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Heteronuclear dipolar recoupling with rotational-echo double-
resonance (REDOR) is investigated in the rapid magic-angle spin-
ning regime, where radiofrequency irradiation occupies a signifi-
cant fraction of the rotor period (10-60%). We demonstrate, in
two model *C-"N spin systems, [1-"*C, **N] and [2-"*C, “N]gly-
cine, that REDOR AS/S, curves acquired at high MAS rates and
relatively low recoupling fields are nearly identical to the AS/S,
curve expected for REDOR with ideal 8-function pulses. The only
noticeable effect of the finite ar pulse length on the recoupling is a
minor scaling of the dipolar oscillation frequency. Experimental
results are explained using both numerical calculations and aver-
age Hamiltonian theory, which is used to derive analytical expres-
sions for evolution under REDOR recoupling sequences with dif-
ferent ar pulse phasing schemes. For xy-4 and extensions thereof,
finite pulses scale only the dipolar oscillation frequency by a
well-defined factor. For other phasing schemes (e.g., xx-4 and
xx-4) both the frequency and amplitude of the oscillation are
expected to change. © 2000 Academic Press

Key Words: solid-state NMR; magic-angle spinning; hetero-
nuclear dipolar recoupling; rotational-echo double-resonance; fi-
nite pulse effects.

INTRODUCTION

000; revised May 22, 2000

quence 9, 10 is frequently used to recouple heteronucleat
dipolar interactions in isolated pairs of sgimuclei, usually at
relatively low magic-angle spinning frequencies (27 ~
2-8 kHz). REDOR is well compensated for pulse imperfec:
tions and resonance offsetsl] when recouplingr pulses are
phased according to schemes basedxgrd (12), and the
technique has been successfully applied to many systems
biological interest 13—17.

REDOR experiments in spin systems involving multiple
low-y nuclei (18—21 and/or strong'H couplings 22) can
potentially benefit from spinning frequencies in the regime
w. /27 ~ 10-30kHz. However, a concern in relation to the
performance of REDOR at high MAS frequencies is the effec
of the finite v pulse length on the recouplin@g, 24. The
major aim of the work presented here is to investigate th
REDOR recoupling dynamics under conditions where a sig
nificant fraction of the rotor period is occupied by RF pulses

THEORY

The effect of finite pulses on the REDOR (Fig. 1) dipolar
dephasing curve has been considered previously using Flogt
theory @5, 26 and average Hamiltonian theory (AHT2J).

Distance and dihedral angle constraints are powerful meafgre we derive analytical expressions for the first-order avel

ecules. In solution-state NMR, the use of the nuclear Ov@gngths and differentr pulse phasing schemes. Calculations
hauser effect to establish through-space connectivities betwggi}e performed for the following phasing schemes:xgixy
'H nuclei is the foundation of structural studies of proteins ar‘(ﬁaEDOR xy-4), (i) xxxx (REDOR xx-4), and (jii) XXxX
nucleic acids 1). In addition, recently develppe;d expe'riment§REDOR xx-4). Considering only the heteronuclear dipolar
(2,9 can be used to correlate anisotropic interactions aggypling and finite pulse lengths (i.e., neglecting resonanc
angle spinning (MAS) solid-state NMR, homo- and hetergyeity and phase transients), all phasing schemes derived frc
nuclear dipolar recoupling technique$~8) are employed t0 yy.4 (12) have the same first-order average Hamiltonian (ir
measure internuclear distances and relative orientations of gli experiments we have used thg16 scheme). REDOR
polar tensors. xx-4 and REDORxX-4 simulations are included for compar-
The rotational-echo double resonance (REDOR) pulse $&gn, although we have not performed experiments with thes
hasing schemes. In addition, for comparison with the analy

! Present address: Department of Chemistry, Columbia University, Nepw . . .
York NY 10027 P y Y NG¥al AHT results, we have carried out simulations for the
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For the different REDOR sequences considered here, the F
pulses applied to the S spin impart a time-dependence t§,the
operator, and the interaction frame Hamiltonian can be writte
(25,29

