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Spectral challenges of individual wavelength-scale
particles: strong phonons and their
distorted lineshapes

Aruna Ravi, Marvin A. Malone, Antriksh Luthra, David Lioi and James V. Coe*

Beyond our own interest in airborne particulate matter, the prediction of extinction and absorption

spectra of single particles of mixed composition has wide use in astronomy, geology, atmospheric

sciences, and nanotechnology. Single particle spectra present different challenges than traditional

spectroscopic approaches. To quantify the amount of a material in a bulk sample (molecules in solution

or the gas phase), one might employ the Beer–Lambert law assuming a simple slab-type assay geometry

and averaging over orientation, whereas with single particles one might have a specific orientation and

require a nonlinear, Mie-like particle theory. The complicating single particle issues include: strong and

broad scattering at wavelengths similar to the particle size, phonon lineshape phase shifting, particle

shape effects, distortion of transition lineshapes by strong vibrational bands, bi- and trirefringence, crystal

orientation effects including dispersion, and composition mixtures. This work uses a combination of three-

dimensional finite difference time domain (3D-FDTD) calculations and experimental infrared spectra on

single, crystalline quartz particles to illustrate some of the challenges – in particular the distortion of line-

shapes by strong phonons that lie within a range of strong scattering. It turns out that many mineral dust

components in the inhalable size range have strong phonons. A Mie–Bruggeman model for single particle

spectra is presented to isolate the effects of strong phonons on lineshapes which has utility for analysing

the spectra of single, mixed-composition particles. This model will ultimately enable the determination

of volume fractions of components in single particles that are mixtures of many materials with strong

phonons, as are the dust particles breathed into people’s lungs.
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1. Introduction to single particle spectra

Single particle techniques1–3 are of interest in many fields of science
and include electron microscope and X-ray methods,4–7 mass
spectrometry,8–10 Raman,11,12 and infrared (IR) spectroscopy.13–16

The Coe group records scatter-free infrared (IR) transmission
spectra of single particles using plasmonic Ni mesh,17 i.e. by
trapping the particles in periodic holes of a thin metal film
which suppresses scattering. Experiments have been carried out
on polystyrene microspheres,18 live yeast cells,19 and previously
airborne dust particles.13,14 This type of single particle IR
spectroscopy13,14 can serve as a quick, quantitative, and non-
destructive method that identifies individual particles for further
study. Things get interesting when the particles are similar in
size to the wavelength of probing light (Fig. 1).

While there is much work on scattering,20,21 this work
focuses on vibrational features in spectral regions dominated
by scattering. We are particularly interested in quantifying the
amount of a particle component by the strength of such
vibrational features. In traditional spectroscopic studies with

bulk gas phase or solution samples, this is the purview of
the Beer–Lambert law,22,23 i.e. the vibrational peak height is
linearly proportional to the amount of material. However,
things are more complicated with condensed phase particles
of wavelength size.20,21,24 At the least, the spectrum may change
with particle orientation and a nonlinear Mie-like theoretical
model might be required to analyse vibrational lineshapes.

This work describes three-dimensional finite difference time
domain (3D-FDTD) simulations and experimental spectra of
individual crystalline quartz particles in order to illustrate some
of the difficulties that will occur in ultimately treating dust
particle spectra13,14 which are typically mixtures of multiple
mineral components with some organics attached. The 3D-FDTD
work is a direct numerical integration of Maxwell’s equations25

and, among other things, the simulations provide a transmission
spectrum which needs to be interpreted just like an experiment.
Simulations were obtained on slabs and spheres of the same
volume in order to assess the applicability of the Beer–Lambert
law and to investigate dispersive contributions to lineshape. Then,
experimental quartz particle spectra are used to show simple,
non-Beer–Lambert behaviour and then more dramatic effects
when stronger vibrations are involved. This work ends with a
Mie–Bruggeman model that can address many of the spectral
challenges discussed in this work. The important effects of

Fig. 1 Scanning electron microscope image of airborne dust particle trapped in
a hole of our Ni plasmonic mesh (5 mm square holes, 12.6 mm lattice parameter, 2
mm thick) from which scatter-free absorption spectra are obtained.
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particle shape21,26 and phonon dispersion are not treated in
this work in order to keep the scope manageable. There are a
number of fundamental questions of interest: how does scattering
affect strong vibrational lineshapes? When is the Beer–Lambert
law valid? How do you treat mixtures of components in a particle?

