. (2) Particles of this size (\sim4 μm) can have strong bands that have vibrational absorption cross sections that are larger than the physical cross section of the particle. This leads to particle saturation effects including broadening and distortion of the line shape (multiple peaks when there should only be one). In Figure 3, this is apparent for the asymmetric SiO\textsubscript{4} stretch that is observed at around 1030 cm$^{-1}$. The peak has literature values of 1072 cm$^{-1}$ in the extraordinary beam and 1080 cm$^{-1}$ in the ordinary beam but is split into a complicated line shape with maxima at 1030 and 1110 cm$^{-1}$. The calibration spectra may be as interesting as the single-particle airborne dust spectra themselves.

EXPERIMENTAL SECTION

Mesh from Precision Eforming of Cortland, NY (www.precisionforming.com) was used. It is nickel with a square lattice of square holes (5.0μm wide square holes, 12.6 μm lattice parameter, and a thickness of \sim2 μm). To collect the airborne dust particles, mesh was placed over a 3.18 mm hole in a circular piece of stainless steel shim-stock with a diameter of approximately 25 mm. This size fits the mesh/shim-stock piece in a standard inline Derlin filter holder made by SKC. In early November 2010, dust was collected from the air in Evans Lab Room 0055 on The Ohio State University, Columbus campus. Obtaining an SEM image and IR absorption spectrum of the exact same subwavelength particle is not a trivial task as this involves two separate instruments, one of which requires vacuum. Our IR imaging microscope (Perkin-Elmer Spotlight 300) has a Cassegrain optical system that maintains a healthy vertical working space (\sim5 cm) and a broad range of in-focal-plane scanning, but these features produce only a modest optical microscope with a fixed and low magnification (effectively \simx24). Using both reflection and transmission optical modes, it can be discerned that the particle is contained in the hole, but little else. In order to find the particle in an SEM microscope, a landmark was applied to the mesh in order to find the particle under the different orientation and much higher magnification of the SEM. Observing particle positions under an Olympus BX50 microscope, an attempt was made to scratch the mesh near particles with an X-ACTO knife; however, rips were made instead. Figure 1 shows corresponding optical and SEM images of two different individual dust...
particles trapped in a hole of plasmonic mesh. The character-
istics rips from the X-ACTO knife allowed location of the
particle in both microscopes.

AUTHOR INFORMATION

Corresponding Author
E-mail: coe.1@osu.edu.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Science Foundation for support of this work under Grant Numbers CHE 0848486 and CHE 0639163.

REFERENCES

(41) Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer-Verlag: Berlin, Germany, 1988.
(46) Christiansen, C. Untersuchungen über die optischen Eigen-