His(t) = wg(D{ f(1)21,S, + g(t)21,S, + h(t)21,S,}, [5]

where w;s(t) is the crystallite-dependent dipolar oscillation
frequency (cf. Eq. [1]), and the coefficieri(s), g(t), andh(t)

are as shown in Fig. 2. Her§(t) is identical for all 7 pulse
phasing schemes and toggles betweeh during subsequent
delays between pulses. Coefficieg(s) andh(t) are a direct
consequence of the finite pulses: they can be non-zero on
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FIG. 1. REDOR pulse sequenc8,(10. Following rampedH-"*C cross- a T T T T
polarization 43), the **C signal is observed as a spin-echo. The intensity of the ; . : .
echo is modulated due to tH¥C—*N dipole interactions, recoupled by apply 0 T2 T 3n/2 2
ing rotortsyr!chronizeci)r puls_es to™N spins. Timing of*N pulses_ V\{ithi_n the b .
rotor period is shown in the inset, and the basje4 phase cycle is indicated. 1
The experiments shown used thg 16 schemeX2). The **C refocusing pulse f \
was 10us and®®N = pulses were 10-2f2s. Reference%,) experiments were /
performed in the absence 6N pulses. 0 | / [
-14
The high-field truncated Hamiltonian for the heteronuclear
dipolar coupling between spins | and S under magic-angle c .|
spinning can be expressed &8)( D
1 # \/
His(t) = = bisfsin’(B)cog2(y + w,1)] oo [\ y
- 2 sin2B)cody + wt)}21,S,  [1] ™
d ]
where NEU
o vyt M
bIS - E rI3S [2] 01
-14
is the dipolar coupling constant, which depends on the I-S e
distancer s, and gyromagnetic ratios characteristic of the | and by
S spins,y, and ys, respectively. The Euler angleg, and v, 042
relate the 1-S dipole vector to the rotor-fixed reference frame. 214
In the interaction representation defined by the RF field, the o4 A AT AR
Hamiltonian for the I-S dipolar coupling acquires an additional
time-dependence according to 17

His(t) = U4, to) His(hU(t, to), [3]

FIG. 2.
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(a) Details of the REDOR pulse sequence. (b—e) fbe g(t),

where the propagator due to the RF pulse on the S spin alé h(t) coefficients in the interaction frame Hamiltonian (cf. Eq. [5]) for

the x axis of the rotating frame is defined as

REDOR sequences with different phasing schemes.ftheoefficient (b) is
identical for all phasing schemes, and (&) andh(t) coefficients, shown for

(c) REDORxy-4, (d) REDORxx-4, (e) and REDORx-4, are different for

Un(ty t) = expl—TwS(t, — ty)}. [4]

the various phasing schemes.
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during the pulses and are different for the various phasing =0 \,@ cod (m/2) )
schemesZ6). Hig = ——— ST 2
The first-order average Hamiltonian is calculated as the _ _
average of the interaction frame Hamiltonian over the cycle X sin2B)[sin(y)2I,S, + ¢ cogy)21,§] [12]
time, t., of the pulse sequenc@¥):
and
J— to+tc
AY == H,s(tdt. 6 = - cod(m/2
° ot J o o R b.s isl(( (P)‘P) sin(2p)sin(y)2!.S,
Exolici , , e ¢ cofmp)
xplicit calculation of the first-order average Hamiltonian for L sin’(B)coq2y)21.S, |, [13]
the 1-S dipolar coupling for REDORyY-4 with finite pulses ¢
yields .
respectively.
B 2 cos( /2) ) For both sequences, the observable signal for individue
Ao =Y, - ey sin(2g)sin(y)21,S, [7] Crystallites is given by
p _
S(7) = cog \/QZ + ®27), [14]
where
with
27, i8]
¢ =
Tr \/E coq(m/2) )
D= Q= =2 bs =3 — 7 sin2p)sin(y), [15a]

is the fraction of the rotor period occupied by RF pulses, 5
defined in the range G= ¢ = 1. With the initial density N2 e 005((77/2)<P)

operatorp(0) = 1,, the evolution under the average Hamilto P = bis 1— @2 sin(2p)cody), [15D]
nian in Eq. [7] results in the observable signal for individual
crystallites, b=

XX

w
-0 5 sm(prcos2y). [15¢]

S(1) = codwT), [9] . . .
Note that for REDORkx-4, in the special case of windowless

