Measurement of Multiple ψ Torsion Angles in Uniformly 13C,15N-Labeled α-Spectrin SH3 Domain Using 3D 15N-13C-13C-15N MAS Dipolar-Chemical Shift Correlation Spectroscopy

Vladimir Ladizhansky,† Christopher P. Jaroniec,† Annette Diehl,‡ Hartmut Oschkinat,† and Robert G. Griffin*†

Contribution from the Department of Chemistry and Center for Magnetic Resonance, Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, and Forschungsinstitut für Molekular Pharmakologie, Robert-Rössele-Strasse 10, 13125 Berlin, Germany

Received October 24, 2002; E-mail: rgg@mit.edu

Abstract: We demonstrate the simultaneous measurement of several backbone torsion angles ψ in the uniformly 13C,15N-labeled α-Spectrin SH3 domain using two different 3D 15N-13C-13C-15N dipolar-chemical shift magic-angle spinning (MAS) NMR experiments. The first NCCN experiment utilizes double quantum (DQ) spectroscopy combined with the INADEQUATE type 13C-13C chemical shift correlation. The decay of the DQ coherences formed between 13C$_i$ and 13C$_{i+k}$ spin pairs is determined by the “correlated” dipolar field due to 15N,15N, 13C,13C, and 15N,13C,13C,15N,15N dipolar couplings and is particularly sensitive to variations of the torsion angle in the regime $|\psi| > 140^\circ$. However, the ability of this experiment to constrain multiple ψ-torsion angles is limited by the resolution of the 13C$_i$-13C$_{i+k}$ correlation spectrum. This problem is partially addressed in the second approach described here, which is an NCOCA NCCN experiment. In this case the resolution is enhanced by the superior spectral dispersion of the 15N resonances present in the 15N,15N,13C,15N part of the NCOCA chemical shift correlation spectrum. For the case of the 62-residue α-spectrin SH3 domain, we determined 13 ψ angle constraints with the INADEQUATE NCCN experiment and 22 ψ constraints were measured in the NCOCA NCCN experiment.

Introduction

Over the past decade solid-state NMR (ssNMR) has emerged as an important tool for structural investigations in a variety of biological systems such as membrane and amyloid proteins.1,2 To date the primary focus of ssNMR experiments has been on biological systems such as membrane and amyloid proteins.1,2

In general, a 13C-13C or a 13C-15N spin pair is introduced at a specific position in a protein or nucleic acid, and distances3-8,10 or relative orientations of the anisotropic interactions9,11 are determined to provide structural constraints. In one of the earliest examples of this approach, the conformation of retinal in the membrane protein bacteriorhodopsin (bR) was determined to be $6-s$-trans by measuring distances between the 8-13C and 18-13C and 16,17-13C sites.3,4 More recently, there have been many extensions and applications of this approach.9-12 In general, the use of 13C-13C and 13C-15N spin-pair labeling provides precise structural information and will continue to be the method of choice to address a number of specific biological questions.

However, if the experimental goal is a complete structure determination of a biomolecule, then the use of selective labels is inefficient and impractical. In this case large numbers of structural constraints are required,13 and in recent years approaches based on dipolar recoupling experiments have emerged as ways to achieve spectral assignments and to measure torsion angles and internuclear distances. In particular, recent advances have allowed complete or at least partial assignments in solid, uniformly 13C,15N-labeled human ubiquitin,14,15 BPTI,16 and

α-spectrin SH3 domain. More recently, the backbone structure of α-spectrin SH3 domain has been determined from a large number of distance constraints. An essential component of structural studies is the measurement of internuclear distances. In multiple-spin systems, however, the structurally important weak dipolar interactions can be obscured by the strong couplings between directly bonded nuclei. This problem can be partially overcome by utilizing spectrally selective heteronuclear and homonuclear techniques for distance measurements. Alternatively, in certain cases 13C−15N distances can be simultaneously measured in uniformly labeled systems using 3D experiments, based on rotational echo double resonance (REDOR) and transferred echo double resonance (TEDOR) techniques.