2. Particle vibrations, theoretical models,
and the phase problem

The position, intensity, and width of vibrational peaks are
readily measured quantities that are usefully encoded in many
models. Both 3D-FDTD simulations and Mie theory require the
complex index of refraction (m) of the subject particle which
varies with wavelength. Vibrational transitions are often added
as damped harmonic oscillators (classical dispersion theory) to
the permittivity (e) of the dielectric material, whose square root
is the complex index of refraction (m):

m� ¼
ffiffi
e
p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0 þ

X
j

Aj~n0;j 2

~n0;j 2 � ~n2 � i2Gj~n

vuut ; (1)

where j is an index over the vibrations, e0 is the constant
complex dielectric, Aj is the unitless strength of each vibration
(i.e. in dielectric units), ñ0,j is the position of each vibration in
wavenumbers, and 2Gj is the full-width-at-half-max (FWHM) of
the feature in wavenumbers, i.e. Gj is the half-width-at-half-max
(HWHM). An illustration using Mie theory is given in Fig. 2
which shows the broad scattering background exhibited by a 5
mm diameter spherical particle with (dashed trace) and without
(solid trace) a vibration (parameters are given in the figure
caption). The extinction spectrum was calculated using Bohren
and Huffman’s21 subroutine (appendix of 1987 edition gives
Fortran code, other languages are available at http://code.
google.com/p/scatterlib/wiki). Note several features: a broad
scattering feature with a maximum near the size of the particle,
an intensity maximum that is four times the physical cross
section of the particle, wiggles which correspond to constructive

and destructive interference with the spherical shape, and
a vibrational feature with a large dispersive contribution (it
looks more like a derivative than a Lorentzian). The scattering
maximum is B5 times as intense as the vibrational feature
which itself has a cross section similar to that of the particle.
This illustrates a situation dominated by scattering with a severe
change in the vibrational lineshape which can be largely attributed
to a phase shift. The phase shift (j), intensity (S/G), position (ñ0),
and HWHM (G) can be determined by fitting the difference in
the two traces (with and without the vibration) to the following
absorption–dispersion lineshape27

E ~nð Þ ¼

S

G
cos j� ~n � ~n0

G

� �
sin j

� �

1þ ~n � ~n0
G

� �2 þ C (2)

where C is a constant added for better fits with nonflat base-
lines. A nonlinear least squares fit of the phonon lineshape
produced S/G = 2.65 � 0.05 � 10�7 cm2, ñ0 = 3204.8 � 0.6 cm�1,
G = 22.0 � 0.6 cm�1, and j = 271 � 41. Understand that this
transition was chosen because its intensity (in cross section
units) is a bit larger than the physical cross section of the
particle (1.96 � 10�7 cm2). While the transition is reasonably
located by the fit, the fitted width (obtained as HWHM) is more
than four times the input value. So, the transition is extensively
phase shifted and broader than expected. Eqn (2) accounts for
phase effects: if the phase (j) is zero, then sinj = 0, and one
obtains the normal Lorentzian lineshape associated with
absorption. When j is 901, then cosj = 0, and one obtains a
pure dispersive lineshape that goes up and down. If the phase
is determined, an intensity can be extracted even when the
lineshape has both absorbance and dispersion contributions.
In other words, one can interpret the signal as a Lorentzian
lineshape even though it was measured with dispersive con-
tributions. However, in the Fig. 2 example, the phonon line-
width is increasing because the particle size is comparable to
the probing wavelength.