RF irradiation of constant phase & 1 in Eqgs. [15a]-[15b]),
the observable signal reduces to the expression independent
the Euler angle;y, expected fom = =1 rotary resonance

with

2 cod(m/ i
" _\7 be Si(_ (P)(P) sin2B)sin(y).  [10] recoupling R9),
S(1) = codwT), [16]
We note that the effective dipolar coupling constéu, for
REDOR xy-4 with finite pulses, differs from the dipolar cou-with
pling constant for the sequence with ideafunction pulses
(i.e., ¢ = 0) only by the factor N 1 _
w = ﬁ b,ssm(ZB). [17]
b _ cos(7/2)¢) 1]
= bs  1-¢® In Fig. 3 we compare the analytical finite pulse AHT ex-

pressions (cf. Egs. [9], [10] and [14], [15]) with numerical
In the limit of windowless RF irradiation, we obtain limy k =  simulations. The REDORS, — §)/S, = AS/S, curves §,
wl4. However, for relatively large values @f, which are of and S represent the reference and dipolar dephasing expel
practical interestx remains close to unity. Fap = 0.6 (e.g., ments, respectively) were calculated fp¢ = 190 Hz (corre
w,/ 27 = 30 kHz andw./ 27 = 50 kHz) the effective dipolar sponding to a C-N distance of 2.53 A) agd= 0.1-0.66.
coupling is expected to be onky8% lower than the coupling Excellent agreement is obtained between the first-order ave
in the ¢ = 0 limit. age Hamiltonian analysis and the numerical simulations for a
Similar derivations of the first-order average Hamiltoniaphasing schemes considered. For REDGQR4 (Fig. 3a), the
for REDORxx-4 and REDORXxx-4 yield dipolar coupling is scaled from that expected for the idea
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a RF fieldsw, /27 = 25-50 kHz(i.e., 0.1= ¢ = 0.606). The
lower fields were used to create experimental conditions
where RF pulses occupy a significant fraction of the rotol

° period. For clarity, only a few representatit&/S, curves are

% shown in Fig. 4. According to the simulations for REDOR

< xy-4 (cf. Fig. 3a), the finiter pulses are expected to scale the
dipolar coupling by the factok given in Eq. [11]. As already
noted, for most experimental conditions of practical interest wi
anticipate only a minor (i.e.<10%) decrease ib,s. The
scaling of the dipolar coupling can be observed experimentall

b in both model compounds considered here. In Fig. 4 we sho
that an increase i from 0.1 to 0.6 results in a relatively small
decrease in the dipolar oscillation frequency.

& For a more quantitative comparison of the average Hamil

@ tonian result of Eqg. [11] and experimental measurements ¢

o we fit the REDORASS, curves with the analytical
expression
T 2
c (AS/S)(1) = A| 1 - J dg sin(B) f dy
0 0
\’2 effai H
& X co —?blssm(ZB)sm(y)T . [18]
(é)
Q6]
0 2 4 6 8 10 12 14 16 o 0€7
Time (msec) % 0.4
<
FIG. 3. Comparison of REDORS/S, curves calculated numerically and 0.2
using the average Hamiltonian expressions (see textpfor= 190 Hz and
different values ofp for (a) REDORxy-4, (b) REDORxx-4, and (c) REDOR O'O:) s z‘l é é

xX-4. Average Hamiltonian calculations are shown as discrete points for
0.1 ©), 0.33 @), 0.5 (1), and 0.66 A). Numerical simulations for the
corresponding combination @f and phasing scheme are shown as solid lines
(- - -). For reference we also show thS/S; curve calculated for the ideal
§-function pulse sequence (- - -).

