Supporting information Xu et al. Solution Structure of the *Pfu* Rpp21-Rpp29 Protein Complex

Figures

				α1		α2
P.furiosus		i	0000000 10	20 30	l l	2222222222 4 0
P.furiosus P.horikoshii P.abyssi M.thermoautotrophicus M.barkeri Halobacterium sp. T.acidophilum M.jannaschii M.marapaludis M.vannielii A.fulgidus S.cerevisiae S.pombe H.sapiens	MV MGKKAHGGKMKPEIDE	MAKYN.E DIVKRRDWE MKKVSWE MRGKR MSRIARKQQ MIT MKKFLE MKLKKKFLE MKLKKKFLE ML NGTLLVPPP MA	KKEKKRIAK KKEKKRIAIE KREKKRVAIE PRWHLKIAEE KNLIQAIAIQ KKDVEYTARK KKLKKIAYE KKL.KKIAYE KSKKIAE KSKKIAE RTIANQDHFH MSTKSKDQHA GPVKDREAFQ	RIDILFSLAERVFP RIDTLFTLAERVAR RIDTLFTLAERVVAR IDILFTLAERVVK RIDILFFLAKSEY. RIDRLHTLARASEY. RIDKLTLARAAR RIEKLYDFAIRTGD RIDILMSLAEEEAK RIDVLMNLAEKESK ARERVFYLIKRAE RRRVFYLIKRAE RLNYLYQISAYQTR RVSYLYQASQLLFR RLNFLYQAHCVLA	YSP YSP ANP AEHP TGDD KGNW DGKA CEKK WKNID ARQKARTDAHT NVQEP QDPEN	ELAKRYVELA DLAKRYVELA DLARRYVELA HRSHRYTELA DRSERYVQLI DRAREYVRLA RRYIIEM DRAKRYVYLA DRSKNYVLLG ERSKNYVLLS ELARRYVELS PLARNYIKSM TLSRHYISTA ALARFYCYTE
P.furiosus	η1 2222 222		² β	3	β4	β5
P.furiosus P.horikoshii P.abyssi M.thermoautotrophicus M.barkeri Halobacterium sp. T.acidophilum M.jannaschii M.marapaludis M.vannielii A.fulgidus S.cerevisiae S.pombe H.sapiens	LLVQQKAKVKIPRKWK LEIQKKAKVKIPRKWK LEIQKKAKVKIPRKWK RNIAMKYRVRIPREWR RNISMRNRMSIPREIK RRLAERNRLTLPPAFR EHIAQRMDITLPANIK RRIAMKMRIRFPKKWK KKIAMRMRMPYPKEWK KKIAMRMRMPYPKEWK CLISKKTKTSLLPTIK KDVSQKSVMRIHPDIK RTIAKRLVLRRDPSVK	RRYCKKCHA RRYCKRCHT RRYCRKCYS NRTCCKHCYA RRFTCDDCDA RGYCKKCGT RRICKKCGS RRICKKCGS RRICKKCGS RRICKKCGS RRICKKCCS RRICKKCCS RRICKKCCS RRICKKCCS RRICKKCS S	FL VPGINARV FL IPGVNARV FL VPGFNARV FL KPGANCTV FL VPGNARY VL VPGRNARY VL VPGRNARV FL IYGRNARV FL IYGRNARV FL IYGRNARV FL IYGKNSV FL IYGKNSV LLWTPKKLEI LLVPGKSCSI LLVPGLTCTG	VRLRQKRMPH YRLRYKRMPH RLRTDRMPH YRLADGMPH YRLKDGMPH YRLKDGMPH YRLKSGMPH YRLKSGMPH YRLKSGMPH YRLKSGMPH YRLKSKRYPH YRTKAKNYPH YRTKAKNYPH YRTKAKNRP TSDGARF ROGR RCRGQRW	VVVKCLECGH VVITCLECGH VVFCLECGH VVFCCCGT VVVCCOCGT VVVCCCCGT VVVTCLECGN VVVTCLECGN VVITCLECGN VVITCLECKH VVITCLECKH VVITCLECKH VVITCLECKH VVITCLECCGT VVITCLECGF CGT VCICCCCGT	MRYPYIKEIK MRYPYLREVK MRYPYLREVK MRFPYIREKK MRYPYKKLK. ARYPYKG RFFQISR YRIPMIREKK TRIPIKTEKK TRIPIKTEKK FRIPIKKSK. RFFIGADPN KRFSDKSC QRFLNDPGHL
P.furiosus P.furiosus P.horikoshii P.abyssi M.thermoautotrophicus M.barkeri Halobacterium sp. T.acidophilum M.jannaschii M.marapaludis M.vannielii A.fulgidus S.cerevisiae S.pombe H.sapiens	KRRKEKMEY QKRKKAT. EKRKRKKD DRRRNKIESHTTKEGT EKRRKKLEERLKAKSN NRKV. YRTYSEREGNLLNS. LWGDRPEAQLGSQADS	DEQITVGAH SQTS KPLQPLPNT	NKCGESQSDR	SEKMQTQGSSNQ		