3. 3D-FDTD simulations of slabs and spheres:
testing the Beer–Lambert law

To better illustrate the single particle issues, spectral simulations
were performed on a sequence of slabs and spheres of equal
volumes to each of which a single vibrational feature was added.
The spheres were chosen so that their diameters tune through the
phonon transition wavelength region. The software was ‘‘FDTD
Solutions 8.0.4’’ from Lumerical, Inc. (Vancouver, BC; www.lume
rical.com). Initially, the simulation regions were 10 mm� 10 mm�
80 mm for both the slabs and spheres (as shown in Fig. 3). Since
the spheres do not share the symmetry of the cell, a larger cell
of 20 mm � 20 mm � 80 mm was employed for the spheres
(Fig. 4) in order to reduce possible boundary effects. Unlike the
slabs, small changes in a spherical particle’s simulation cell
can be expected to change spectral lineshape with our detector
geometry. Simulation parameters included auto non-uniform

Fig. 2 Extinction spectrum (cross section) of a 5 mm diameter spherical particle
with a refractive index of 1.60 as calculated by Mie theory without a single
vibration (solid trace) and with a vibration (dashed trace). The eqn (1) parameters
for the vibration were A = 0.005, ñ0 = 3200 cm�1, and G = 5 cm�1 and the physical
cross section of the particle is 1.96 � 10�7 cm2.
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meshing and all absorbing, perfectly matched layer (PML),
boundary conditions. The source was a plane wave propagating
parallel to the z-axis (left to right) with dimensions of 10 mm �
10 mm and it was placed �40 mm from the slab which was
centered. The detector was the same size and positioned at the
end of the simulation cell. The extinction spectrum without the
vibration was subtracted from the identical simulation with the
vibration (e0 = 2.3 + i0.0, A = 0.005, ñ0 = 2917.0 cm�1, G = 5.0 cm�1)
in each trace in Fig. 3 and 4. The slabs of Fig. 3 are all 10 mm �
10 mm having thicknesses of 0.10, 0.30, 0.50, 0.90, 1.00, 1.50, 2.00,
2.50, and 3.00 mm. Each sphere of Fig. 4 has the same volume as a
corresponding slab in Fig. 3. The sphere radii are 1.34, 2.29, 2.56,
2.78, 2.88, 3.30, 3.63, 3.91, and 4.51 mm. All of the lineshapes in
Fig. 3 and 4 were fit to eqn (2) yielding the data in Tables 1 and 2.

The fits and residuals of similar calculations are available in
Marvin Malone’s PhD thesis.28 The slab lineshapes follow a
pattern related to the Beer–Lambert law where absorbance (A, is
the negative of the common log of the ratio of transmittance
with and without sample)

A ¼ � log t=t0ð Þ ¼ �e‘C; (3)

is related to the molar extinction coefficient of the sample
(%e, which changes with wavelength), the path length of light
through the solution (l), and the molar concentration of the
solute (C). For purposes of comparing to particles, the slab line
strengths will also be proportional to slab volume within the
simulation cell. Scattering is ignored, i.e. the phase (f) is
assumed to be zero (absorbance dominated). Linewidths are
assumed to be constant and line strengths increase with the
thickness (or volume) of the slab. These are the predominant
features of the slab results of Fig. 3, although subtle hints of
scattering are evident upon close examination of the tables. The
spheres of Fig. 4 show dramatic changes in lineshape and
phase [j of eqn (2)] and they have mixtures of absorbance
and dispersion contributions. The question is whether the
spheres, after correcting for phase, are still following a Beer–
Lambert-like trend. A plot of the intensity (S/G) vs. volume is
given in Fig. 5. The spheres diverge significantly from the Beer–
Lambert law trend at larger volumes. In fact, the phased
Lorentzian lineshape model of eqn (2) becomes inadequate
for spheres whose diameters are similar to the strong phonon
transition wavelength.

Fig. 3 Plot of the extinction without vibration subtracted from extinction with
vibration (in units of 10�7 cm2) for slab pathlengths, l, of 0.1, 0.3, 0.5, 0.7, 0.9,
1.0, 1.5, 2.0, 2.5, and 3.0 mm. Results calculated using 3D-FDTD simulations.
A schematic of the simulation is provided at top.

Fig. 4 Plot of the extinction without vibration subtracted from extinction with
vibration (in units of 10�7 cm2) for sphere radii, of 1.34, 1.93, 2.29, 2.56, 2.78,
2.88, 3.30, 3.63, 3.91, and 4.15 mm. Results calculated using 3D-FDTD simulations.
Schematic of the simulation is provided at top.