Time (msec)

é-function pulse sequence by a well-defined factor (cf. Eq.
[11]). However, the amplitude of the oscillation remains un-
changed. The effect of finite pulses on the dipolar coupling for ‘ ' D S S A
REDOR xx-4 (Fig. 3b) and REDORkX-4 (Fig. 3c) is more Time (msec)
complicated; for these sequences both the dipolar oscillation

frequency and the amplitude are expected to change undéfC: 4 Experimental REDORAS'S, curves for (a) [1C, *Niglycine
and (b) [2*°C, ®N]glycine. In (a)AS/S, curves are shown fop = 0.1 O),

conditions where the recoupling pulses occupy a significalysz ®). and 0.606 £), and in (b) curves are shown far = 0.2 () and

fraction of the rotor period. 0.606 @). TheAS'S, curves simulated according to Eq. [18] (see text) are alsc
shown (—). All experiments were performed at 500.1 MH# frequency,
RESULTS AND DISCUSSION o,/27 = 5-15kHz, andw,(**N)/2m = 25-50 kHz. During REDOR, CW

'H decoupling was applied at 100 kHz (a) and 83 kHz (b). In all experi

In Figs. 4a and 4b we show experimental REDQR/S, ments 83 kHz TPPMH decoupling 84) (phase differenced = 12°, 1 =
5.3 us) was used during detection. For TG, **N]glycine, the REDOR

; ; 15 ; N
curves and simulations for [fC, N]glycine (bis ~ 200 Hz) period was incremented in steps of 0.4 mps<{ 0.1, 0.2) and 0.396 mx(=

and [2+°C, *N]glycine (b;s ~ 900 Hz), respectively, recordedp 303, 0.455, 0.606). For [2C, **N]glycine, the increments were 0.4 ms
at spinning frequencie®,/27 = 5-15 kHz andrecoupling (¢ = 0.1), 0.2 ms ¢ = 0.2), and 0.132 ms¢ = 0.303, 0.455, 0.606).
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TABLE 1 expression, describing the scaling of the dipolar coupling du
Experimentally Determined Effective C'-N and C*-N to the finite pulses:
Dipolar Couplings in Glycine
cog(m/2)p)
) T ¢ bI(C-N) (H)  bI(C™N) (H2) bis' =bis —— 2 [21]
10 200 0.100 189 2° 869+ 35° - o,
10 100 0.200 188 2 886+ 10 The fitting was performed by minimizing;, (cf. Eq. [19]),
10 66 0.303 1785 875+ 11 where the single fit parameter whg, the dipolar coupling in
15 66 0.455 1re 2 854+ 12 the limit of ideald-function pulses. For both model compounds
20 66 0.606 1732 82620 || experimentally determined effective dipolar couplings are

o 0 o _ .
® Uncertainties inbfy (reported at 95% confidence level) were obtaineé{\”thIn 10% of the CouDImg in '[.hecp 0 “mlt'. and the
following standard procedures described in R86)( agreement between AHT calculations and experimental resul

shown in Fig. 5 is good. Therefore, for REDOR experiment:
where RF pulses occupy a significant fraction of the rotol
Here, the Scaling factox accounts for the contribution to theperiod1 the dipo|ar Coup"ng Constamlsl can be calculated
S, curve from™C spins without a neighboringN (a result of  from the experimentally determined effective couplingbas
dilution in natural abundance material and/or imperfect isote= pfi(1 — ¢?)/cos(/2)e).
pic labeling). The incorporation dfC and*N labels in [1+°C, For the strong®C—""N coupling in [22°C, **N]glycine, only
N] and [2-°C, *N]glycine (Cambridge Isotope Laboratoriesthe ¢ = 0.1 experiment ,/2m = 5.0 kHz, w, /27 = 50
was ~98-99%. The [2°C, *N]glycine sample was not di kHz) deviates slightly from theory. However, for/ 2 < 5.0
luted in natural abundance glycine, and experimental data Wgi¢z we expect the accuracy and precision of the fit for the
best fit withA = 1.0. The [1°C, "N]glycine was diluted with strong dipolar coupling to be somewhat compromised, due t
a ratio of ~1:10 in natural abundance glycine. With1% the limitation in the number of points that can be acquired ol
uncertainties in the dilution and’C and *N labeling, we the AS/S, curve. In our experiments, the minimum increment
expectA ~ 0.85-0.90. For the REDOR experiment wigh= for the REDOR period is 2, (i.e., only 18 data points could be
0.1, the best fit was obtained far= 0.865, which was fixed acquired for 6.8 ms of dip0|ar evolution ﬁt/277 =50 kHz)
at this value for all subsequent simulations. For the weaker®*C—"N coupling in [1-°C, *N]glycine, all
For each experiment the effective dipolar couplibg, was
determined by minimizing the reduced (30),