Figure S1: Sequence alignment of select RPP21 homologs from Archaea and Eukarya. The alignment was generated with CLUSTALW, and illustrated using ESPRIPT2.2, in which red letters indicate a global similarity score of 0.7, and red boxed letters indicate invariant residues. Secondary structural elements represented in cartoon are observed in the NMR ensemble of *Pfu* RPP21 in complex with *Pfu* RPP29. Aligned sequences are form *Pyrococcus furiosis* (NCBI entry NP_579342), *Pyrococcus horikoshii* (NP_143456), *Pyrococcus abyssi* (NP_126253), *Methanobacterium thermoautotrophicum* (NP_276730), *Methanosarcina barkeri* (NCBI_entry YP_304815), *Halobacterium sp.* (NP_279631), *Thermoplasma acidophilum* (NP_393654), *Methanococcus jannaschii* (NP_01322736), *Archaeoglobus fulgidus* (NP_068950), *Saccharomyces cerevisiae* (NP_012280), *Schizosaccharomyces pombe* (NP_596472) and *Homo sapiens* (NP_079115).

1110010	
P.furiosis P.horicoshii P.abyssi M.thermoautotrophicus M.barkeri Halobacterium.sp T.acidophilum M.jannaschii M.warapaludis M.warapaludis M.vannielii A.fulgidus S.cerevisiae S.pombe H.sapiens	MDRTQTFIKDCLFTKCLEDPEKPFNENRFQDTLLLLPTDGGLTSRLQRQQRKSKLNLDNLQKVSQLESADKQLEKRDYQRINKN MKSVIYHALSQKEANDSDVQPSGAQRAEAFVRAFLKRSTPRMS
P.furiosis	$\begin{array}{cccc} \alpha l & \alpha 2 \\ 0.000 & 0.0000 \\ 2.0 & 3.0 \\ 1 & 1.0 & 2.0 \\ 3.0 & 3.0 \\ \end{array}$
P.furiosis P.horicoshii P.abyssi M.thermoautotrophicus M.barkeri Halobacterium.sp T.acidophilum M.jannaschii M.marapaludis M.vannielii A.fulgidus S.cerevisiae S.pombe H.sapiens	MWRNSEERENTSGRSQGSYQEIIGRTWIFRGAHRGRV MRRNSKERKNRATRRSQGSYQEIIGRTWIFRGAHRGRV MRRNSKERKNRATRRSQGSYQEIUGRTWIFRGAHRGRV MRRNGKERKDRTSGGSQRPYQEIVGRTWIFRGSHM.LI .MKSKVEI
P.furiosis	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
P.furiosis P.furiosis P.horicoshii P.abyssi M.thermoautotrophicus M.barkeri Halobacterium.sp T.acidophilum M.jannaschii M.marapaludis M.vannielii A.fulgidus S.cerevisiae S.cprombe H.sapiens	α3 0000 β1 0 β2 0 rt 0 rt 80 rt 90 rt 100 NKKNIVWHBLIGLKVRVVNSTHPGYVGIEGYVIDETRNMLVIAGE NKVWKVPRDVCIFFFET TRRNIWHBLIGLKVRVVNSTHPAFVGIEGYVIDETRNMLVIAGE NKVWKVPRDVCIFFFEA TKRNIWHBLIGLKVRVVNSTHPAFVGIEGYVIDETRNMLVIAGE NKVWKVPRDVCIFFFEA TKRNIWHBLIGLSVRIARSVHRDIOGISGRVVDETRNMLVIVG DKVWKVPRDVCIFFFEA TPRNIFRHLIGLSVRIARSVHRDIOGISGRVVDETRNMLVIVG DKVWKVPRDVCIFFFEA TPRNIFRHLIGLEIQVIRSTNPALIGIRGRVIDETRNLIIENDG GREITVPKGIAVFHFRT PST SGVAQUPKKGATFFRLITHENDEAAAPDNGVCTAFKPA MIYDEFTGMEVSIVDSPNRSBIGTGTGLVSPETNNTLVIENDIDG GREVVIPKKGATFFRLITHENDA TPHNILRHBLIGLEIVNSTDKRLISTKGRVINETRNTLVIEKED GREVVIPKDIAVFFQL LSONILRHBLVGLNLEIVNSTDKRLISTKGRVINETRNTLVIEKEN GKEITVVVKEISIFRRIOF FSQNILRHBLVGLNLEIVNSTDKRLISTKGRVINETRNTLVIEKEN GKEITVVKKISTROF QCVELIARDWIGLMVEVKESPNHBBVGIKGEVVDETONTLKIMTE KGLKVVAKRGRTRVWY SONILRHBLVGLNLEIVNSTDKRLISTKGRVINETRNTLVIEKEN GKEITVVKKISTROF QCVELIARDWIGLMVEVKESPNHBBVGIKGEVVDETONTLKIMTE KGLKVVAKRGRTRVWY SONILRHBLVGLNLEVNSTOKKIJGIKKSLTVKYFSPNTST. GLKRVVFREAAALVLIRELYG SOSSITTSSLSKIIRTWVAENFGDVGIGKVASSLTVKYFSPNTST. GLKRVFREAAALVLIRELYG SOSSITTSSLSKIIRTWVAENFGDVGIGKVASSLTVKYFSPNTST.