Table 1 Slab fit parameters according to eqn (2) of the spectra in Fig. 3. The
dielectric input parameters [A = 0.005, HWHM = 5.0 cm�1, and n0 = 2917.0 cm�1]
were accurately recovered

Vol. (mm3) S/G (cm) j (rad.) G (cm�1) n0 (cm�1)

10.0 0.2039(6) 0.231(3) 5.64(3) 2917.18(3)
30.0 0.2640(5) 0.254(2) 5.57(2) 2917.58(2)
50.0 0.3730(4) 0.263(1) 5.31(1) 2917.96(1)
70.0 0.511(3) 0.108(3) 4.86(2) 2917.82(2)
90.0 0.694(2) �0.023(3) 4.97(2) 2917.44(2)
100.0 0.781(2) �0.031(3) 5.17(2) 2917.38(2)
150.0 1.131(1) 0.109(4) 5.24(3) 2917.92(2)
200.0 1.535(1) �0.038(4) 5.13(3) 2917.43(3)
250.0 1.908(8) 0.074(5) 5.33(3) 2917.84(2)
300.0 2.313(21) �0.024(5) 4.98(4) 2917.55(4)

Table 2 Sphere fit parameters according to eqn (2) of the spectra in Fig. 4

Vol. (mm3) S/G (cm) j (rad.) G (cm�1) n0 (cm�1)

10.0 0.0864(1) 0.213(15) 9.7(2) 2916.0(2)
30.0 0.192(3) 1.217(16) 15.5(3) 2917.7(4)
50.0 0.277(7) 1.42(3) 16.9(8) 2915.3(8)
70.0 0.289(9) 2.20(4) 17.0(9) 2920.7(9)
90.0 0.463(24) 2.18(4) 24.7(12) 2915.9(12)
100.0 0.489(19) 2.64(6) 24.8(17) 2918.9(17)
150.0 0.70(3) 3.75(7) 28.0(8) 2930(4)
200.0 0.78(3) 4.47(8) 28.5(21) 2936(4)
250.0 0.62(4) 5.03(9) 28.3(31) 2932.7(28)
300.0 0.85(4) 5.51(7) 20.9(18) 2938.2(17)
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4. The phase problem is reduced by trapping
particles in plasmonic metal hole arrays

Metal films with arrays of tiny holes (mesh) display enhanced
zero-order transmission spectra, that are mediated by surface
plasmon polaritons.17,29,30 This area of research took flight in
1998 when Ebbesen and co-workers fabricated square arrays of
nano-scale cylindrical holes in metallic films and measured
unexpectedly high resonant transmissions in the visible and
near IR regions.31 It turns out that the scattering properties of
wavelength-scale particles are dramatically affected by placing
the particle in a hole of the plasmonic mesh.18 In oversimplified
terms, the infrared light is trapped at the surface of the metal
and the particle in a subwavelength mesh hole is exposed to light
in a manner more like an attenuated total reflection probe (from
all hole sides) rather than as an isolated particle under direct
radiation.

Latex microspheres of 5.0 mm diameter can be expected to
show extensive scattering effects in the mid IR region as
illustrated by the extinction spectrum of Fig. 6.18 The spectrum
is actually an average of the spectra of 16 different particles of a
fairly monodisperse sample. The spectrum is large and broad –
dominated by scattering – as the particle size is similar to the
probing wavelength (just like Fig. 2). In the normal Beer–
Lambert regime, absorption is dominant and scattering has a
minimal contribution and is therefore ignored. However, a

single, wavelength-scale particle has much more scattering
than absorption, so scattering cannot be ignored. In fact, the
spectrum in Fig. 6 is well accounted for with Mie theory.
Consider the vibrational transitions: they are roughly 10 times
weaker than the scattering and they have large phase shifts
(lineshape phase distortions) relative to simple absorption
spectra.