a
1" 1 § 190 -
2 _ — T el i 72 o
Xv v % o_iz [Sexp Ssiml %, [19] % 1804 %
" 3
2 170
wheresiexp and s\, are the intensities of thah experimental § ]
and simulated points, respectivety, is the variance of thih g 160
experimental point, and is the number of degrees of freedom £ ]
defined as the difference between the number of experimental £ 1507
points in theAS/S, curve, n, and the number of adjustable 00 02 o4 06 08 10
parameters used in the fit. In our simulatidof§ was the only b
adjustable parameter (i.ez,= n — 1), and for eachp, o/ T 900
were obtained according to > ]
5 8504
8
) 1 XN . - 5 800
oT=N—1 2 st — St [20] g
=1 o 750
2 ]
. . 8 ]
Here,N is the number of independently record®&/S, curves w0y
(N = 3-9 in our experiments)sl,]; is the intensity of theth 00 02 04 06 08 10
experimental points,,, in thejth AS/'S, curve, ands,,, is the ¢ = 21y/t,

average oN determinations o8,
Th 9 It | fth e’;f; tive dipol l FIG. 5. Comparison of experimentally determined effective dipolar cou-
€ resulting values o € eliective dipolar coupling Corb'lings ©) and the best-fit theoretichf vs ¢ curves (—) calculated using Eq.

stants for [1¥°C, *N] and [2-°C, *N]glycine are listed in [21]for (a) [1-C, *N]glycine with b,s = 188 Hz and (b) [2C, *N]glycine
Table 1. Thebg values were fit with the analytical AHT with b,s = 894 Hz.
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1.0 /= spin-echo. However, points on tieS'S, curve will be defined

Z .8l 3'{-’;‘9 So, with a higher signal-to-noise ratio when the echo-decay is attel
g B L uated, and this is of particular importance for REDOR dat:
£ o064 L o,f £ “}' " .D.D_”f "% Lag acquired for long evolution times (i.e., 20—30 ms). In systems fc
3 T YT PR Ll which no complications are introduced by rapid spinning, there d
= 04+ v , °3 fe,q ; fhau not appear to be any fundamental disadvantages to performil

g 02 AT g REDOR experiments ab,/2m ~ 10-30 kHz. The spin-echo
z TTYYvvay, intensity can be significantly higher under these conditions, whil
0.0+ ; : : . the recoupling performance is not appreciably affected (cf. Figs.

0 5 10 15 20 and 5).

Time (msec) The *C spin-echo intensity observed in the rapid spinning
FIG. 6. Experimental REDORS, curves for the Cresonance in [1,2)C, regime depends strongly on decoupling conditions, due to th

®N]glycine, recorded at 750.0 MHZH frequency. TheS, curves were re

corded by replacing the nonselectiiC refocusingm pulse with a rotor- cally, atw,/2m = ~10 kHz CWH decoupling deteriorates
synchronized frequency-selective Gaussiapulse, to remove coherent evo- X ' '