P.furiosis P.furiosis P.horicoshii P.abyssi M.thermoautotrophicus M.barkeri Halobacterium.sp T.acidophilum M.jannaschii M.marapaludis M.vannielii A.fulgidus S.corevisiae S.pombe H.sapiens P.furiosis	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Figure S2: Sequence alignment of select RPP29 homologues from Archaea and Eukarya. The alignment was generated with CLUSTALW, and illustrated using ESPRIPT2.2, in which red letters indicate a global similarity score of 0.7, and red boxed letters indicate invariant residues. Secondary structural elements represented in cartoon are observed in the NMR ensemble of *Pfu* RPP29 in complex with *Pfu* RPP21. Aligned sequences are form *Pyrococcus furiosis* (NCBI entry NP_579545), *Pyrococcus horikoshii* (NP_143607), *Pyrococcus abyssi* (NP_126024), *Methanobacterium thermoautotrophicum* (10QK_A), *Methanosarcina barkeri* (YP_303669), *Halobacterium sp.* (NP_280464), *Thermoplasma acidophilum* (NP_394719), *Methanococcus jannaschii* (NP_247439), *Methanococcus marapaludis* (YP_001549311), *Methanococcus vannielii* (YP_001323236), *Archaeoglobus fulgidus* (1TSF_A), *Saccharomyces cerevisiae* (NP_009816), *Schizosaccharomyces pombe* (NP_588479) and *Homo sapiens* (NP_006618).

Figure S3. Footprinting using RNase V1 and RNase T1 to identify RPP-binding sites in *Mja* RPR. (a) Same as panel a in Figure 6 except this is a longer electrophoretic run, which was required to map protection patterns distal to the labeled termini. Mia RPR labeled at the 5'-end was incubated either without (lanes 1, 3, 5, 7 and 9) or with (lanes 2, 4, 6, 8 and 10) RNase V1 (panel a) or RNase T1 (panel b). Mia RPR was present either alone (lanes 1, 2, 7 and 8), with RPP21-RPP29 (lanes 3 and 4), with RPP30-POP5 (lanes 5 and 6) or with both binary complexes (lanes 9 and 10). Since reconstitution of the RPR with each binary RPP complex is performed in a buffer different from that used for reconstitution with both binary complexes together, two different control RNase T1/V1 digestions of the RPR are shown (lanes 1, 2 for binary RPPs and lanes 7, 8 for both binary pairs). "Alk." and "T1" represent molecular size ladders generated by subjecting end-labeled, denatured Mja RPRs to alkaline hydrolysis and partial RNase T1 digestion, respectively. The RNase T1 cleavage sites were also mapped by using primer extension assays. (b) Summary of the RPP footprinting data depicted on a secondary-structure model of Mja RPR. Circled and boxed nucleotides indicate protection to RNase T1 and RNase V1, respectively; blue and red colors indicate regions of protection by RPP30-POP5 and RPP21-RPP29, respectively. The green arrow indicates an RPR position that showed increased susceptibility to RNase T1 in the presence of either RPP30-POP5 or all four RPPs. RNase V1 cleavages around nucleotides 130-150 suggest that the secondary structure as drawn may need to be revised.