Another important class of experiments that emerged in recent years, correlates the relative orientation of anisotropic chemical shift or dipolar interactions, or both, and are used to measure the backbone and side-chain torsion angles. However, in uniformly labeled solids, the applicability of these methods can be limited by insufficient spectral resolution. This may be a significant complication in larger peptides and proteins where cross-peaks start to overlap, making interpretation of the experimental data a complicated task. The existing methods for correlating anisotropic interactions should therefore be extended and combined with the chemical shift correlation techniques that provide site-specific resolution to allow simultaneous determination of multiple torsion angle constraints in a single experiment. This approach has been employed previously in the 3D 1H−15N−13C−1H torsion angle experiments described elsewhere. The multiple torsion angle constraints determined in these experiments, together with the 13C−15N distance constraints obtained by frequency selective REDOR measurements, has led to a complete high-resolution structure of the tripeptide N-formyl-Met-Leu-Phe-OH (N-f-MLF-OH).

In this publication we demonstrate the feasibility of simultaneously determining the ψ-torsion angles in uniformly labeled proteins. The experiments were conducted on the 62-residue α-spectrin SH3 domain. The experimental schemes investigated here are related, and both are based on the existing 15N−13C−15N spectral resolution of the NCCOCA chemical shift correlation spectrum. A total of 22 ψ torsion angle constraints were obtained from this experiment. At higher fields where additional spectral resolution is available, additional measurements would be possible.

The novel feature of the second, NCCOCA NCCN experiment presented here is that the dipolar evolution is split into two separate periods in which 15N−13Cu and 13C′−15N+i+1 dipolar interactions are recoupled separately, allowing incorporation of the 15N chemical shift evolution period. The advantage of this experiment is based on the superior 15N−13Cu−13C′−15N+i+1 spectral resolution of the NCCOCA chemical shift correlation spectrum. A total of 22 ψ torsion angle constraints were determined by this method. Again the number of constraints would increase when the experiment is moved to higher fields. To the best of our knowledge, this is the first time that multiple torsion angle constraints have been determined in a uniformly labeled protein.

Experimental Section

Sample Preparation. The preparation of the α-spectrin SH3 domain for NMR experiments is described elsewhere. Approximately 25 mg of the protein was transferred into a thin wall 4-mm Chemagnetics (Fort Collins, CO) rotor. The sample was constrained to the middle part of the rotor by spacers to minimize effects of rf inhomogeneity and sealed to prevent dehydration.
Simultaneous Determination of \(\psi \) Torsion Angles

Figure 1. Three-dimensional INADEQUATE-type NCCN (a) and NCOCA NCCN (b) chemical shift dipolar correlation pulse sequences. Solid and open rectangles represent \(\pi/2 \) and \(\pi \) pulses, respectively. In (a), following \(^1H \) to \(^13C \) CP, SPC5 pulse sequence\(^{42}\) excites DQ coherences between \(^1C \) and \(^13C \) carbons, which evolve under the \(^1C - ^15N \) and \(^1C - ^13C - ^15N \) dipolar couplings reintroduced by REDOR. The dipolar evolution period is followed by the DQ chemical shift evolution. The \(\pi \) phase at the end of the chemical shift evolution period prepares DQ coherences for recorver.\(^{33}\) The DQ coherences are then converted into SQ, and the DQ path is selected by the standard phase cycling.\(^{45}\) In (b), the \(^1H \) to \(^15N \) CP creates \(^15N \) magnetization that evolves under the chemical shift. The magnetization is transferred selectively to \(^13C \) carbons and dephased under the \(^13C - ^1C - ^15N \) and \(^13C - ^1C - ^13C - ^15N \) dipolar couplings in two consecutive periods. The phase cycles in (b) were: \(\phi_1 = 8 \times 1 \times 8 \times 3 \), \(\phi_2 = 2 \), \(\phi_3 = 4 \times 13 \), \(\phi_4 = 1 \), \(\phi_5 = 11223344 \), \(\phi_6 = 2 \), \(\phi_7 = 24314213 \), \(\phi_8 = 41323431 \), \(\phi_9 = 1 \), \(\phi_{10} = 13243142 \). The SPC5 pulse sequence\(^{35}1/2 \) flip-up preparation and flip-down read out pulses (see Figure 1b). We also assume quadrature detection in the indirect \(t_1 \) and direct \(t_2 \) dimensions of the experiment.