When 5.0 mm microparticles of the same monodisperse
sample are placed into plasmonic Ni mesh holes (12.6 mm
square lattice, 5.5 mm square holes, 2 mm thick), the dominant
effects of scattering are remarkably reduced as shown in Fig. 7.
The vibrations are now the largest features and the phase [j of
eqn (2)] is close to zero, a value like pure absorption. Both
spectra in Fig. 6 and 7 are averages over many particles of the
same sample and were recorded under the same conditions
(18.75 mm by 18.75 mm microscope window, 512 scans, 4 cm�1

resolution). Matsumoto and coworkers32 have shown that plasmonic
field enhancements are observable if the holes become small
enough (B2 mm) relative to the lattice parameter (12.7 mm). The
hole widths of this work (B5 mm) are well above this threshold and
are therefore useful for quantitatively characterizing the amounts of
materials. While the plasmonic mesh certainly facilitates analysis, it
became apparent that a number of more subtle and interesting
spectral problems become evident as discussed below.

5. Single quartz particle spectra with
plasmonic mesh: strong vibrations

Quartz is one of the most prevalent mineral components in
airborne particulate matter,14,33–37 i.e. people routinely breathe
it into their lungs. Breathing in too much quartz is the cause of
silicosis,38 so it is important to know the distribution of quartz
in ordinary airborne particulate matter as an indication of
tolerable levels. Spectra of pure crystalline quartz were recorded
as a calibration for the quartz in our laboratory air.14 IR
‘‘scatter-free’’ spectra were recorded of 15 different, single
a-quartz particles in plasmonic metal mesh holes, as shown
in Fig. 8. These spectra are a bit disappointing as calibration
because each spectrum is unique due to variation in size (range
of B3–5 mm diameters) and orientation. Quartz phonons are

Fig. 5 Plot of the intensity, S/G versus volume for the slab (green circles) and
sphere (purple circles) as determined by fitting the lineshapes in Fig. 3 and 4. The
lines are 1st and 3rd order polynomial fits to guide the eye.

Fig. 6 The average extinction spectrum of sixteen different, 5 mm polystyrene
(n = 1.58) microspheres on a ZnSe (n = 2.4) infrared window. The bottom inset is
an optical image of a polystyrene microsphere on top of ZnSe taken with the
Perkin Elmer Spotlight 300 infrared imaging microscope. The top inset is a
schematic side view.

Fig. 7 The average absorption spectrum of 19 single and isolated, 5 mm
polystyrene microspheres in mesh holes. The bottom inset is a SEM image of a
polystyrene microsphere in a mesh hole. The top inset is a cross section view of
the particle in the mesh hole.
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divided into two groups (ordinary and extraordinary) due to
birefringence. The groups have transition moments perpendicular
to each other. There are two notable effects to be extracted from
these spectra: (1) non-Beer–Lambert behaviour of the ‘‘normal’’
looking pair of peaks at 777 and 799 cm�1 and (2) intense
lineshape broadening and distortion of the most intense asym-
metric SiO4 stretching vibrations at 1072 and 1080 cm�1.

The band at 777 cm�1 is extraordinary and the band at
799 cm�1 is ordinary, i.e. a crystal orientation that is good for
detecting one will be bad for the other and vice versa. Note that
there exist ab initio calculations on a-quartz which can be very
helpful39 for phonon spectra. The intensities of these bands were
originally measured in reflection by Spitzer and Kleinman40 [one
of the first applications of classical dispersion theory, i.e.
eqn (1)]. These bands are B6 times weaker [by the A parameter
of eqn (1)] than the strongest bands according to Spitzer’s work
and B9–10 times weaker according to an harmonic ab initio
calculation.39 These two peaks in all 15 individual spectra were
fit to Gaussian lineshapes with a nonlinear least squares fitting
routine and a representative fit is shown in Fig. 9. A plot of the
fitted peak widths vs. peak intensity is presented in Fig. 10.

If these peaks of medium strength were obeying the Beer–
Lambert relation, then the peak widths would remain constant,
but there is clearly a trend that more intense peaks are also
broader. This non-Beer–Lambert behaviour is problematic enough

(a factor of two increase in band width and a less than linear rise in
intensity with an increase in volume), but it is a subtle effect when
compared to the behaviour of a stronger transition. Basically, these
lineshape effects are manifest when the cross section attributed to
the vibration (as calculated with Mie theory) becomes comparable
to the physical cross section of the particle.