Figure S4: Two-dimensional ¹H-¹⁵N NMR spectra of *Pfu* RPP21 (a) and RPP29 (b) in complex with its (unlabeled) partner. Backbone amide assignments are indicated in red as the residue number.

Figure S5: Heteronuclear {¹H)-¹⁵N NOE data of *Pfu* RPP29 in the presence of *Pfu* RPP21 shows that the N-terminus (residues 1-16, highlighted in cyan) remains flexible, indicating this segment is not involved in binding to RPP21.

Figure S6: Interface of the *Pfu* RPP29-RPP21 complex in the ensemble. The backbones are shown in lines (RPP21 in cyan and RPP29 in cyan). The residues involving in protein-protein interactions are shown in sticks. Panels a-c are similar zoom-in regions as panel c-e in Figure 3.

Table S1. Inter-molecular NOEs identified from chemical shifts in the ¹³ C-filtered/edited
NOESY spectrum recorded on [U- ¹³ C, ¹⁵ N]-RPP21 (*) and unlabeled RPP29. [†]

RPP21*	RPP29	RPP21*	RPP29	RPP21*	RPP29
K10HB	121Μδ-	K10HB	121Μδ-	K10HB	Ι 121Μδ-
K10Hg	L 121Μδ+	K10Ha	L 121Μδ+	K10Hg	L 121Μδ+
K10Ha	121Μδ-	K10Ha	121Μδ-	K10Ha	Ι 121Μδ-
113Mv2	W45Hδ	113Mv2	W45Hδ	113Mv2	W45Hδ
113Mv2	W45HB-	S32HB-	F22HB+	I 24Mδ+	F30HB-
113Mv2	Η46Ηδ2	S32HB-	E22Hv	B27Ha	129Hß
113Μδ	W45HZ3	L35Μδ-	Ι71Μδ	V28HB	123Μδ
113Mv2	N42Ha	L35Mδ-	Υ20Ηδ	V28Mv-	129Mv1
113Mv2	N42HB-	L35Μδ+	Ι71Μδ	V28Mv-	I23Mδ
113Mv2	L121Μδ-	L35Mδ-	123HB	V28Mv-	129HB
113Mv2	N42Hβ+	L35Μδ+	I23Hβ	V28HB	I29Mδ
l13Μδ	W45Hc3	L35Μδ+	I71Mv2	V28Mv+	I29Hβ
Ι13Μδ	Η46Ηε1	L35Mδ-	Υ20Η̈́ε	V28Μγ+	Ι23Μδ
A14Ha	L121Μδ-	L35Mδ-	D72Hβ-	V28Μγ+	F30Hζ
Α14Μβ	L121Μδ-	L35Mδ-	D72Hβ+	V28Μγ-	I29Mγ2
A14Mβ	L121Μδ+	L35Μδ+	Y20Hδ	V28Μγ-	F30Hɛ
A14Mβ	L121Hβ-	L35Mδ-	I23Mγ1	V28Μγ-	Ι29Μδ
A14Ha	L121Μδ+	L35Μδ+	Y20He	V28Μγ+	I23Mγ1
A14Mβ	L121Hβ+	L35Μδ+	F30Hζ	V28Μγ+	I29Mγ1
E16Hγ-	Η46Ηε1	L35Μδ+	Ι23Μδ	V28Μγ+	F30Hβ-
E16Hβ-	H46Hɛ1	L35Μδ+	I23Mγ1	V28Mγ+	I29Mδ
E16Hγ+	Η46Ηδ2	L35Μδ+	D72Hβ-	V28Mγ-	F30Hζ
E16Hγ+	Η46Ηε1	L35Mδ-	171Ha	V28Ha	Ι29Μδ
E16Hβ+	Η46Ηε1	L35Mδ-	l71Mγ2	V28Ha	Ι23Μδ
E16Ha	Η46Ηε1	L42Μδ+	Ρ117Ηγ	V28Mγ+	F30Hε
R17Ha	Ε47Ηβ	L42Μδ-	Ρ117Ηβ-	V28Mγ+	l29My2
I20My2	Η34Ηβ+	L42Μδ+	Ι49Μδ	V28Ha	l29My2
I20My2	E47Hγ+	L24Μδ-	A33Ha	V28Mγ-	I23Mγ1
I20My2	Ε47Ηβ	L24Μδ+	A33Ha	Р30Нү+	Ι29Ηβ
I20My2	E47Hγ-	L24Μδ-	F30Hδ	S32Ha	E22Hy
I20My2	Η34Ηδ2	L24Μδ+	F30Hδ	S32Hβ-	Ι23Μδ
I20My2	Η34Ηβ-	L24Μδ-	F30Ha	RPP21	RPP29
L21Μδ-	Ι49Ηβ	L24Μδ+	F30Hε	L42Μδ+	l49Mγ2
L21Μδ-	I49Mγ2	L24Μδ-	I49Mγ2	L42Μδ+	Ρ117Ηβ-
L21Μδ-	Ι49Μδ	L24Μδ-	Α33Μβ	L42Μδ-	Ρ117Ηγ
L21Μδ+	Ι49Μδ	L24Μδ-	F30Hε	L42Μδ-	Ρ117Ηβ+
L21Μδ-	E47Hγ-	L24Μδ+	G50Ha+	L42Μδ-	Ι49Μδ
S23Ha	ΑЗЗΜβ	L24Μδ+	Α33Μβ	L42Μδ-	Ρ117Ηδ-
S23Hβ	ΑЗЗΜβ	L24Μδ+	Ι49Ηβ	L42Μδ+	Ρ117Ηβ+
L24Μδ+	Ι49Μδ	L24Mδ+	Ι49Μγ2	L42Mδ-	E118Ha
L24Μδ-	G50Ha+	L24Μδ+	G50Ha-	L45Mδ+	Ρ117Ηδ-
L24Μδ-	F30Hβ+	L24Μδ-	G50Ha-	L45Μδ+	L121Ha