lution under C-C* J coupling R1). The Gaussian pulses wete200—300us while _hlgh-power TPPM decoupllng effectlve!y restores th(?
(the exact pulse length was adjusted to occupy an even number of rdigiO intensity. In analogy to the line broadening observed i
periods) and 125 kHz CViH decoupling was applied for the duration of theSpectra of well-isolated spin pair8§—39, the signal loss
Gaussian pulse. During the indirect dimension and signal acquisition, 125 kHgsociated with CW decoupling can be described by the ma
TPF;M iH qu_oup;ing (phase dif‘°f7e'5e”09 o 30_18;179;53'6_?1"37 g;; ‘Z";‘S nitude of the second-order cross-term betweertithehemical
used at spinning frequencies or /. . y . y . y . . . . .
15.152 @;), and916.6q67 kHz (). TPIxI),(decougli)ng was ogt)imized for each?hlelldIng .and1_3C—1.H dipolar coupling tensors relatl.ve to the
spinning frequency by minimizing the“Ginewidth in the direct dimension. H—"H spin diffusion rate ConStanBB' 39' A part'CU|ar|y
For comparison we also show ti8g curve at 15.152 kHz MAS and 125 kHz unfavorable situation for CW-decoupled spin systems can aris
CW *H decoupling ¥). from the combination of high static magnetic fields, where the
'H CSA magnitude increases, and very high MAS frequencie:
experimental points, except= 0.303, agree well with theory. for which the proton spin diffusion rate decreases and th
The effective C-N dipolar coupling forp = 0.303 was deter- tightly coupled spin system approaches an ensemble of isolat
mined to beb{y' = 178 + 5 Hz (note that the uncertainty in thespin pairs 89). Under TPPM'H decoupling ¢ 47 4/2) s, the
value of b for this ¢ is significantly higher than the uncer magnitude of the second-order cross-term can be scaled do\
tainties for othekp given in Table 1). Careful inspection of thesignificantly by a proper choice of the phase differenée,
experimental data (not shown) revealed that points betwéen leading to a decrease in the residual dipolar linewi@®).(In
and 9 ms of thep = 0.303 AS/S, curve reproducibly had addition, Ernset al. (39) have recently shown that the perfor-
~2-3% lower intensity than expected for the simple model ofiance of high-power TPPNH decoupling does not deterio
C-N dipolar evolution described by Eq. [18], resulting in aate at high static magnetic fields for spinning frequencies up t
worse fit (nineAS/S, curves were recorded for these experi30 kHz. Similar indications that théH reservoir displays
mental conditions and all exhibited the same feature). We algartially inhomogeneous behavior in Ggroups for spinning
note that for identicaby,/ 27 and w,,(*H)/ 2, but different frequencies in then, /27 ~ 15 kHz regime have been ob
o, (*N)/27 (i.e., ¢ = 0.455 and 0.606 experimentsS/S, served recently in rotating frame experimemt§)(
curves could be fit very well to Eq. [18]. Therefore, the The use of higher MAS frequencies for REDOR experi-
somewhat anomalous appearance of ¢ghe 0.303ASS, ments on multiply®C labeled systems at high magnetic fields
curve may be related to a particularly unfavorable mismatelso offers some advantages. First, rapid spinning effectivel
between the®N recoupling and'H decoupling RF fields attenuates residudlC—*C dipolar couplings, which also cen
under these experimental conditior&l{33. tribute to the dephasing of the spin-ecl2)( In addition, high
As an example of the potential impact of higher spinningptation frequencies are required to avoid rotational resonant
frequencies on REDOR experiments, in Fig. 6 we compare R&enditions @1), which can lead to severe line broadening in
DOR reference &) curves for the € resonance in [1,2)C, uniformly °C labeled samples. Finally, fofC spins with large
“N]glycine recorded atv,/27 = 7.576-16.667 kHz, where theCSA (e.g., carbonyl groups), fast spinning will result in an
coherent evolution under the'-&C* J coupling was removed asincreased signal-to-noise ratio in the direct dimension, as tt
described previously2(). It is clear that for the Ckigroup in intensity of rotational sidebands is reduc&®,(42.
glycine the combination of fast MAS and two-pulse phase-mod-
ulated (TPPM)'H decoupling 84) significantly attenuates the
dephasing of thé’C spin-echo; the echo intensity at 20 ms of
evolution increases from approximately 0.25 to 0.6 as the spinningVe have investigated the performance of the REDOR re
frequency is increased from 7.576 to 16.667 kHz. In principle, tl@upling sequence in mod&IC—°N spin systems under cen
ASS, analysis should account for the rapid dephasing of thiitions where a significant fraction of the rotor period (10—

'H reservoir becoming partially inhomogeneo38)( Specifi

CONCLUSIONS
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60%) is occupied by RF pulses. Experimental results wele decoupling (phase differenag = 10°-18°,7 = 3.6-3.7
explained using numerical simulations and average Hamiltas) during signal acquisition. In all experiments the recycle
nian calculations. Fory-4 and related phasing schemes, thdelay was 3.0 s and 16 transients were acquired per time poit
finite pulses were shown to have a minor effect on the dipol@he experiments were repeated at least three times (with go
scaling factor expected for REDOR with ideadtunction reproducibility) and were subsequently averaged.

pulses. Under most experimental conditions of practical inter-

est, the dipolar scaling factor is reduced by only 1-5%; at ACKNOWLEDGMENTS
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