The lineshape effects are much more dramatic for the peaks
at 1072 (E symmetry, ordinary) or 1080 cm�1 (A2 symmetry,
extraordinary) which are the strongest phonons for quartz40 [A =
0.67 of eqn (1) by reflection40 and 3300 or 1800 km mol�1

linestrength by ab initio39]. As is evident in Fig. 8, the bands in
this region extend over a range of 400 cm�1, they are curiously
flattened, not six times stronger than the bands at 777 and
799 cm�1, and there appear to be more peaks than there are
fundamentals. These types of lineshape distortions can be
found with simple Mie theory if one greatly increases the value
of A as shown in Fig. 11. Clearly there is intensity capping,
widespread broadening rather than an intensity increase, and
there is lineshape distortion with multiple shifted peaks. One
might say that as the integrated band intensity increases, the
peak widens instead of growing taller. Apparently, a band’s
height in cross section units will not greatly exceed the particle’s
physical cross section. These dramatic changes can be very
different than spectra observed with bulk samples. It turns out
that many common minerals (quartz, carbonates, clays, and
gypsum) that are found in airborne particulate matter have
phonons that are strong enough to show these ‘‘particle satura-
tion’’ effects. While this is certainly a disadvantage for quanti-
fying the volume fractions of particle components, perhaps
there are also new research opportunities here. The ability to
tailor particle size on the wavelength scale apparently affords
the ability to dramatically alter the lineshape. Although Fig. 11
serves as a nice illustration of particle lineshape saturation
effects, mineral transition strengths are known, i.e. they are not
a variable. In the following section, we will develop a Mie–
Bruggeman model that obtains such effects with a constant
value of phonon intensity, A.

Fig. 8 IR scatter-free spectra of 15 different, single a-quartz particles showing
variations with orientation and size.

Fig. 9 Nonlinear least square fits of the extraordinary and ordinary peaks at
777 and 799 cm�1 which will be used to test the Beer–Lambert behaviour.

Fig. 10 Nonlinear least square fitted values of peak width (full-width-at-half-
maximum, FWHM) vs. peak intensity for 15 a-quartz particles. Beer–Lambert
behaviour would give rise to a flat trend with constant width. Characteristic
quartz bands at 777 cm�1 (A2 symmetry, extraordinary, blue) and 799 cm�1 (E
symmetry, ordinary, green) show systematic increases in band width with
increases in absorption, i.e. non-Beer–Lambert behavior.
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6. Mie–Bruggeman model solves some of
the problems

To address the issues of birefringence, orientation, strong phonons,
and mixtures of different materials, a combination of Mie theory20,21

with Bruggeman’s effective medium theory41,42 has been developed.
The basic idea of Bruggeman effective medium theory is to combine
the pure dielectric function of the components of a mixture to
obtain an effective dielectric function of the mixture as illustrated in
Fig. 12. While it is straightforward to apply this to mixtures, one can
also consider different symmetry groups of phonons to be different
materials enabling the model to treat birefringence. An effective
index of refraction for a mixture of materials within a particle can, in
turn, be used with Mie theory to calculate the spectrum of the
particle of mixed composition. The grand equation of Bruggeman’s
effective medium theory is

X
i

fi
ei � eeff
ei þ 2eeff

� �
¼ 0; (4)

where i is an index over the components, fi is the volume fraction
of the ith component, ei is the pure dielectric constant for each
component, and eeff is the effective dielectric of the mixed
particle. Using an initial guess of the volume fractions and the
known dielectrics of pure components, eeff,0 = Sifiei, an iterative

function has been derived which refines the effective dielectric
function based on the previous iteration

eeff ;k ¼
X
i

fiei
ei þ 2eeff ;k�1

� �" #, X
i

fi

ei þ 2eeff ;k�1

� �" #
; (5)

where k is the number of iterations. We find about 10 iterations
sufficient for convergence. This effective dielectric can be used
with Mie theory to predict extinction, scattering, or absorption
spectra of mixed particles.