RPP21*	RPP29	RPP21*	RPP29		RPP21*	RPP29
Κ10Ηβ	L121Μδ-	K10Hβ	L121Μδ-	-	K10Hβ	L121Μδ-
K10Ha	L121Μδ+	K10Ha	L121Μδ+		K10Ha	L121Μδ+
K10Ha	L121Μδ-	K10Ha	L121Μδ-		K10Ha	L121Μδ-
I13Mγ2	W45Hδ	l13Mγ2	W45Hδ		l13Mγ2	W45Hδ
L45Μδ-	Ρ117Ηδ-	V46Hy	Ρ117Ηβ-		Α50Μβ	L121Μδ-
L45Μδ-	Ρ117Ηγ	V46Hy	L121Μδ+		Α50Ηα	L121Μδ+
L45Μδ+	Ρ117Ηγ	V46Ha	L121Ha		Α50Μβ	L121Hβ+
V46Hy	L121Ha	V46Ha	L121Μδ+			
V46Hy	L121Μδ-	Α50Μβ	L121Μδ+			

Table S2. Inter-molecular NOEs identified from chemical shifts in the ¹³C-filtered/edited NOESY spectrum recorded on unlabeled RPP21 and [U-¹³C,¹⁵N]-RPP29 (*).[†]

RPP29*	RPP21	RPP29*	RPP21	RPP29*	RPP21
S19Hβ	Ρ33Ηβ	S19Hβ	Ρ33Ηβ	S19Hβ	Ρ33Ηβ
S19HB	L35Mδ-	S19HB	L35Μδ-	S19Hβ	L35Mδ-
S19HB	L35Mδ+	S19HB	L35Μδ+	S19HB	L35Mδ+
S19HB	L35Ha	RPP29	RPP21	129My2	L24Ha
S19Ha	E34Hβ1/2	W45Hβ-	I13Mγ2	Ι29Μδ	Υ31Ηδ
S19Hβ	E34Hβ1/2	W45Hβ+	I13Mγ2	Ι29Μδ	V28Mγ+
Y20Ha	L35Mδ-	H46Ha	Ι13Μδ	I29My2	Y31Hδ
Y20Ha	L35Mδ+	E47Ha	R17Hβ	129My2	R27Hδ-
I23My2	Υ31Ηβ-	E47Ha	R17Ha	Ι29Μδ	V28Hβ
I23My2	V28Mγ-	Ε47Ηβ	R17Ha	I29My2	R27Hβ
Ι23Μδ	V28Μγ+	l49Mγ2	L42Μδ+	I29My2	R27Ha
I23My2	L35Hβ-	Ι49Μδ	Υ39Ηε	Ι29Μδ	L24Ha
I23My2	Υ31Ηδ	Ι49Μδ	L21Μδ-	I29My2	V28Ha
I23Mγ1	L35Μδ+	l49Mγ2	L24Hβ	I29My2	V28Hβ
Ι23Μδ	S32Hβ+	l49Mγ2	L21Μδ-	129Ha	R27Hδ+
Ι23Μδ	Υ31Ηδ	Ι49Μδ	L42Hβ-	Ι29Μδ	R27Hy
Ι23Μδ	S32Hβ-	l49Mγ2	L42Hβ-	I29My2	R27Hy
I23Mγ2	Υ31Ηβ+	l49Mγ2	L24Ha	I29Mγ1	V28Mγ+
I23Mδ	Υ31Ηβ-	l49Mγ2	L24Hγ	Ι29Μδ	V28Ha
I23My2	S32Hβ-	l49Mγ2	L24Μδ+	Ι29Μδ	L24Μδ-
I23Mδ	V28Hβ	149Ha	L24Μδ+	F30Ha	L24Μδ-