Recall from Section 5 on the experimental spectra of a-quartz
particles that there were two big issues: (1) non-Beer–Lambert
behaviour of the ‘‘normal’’ looking pair of peaks at 777 and
799 cm�1 and (2) intense lineshape broadening and distortion of
the most intense asymmetric SiO4 stretching vibrations at 1072
and/or 1080 cm�1. By treating the ordinary phonon transitions
of E symmetry (including the 799 cm�1 transition) as one
material [with the dielectric parameters: e = 2.356 + i0.000,
A = 0.11 (from Spitzer and Kleinman40), ñ0 = 797 cm�1, and
G = 20 cm�1] and by treating the extraordinary transitions of
A2 symmetry (including the 777 cm�1 transition) as another
material [with the dielectric parameters e = 2.383 + i0.000, A =
0.10 (from Spitzer and Kleinman40), ñ0 = 778 cm�1, and G =
20 cm�1], the two can be combined with the Mie–Bruggeman
model as shown in Fig. 13 to predict infrared spectra. In the
model one varies the volume fraction of each component, but as
applied in this case, one is actually changing the component of
the transition moment excited as the particle’s orientation is
changed. To be quantitative, one must of course consider the
conditions under which the spectra were acquired (in our case
an IR microscope using unpolarized light with averaging over a
range of angles tilted from the microscope axis). Rather than
getting distracted about such details, note that there certainly
exists a range of orientations where the contributions of each
transition moment are equal as shown in Fig. 13.

Unlike experiments (where you cannot turn off a phonon), the
Mie–Bruggeman model allows one to examine the subtle lineshape
effects of just one of these transitions, i.e. the extraordinary band

Fig. 11 Lineshape distortion with a strong phonon as calculated with Mie
theory. Plot of the absorption cross section of a 2.5 mm radius particle
(e = 2.56 + i0.00) with a single phonon transition of ñ0 = 2000 cm�1 and G =
100 cm�1. The strength, A, was increased from 0.0005 to 1.0 in a number of
steps. There is a single peak at low intensities, however one obtains multiple
maxima at intensities above A = 0.1.

Fig. 12 Illustration of Bruggeman’s effective medium theory for two compo-
nents of different dielectric e1 and e2.

Fig. 13 Absorption cross section of a 4.0 mm diameter spherical particle
calculated using a Mie–Bruggeman model where the ordinary (O) and extra-
ordinary (E) contributions of quartz are taken as two separate components. In the
model, f is the volume fraction, but for this application with birefringent
materials, f is a parameter that changes with orientation. When f = 0,
the transition moment is parallel to the incoming light. The orientations when
f = 0.5 have components of each transition moment that are equal.
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strength was set to zero. Fig. 14 shows only the ordinary
transition (799 cm�1) as orientation is changed using a fixed
linestrength (A = 0.10, given by Spitzer and Kleinman40 for this
transition). These conditions produce a line whose width can
more than double with orientation. Note that the Mie–Bruggeman
model is providing a quantitative explanation of the experimental
quartz data presented earlier in Fig. 10.

While Mie theory shows severe lineshape distortion (Fig. 11),
it does so by increasing the linestrength parameter, A. In actual
materials, the linestrength is a constant, so it is noteworthy that
the Mie–Bruggeman model obtains the observed lineshape
distortions with a value of A fixed by experiment.

Clearly, the Mie–Bruggeman model embodies the observed
line broadening effects which are no doubt made dramatic by
particles of this specific size. Note how the strongest orientation
actually produces a doubling which we have not observed
experimentally with this transition. However, this suggests
severe effects for phonons with even stronger transitions and
many common minerals (quartz, carbonates, clays, and gypsum)
in airborne dust have strong phonons.

The Mie–Bruggeman model has also been used to model
severe phonon lineshape distortions with a stronger transition
and changes of orientation. Quartz has two strong phonon
transitions at 1072 cm�1 (E, ordinary) and 1080 cm�1 (A2,
extraordinary) which were originally measured in reflection
with linestrengths40 of A = 0.65. Examining only the ordinary
transition [with the dielectric parameters: e = 2.356 + i0.000,
A = 0.67 (from Spitzer and Kleinman40), ñ0 = 1072 cm�1, and
G = 50 cm�1] one obtains severe lineshape distortion. Only at
orientations, such as f = 0.05, where this transition is poorly
aligned for excitation, will it have a ‘‘normal’’ Lorentzian
appearance. All lineshapes with f > 0.5 have multiple maxima
and shoulders. Considering that there will be similar behaviour
for the extraordinary component (not shown), it should be
apparent that this transition can be quite complicated.

Going back to the experimental spectra of the 15 a-quartz
particles in Fig. 8, we now begin to understand why the bands
can extend over a 400 cm�1 region. The Mie–Bruggeman model

of Fig. 15 shows a single band extending over a broad and
similar region. Just as the experimental bands are curiously
flattened, the Mie–Bruggeman model of Fig. 15 shows that the
peak stops getting taller at orientations corresponding to f B
0.4 and instead gets wider. Even though the transitions at 1072
and 1080 cm�1 are 6–10 times stronger than the transitions at
777 and 799 cm�1, they stop getting taller due to this particle
saturation effect and have similar height to the weaker transitions.
At many orientations (f > 0.5 in Fig. 15), the wide band shows
multiple maxima and shoulders. The experimental spectra are
even more dramatic in the 900–1300 cm�1 region because both
the ordinary and extraordinary bands can exhibit severe and
overlapped lineshape distortion. Basically, such problems will be
encountered whenever the phonon (or vibrational) cross section
approaches or exceeds the geometric cross section of the particle.
The Mie–Bruggeman model is a good starting point for under-
standing the strange lineshape effects that can occur when the
probing wavelength is comparable to size of the particle.

7. Summary and outlook

Single particle spectral studies now extend from microparticles
to individual molecules.43,44 While it is apparent that researchers
must address an entirely different set of issues (like blinking) when
studying small numbers of molecules, we were not expecting to
find many surprises at the micron scale. Clearly wavelength-scale
particles have their own unique set of challenges. At small sizes
relative to the wavelength, particles exhibit Beer–Lambert-like
behavior. As the particle size increases to about the wavelength,
this behavior begins to diverge from Beer–Lambert as shown with
our FDTD simulations. The spectral lineshapes of wavelength scale
particles can be distorted by phase, saturation, and orientation as
seen in both the FDTD simulations and experimental quartz
particle spectra. The effects of phase shift on lineshapes of spectra
of single particles of wavelength scale are well known. With a little
analysis, the phase can be determined and linestrengths extracted.
On the other hand, our plasmonic mesh physically took care of the
vibrational phase effect problem. However, it enabled us to face a

Fig. 14 Absorption cross section of a 5.0 mm diameter spherical particle
calculated using a Mie–Bruggeman model where the ordinary and extraordinary
contributions of quartz are taken as two separate components. Only the ordinary
contribution is shown [A = 0.10 (from Spitzer and Kleinman40), ñ0 = 799 cm�1,
and G = 15 cm�1], i.e. the intensity of the extraordinary band has been artificially
set to zero. The f parameter is the volume fraction, but for this application with
birefringent materials, f changes with orientation. Note how dramatically the
linewidth changes with orientation.

Fig. 15 Absorption cross section of a 4.0 mm diameter spherical particle
calculated using Mie–Bruggeman theory taking the ordinary and extraordinary
groups as separate materials. The transition shown is the ordinary with A = 0.67,
ñ0 = 1072 cm�1, and G = 50 cm�1.

Perspective PCCP



This journal is c the Owner Societies 2013 Phys. Chem. Chem. Phys., 2013, 15, 10307--10315 10315

number of other challenges: variation in band intensity with
orientation, the widening of lines with orientation, nonlinear
band heights with particle volume, and severely distorted line-
shapes for strong bands. The Mie–Bruggeman model gives us a
simple, quantitative handle on such effects.

We have come to this perspective in order to better under-
stand the single particle IR spectra of individual air borne dust
particles. The concentration of such particulate matter is well-
known to be correlated with public health. The Coe group has
been successful at chemically evaluating individual dust parti-
cles in the 3–5 mm size regime (among the largest that get into
people’s lungs), and has created a library of scatter-free
IR spectra of 63 airborne, B4 mm diameter, dust particles,
collected by pumping laboratory air through plasmonic metal
mesh.14 The next step is to use the Mie–Bruggeman model to
determine the volume fractions of the various components of
airborne particulate matter mixtures.
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