I23My2	L35Hy	Ι49Μδ	L42Μδ+	ΑЗЗΗα	L24Μδ-
I23My2	V28Hβ	Ι49Μδ	L24Μδ+	ΑЗЗΜβ	L24Μδ+
I23My2	S32Hβ+	l49Mγ2	R38Hδ+	ΑЗЗΜβ	L24Μδ-
I23My2	V28Ha	Ι49Ηβ	L21Μδ-	ΑЗЗΗα	R27Hβ
I23Mδ	V28Ha	l49Mγ2	Υ39Ηε	ΑЗЗΜβ	R27Hδ+
R26Hγ+	Y31Hε	l49Mγ2	Υ39Ηδ	ΑЗЗΜβ	R27Hδ-
R26Hδ-	Υ31Ηε	Ι49Μδ	R38Hδ+	ΑЗЗΜβ	L24Ha
R26Hδ+	Y31Hɛ	Ι49Μδ	Υ39Ηδ	ΑЗЗΜβ	R27Hβ
R26Hδ+	Υ31Ηδ	Ι49Ηβ	L24Μδ+	Η34Ηβ+	I20My2
R26Hγ+	Υ31Ηδ	G50Ha+	L24Μδ+	H34Ha	I20Hβ
R26Hδ-	Y31Hβ+	G50Ha+	L24Μδ-	H34Ha	120Ha
R26Hδ-	Υ31Ηδ	G50Ha-	L24Μδ+	Η34Ηβ-	I20My2
Ι29Ηβ	R27Hy	G50Ha-	L24Μδ-	H34Ha	I20Μδ
Ι29Μδ	R27Ha	l71Mγ2	Υ39Ηδ	H34Ha	I20My2
I29My2	L24Μδ-	Ι71Μδ	L35Μδ+	N42Ha	I13Mγ2
I29Mγ1	R27Hβ	l71Mγ2	L35Mδ-	N42Hβ+	I13Mγ2
I29Mγ1	Υ31Ηδ	l71Mγ2	L35Μδ+	Ν42Ηβ-	I13Mγ2
I29Mδ	R27Hβ	Ι29Μδ	R27Hδ-	W45Hβ+	Ι13Μδ
I29My2	V28Mγ+	129Ha	R27Hδ-	W45Ha	I13Mγ2
I29My2	R27Hδ+	Ι29Ηβ	R27Hβ	W45Hβ-	Ι13Μδ
I29My2	Υ31Ηε	Ι29Μδ	Υ31Ηε	RPP29	RPP21

RPP29*	RPP21	RPP29*	RPP21	RPP29*	RPP21
S19Hβ	Ρ33Ηβ	S19Hβ	Ρ33Ηβ	S19Hβ	Ρ33Ηβ
S19Hβ	L35Mδ-	S19Hβ	L35Mδ-	S19Hβ	L35Μδ-
S19Hβ	L35Μδ+	S19Hβ	L35Μδ+	S19Hβ	L35Μδ+
Ι71Μδ	L35Μδ+	E118Ha	L45Hβ+	L121Μδ-	R17Ha
Ι71Μδ	L35Mδ-	E118Ha	L45Μδ-	L121Μδ-	Α50Ηα
Ι71Ηβ	L35Mδ-	L121Μδ-	l13Mγ2	L121Μδ-	Ι13Μδ
l71Ha	L35Mδ+	L121Μδ+	Ι13Μδ	L121Μδ-	Κ10Ηβ
D72Ha	Υ39Ηδ	L121Μδ+	Α50Μβ	L121Μδ+	A50Ha
Ρ117Ηβ+	L42Μδ-	L121Μδ+	L45Mδ-	L121Μδ+	V46Ha
Ρ117Ηδ+	L42Μδ-	L121Μδ-	L45Mδ-	L121Μδ+	R17Ha
Ρ117Ηγ	L42Μδ-	L121Μδ+	Κ49Ηβ+		
Ρ117Ηα	L42Mδ-	L121Μδ+	K10Ha		
Ρ117Ηβ-	L42Mδ-	L121Μδ+	R17Hβ		
E118Ha	K49Hδ	L121Μδ-	V46Ha		
E118Ha	L42Μδ+	L121Μδ-	K10Ha		
E118Ha	V46Ha	L121Μδ-	Α50Μβ		

Table S3. Inter-molecular NOEs identified by iterative structure-based assignment in ¹³C-separated NOESY spectra recorded on [U-¹³C,¹⁵N]-RPP21 (*) and unlabeled RPP29.[†]

RPP21*	RPP29	RPP21*	RPP29	RPP21*	RPP29
113Ηα	H46Ha	L21Μδ+	E47Hγ+	V28Mγ-	F30Ηζ
I13Mγ2	W45Hδ1	L21Μδ+	Ε47Ηβ	F29HN	I29Μδ
I13Mγ2	N42Ha	L21Μδ+	E47Ηγ-	P30Hγ+	I29HB
l13Mγ2	H46Ha	S23Ha	ΑЗЗΜβ	Y31HN	Ι29Μδ
Ι13Μδ	W45Hɛ3	S23Hβ	ΑЗЗΜβ	S32HN	Ι23Μδ
Ι13Μδ	W45Hδ1	L24Ha	ΑЗЗΜβ	S32HN	Ι29Μδ
Ι13Μδ	W45Ηζ3	L24Μδ-	ΑЗЗΜβ	S32Ha	E22Hy
Ι13Μδ	W45Hβ-	L24Μδ-	F30Hβ+	S32Hβ-	E22Hβ+
Ι13Μδ	L121Μδ-	L24Μδ-	Η34Ηβ-	L35HN	S19Hβ
A14Ha	L121Hβ+	L24Μδ-	149Ha	L35Μδ+	F30Ηζ
Α14Μβ	L121Μδ+	L24Μδ-	G50Ha-	L35Μδ+	171Ha
E16HN	H46Hɛ1	A50HN	L121Μδ+	L35Μδ+	Y20Ha
E16Hγ+	N42Hβ+	A50Ha	L121Μδ+	L35Μδ+	Ι23Μδ
E16Hγ+	H46Hɛ1	L24Μδ-	A33Ha	Y39HN	Ι49Μδ
E16Hβ+	H46Hɛ1	L24Μδ-	H34Ha	L42Μδ-	Ε73Ηβ
R17Ha	E47Hγ-	L24Μδ-	G50Ha+	L42Μδ-	Ρ117Ηγ
I18HN	E47Hγ+	L24Μδ-	F30Hδ	L42Μδ-	Ρ117Ηβ+
120HN	E47Hγ+	L24Μδ-	F30Hε	L42Μδ-	Ρ117Ηδ-
120HN	Ε47Ηβ	L24Μδ-	F30Hζ	L45Μδ-	Ρ117Ηβ+
120Ha	H34Ha	L24Μδ+	F30Hβ-	L45Μδ-	R116Ha
I20My2	Η34Ηδ2	L24Μδ+	G50Ha-	V46HN	L121Hβ+
I20My2	G50Ha+	L24Μδ+	129Ha	V46Ha	L121Hβ+
I20My2	H34Ha	L24Μδ+	G50Ha+	V46Ha	L121Μδ+
I20My2	Η34Ηβ-	L24Μδ+	F30Hε	A50HN	L121Hβ+
I20My2	Ε47Ηβ	R27HN	Ι23Μδ	Α50Μβ	L121Μδ+
I20My2	E47Hγ-	V28HN	Ι29Ηβ		
I20My2	Ι49Ηβ	V28HN	Ι29Μδ		
I20My2	ΑЗЗΜβ	V28HN	I29My2		
L21HN	E47Hγ+	V28Ha	Ι29Μδ		
L21HN	Ι49Ηβ	V28Ha	I29My2		
L21Ha	l49Mγ2	V28Mγ-	Ι29Μδ		

Table S4. Inter-molecular NOEs identifie	d by iterative structure-based assignment in ¹³ C-
separated NOESY spectra recorded on	[U- ¹³ C, ¹⁵ N]-RPP29 (*) and unlabeled RPP21. [†]

RPP29	RPP21	RPP29	RPP21	RPP29	RPP21
S19Hβ	S32Ha	S19Hβ	S32Ha	S19Hβ	S32Ha
E22Hy	S32Hβ+	E22Hy	S32Hβ+	E22Hy	S32Hβ+
E22Hy	Y31Ha	Α33Ηα	L24Μδ-	E47Ha	L42Hβ-
E22Hy	S32Ha	ΑЗЗΜβ	L24Μδ-	Ι49Μδ	L42Hy
l23Ha	Υ31Ηβ+	RPP29	RPP21	Ι49Μδ	Υ39Ηβ-
I23My2	V28Hβ	l71Mγ2	L35Hy	Ι49Μδ	Y39Ha
I23My2	Υ31Ηβ+	D72Ha	Υ39Ηδ	Ι49Μδ	Y39Ηε
I23My2	S32Hβ-	D72Ha	L35Μδ-	Ι49Μδ	Υ39Ηδ
I23My2	S32Hβ+	E73HN	Υ39Ηδ	l49Mγ2	Υ39Ηβ-
I23My2	S32Ha	E73HN	L42Hy	I49Mγ2	L21Ha
I23My2	Υ31Ηδ	Ρ117Ηβ+	L42Μδ-	l49Mγ2	L24Ha
Ι23Μδ	V28Hβ	P117Ηγ	L42Hβ+	l49Mγ2	Y39Ha
Ι23Μδ	S32Hβ-	P117Ηγ	L42Μδ-	l49Mγ2	Υ39Ηε
Ι23Μδ	S32Hβ+	E118Ha	V46Ha	l49Mγ2	Y39Hδ
Ι23Μδ	Y31Ha	L121Hβ-	A50Ha	G50Ha+	L24Μδ-
Ι23Μδ	S32Ha	ΑЗЗΜβ	L24Μδ+	G50Ha+	L24Μδ+
R26Hβ-	Υ31Ηβ-	ΑЗЗΜβ	R27Hβ	G50Ha-	L24Μδ+
R26Hβ-	Y31He	ΑЗЗΜβ	R27Hδ-	G50Ha-	L24Μδ-
R26Hβ-	Υ31Ηδ	ΑЗЗΜβ	R27Hδ+	l71Mγ2	L35Hβ-
129Ha	R27Hδ+	ΑЗЗΜβ	120Ha	RPP29	RPP21
Ι29Ηβ	R27Hy	ΑЗЗΜβ	S23Ha	L121Μδ+	L13Μδ+
Ι29Μδ	Υ31Ηδ	H34HN	I20My2	L121Μδ+	I18Hβ
Ι29Μδ	Y31Ha	H34Ha	Ι20Μδ	L121Μδ+	V46Hβ
Ι29Μδ	R27Ha	Η34Ηβ+	I20My2	L121Μδ+	V46Ha
Ι29Μδ	V28Ha	Η34Ηβ-	I20My2	L121Μδ+	A50Ha
Ι29Μδ	R27Hδ+	R35HN	Ι20Ηβ	L121Μδ+	A14Ha
Ι29Μδ	Υ31Ηβ+	R35HN	Ι20Μδ	L121Μδ-	L13Μδ+
Ι29Μδ	V28Hβ	G36HN	R17Ha	L121Μδ-	Α14Μβ
Ι29Μδ	Р30Нү+	G36HN	E16Hβ-	L121Μδ-	A14Ha
l29My2	Υ31Ηβ-	G36HN	Ι20Μδ	K122Hγ-	L45Hβ+
I29My2	Υ31Ηβ+	G36HN	I20My2		
I29My2	R27Ha	G36Ha+	E16Hβ-		
I29My2	V28Ha	G36Ha-	R17Ha		
I29My2	Υ31Ηε	W45HN	I13Mγ2		
F30HN	L24Μδ-	W45Hβ-	I13Mγ2		
F30Ha	V28Μγ+	W45Hβ-	Ι13Μδ		
F30Hβ+	L24Μδ-	W45Hβ+	I13Mγ2		
F30Hβ+	L24Μδ+	W45Hβ+	Ι13Μδ		
G32Ha+	R27Hδ+	H46HN	Ι13Ηβ		
A33HN	L24Μδ-	H46HN	I13Mγ2		