To simplify the notation, we assume that the RFDR polarization transfer period includes also \(\pi/2 \) flip-up preparation and flip-down read out pulses. Here, the symbols \(N_i \) and \(C_i \) denote \(^1N \) and \(^13C \) spin operators, respectively, and \(c_1 = \cos(\alpha c_{^1C - ^15N}) \), \(c_2 = \cos(\alpha c_{^1C - ^15C}) \). The transverse \(N_i + 1 \) magnetization evolves under the chemical shift for frequency labeling. The band-selective CP\(^{44}\) creates transverse magnetization on carbonyl carbons. Subsequently, a REDOR period initiated for a time \(t_{CN} \) reintroduces \(^1C - ^13C - ^13C \) dipolar couplings, and the transverse magnetization of carbonyl \(^1C \) carbons will acquire modulation that is dominated by the strongest \(^1C - ^1C - ^13C \) couplings with directly bonded \(^13C \) carbons. Subsequently, a REDOR period transfers polarization from \(^13C \) spins to the directly bonded \(^13C \) spins. The second REDOR period, initiated for the same time \(t_{CN} \) as the first one, reintroduces \(^1C - ^1C - ^13C \) couplings. The \(^1C \) magnetization is detected during acquisition in \(t_2 \). After 2D Fourier transformation, the intensities of the cross-peaks for each crystallite, occurring at the frequencies \((\omega_{SA} + \omega_{SC}) \) are used for TPPM decoupling during acquisition, with total phase shift \(\phi = 12^\circ \).

Another factor contributing to the intensity decay of the cross-peaks is transverse relaxation during dipolar evolution. A reference experiment without \(\pi \) pulses on the \(^13C \) channel is performed to correct for these effects, as in conventional REDOR. The dephasing of the cross-peaks in the reference experiment is then determined by \(T_2 \). In the following discussion, the decay curve resulting from the reference experiment will be denoted \(S_n \) and for the experiment with the REDOR \(\pi \) pulses, \(S \).

The SPC5 pulse sequence\(^{42}\) was used to generate DQ coherences in the INADEQUATE NCCN experiment using a \(^1C \) RFDR period of 31.7 kHz. A DQ excitation efficiency of 30–35% was achieved. The band selective \(N_i + 1 \) to \(^1C \) CP\(^{44}\) was used in the NCOCA NCCN experiment. To avoid possible interference between the \(^1N \) rf field and the \(^1H \) decoupling field during REDOR, relatively long \(\pi \) pulses of 16 \(\mu \)s were used on the \(^13C \) channel, and CW proton decoupling rf field was \(\sim 110 \) kHz during the pulses and TPPM decoupling\(^{56} \) of \(\sim 100 \) kHz during free precession periods.

The radio-frequency driven recoupling (RFDR)\(^{57} \) sequence with an XY-8 phase cycling scheme was used for \(^1C \), to \(^1C \), rotation transfer. The length of the carbon \(\pi \) pulse was 10 \(\mu \)s. TPPM decoupling of \(\sim 86 \) kHz was employed between the pulses, and a CW field of \(\sim 100 \) kHz was used during RFDR pulses. A \(^1H \) rf field of 75 kHz was used for TPPM decoupling during acquisition, with total phase shift \(\phi = 12^\circ \).

Determination of the Torsion Angle \(\psi \). Simulations. Experimental results were analyzed using the expression

\[
N_{i,t+1} \rightarrow N_{i,t+1} \exp\left(i\omega N_{i,t} t_1\right) \frac{DCP}{C_{in} \exp\left(i\omega N_{i,t} t_1\right)} \frac{\omega_{C1} \exp\left(i\omega N_{i,t} t_1\right)}{C_{in} \omega_{C1} \exp\left(i\omega N_{i,t} t_1\right)} \frac{\omega_{C2} \exp\left(i\omega N_{i,t} t_1\right)}{C_{in} \omega_{C1} \omega_{C2} \exp\left(i\omega N_{i,t} t_1\right) \exp\left(i\omega N_{i,t} t_2\right)}
\]

The Wigner rotation matrix $D^{(2)}_{\alpha \beta} (\Omega_{\alpha \beta})$ describes the transformation of the corresponding AB dipolar tensor from its principal axis system (PAS) to the molecular frame with its axis z along the $C_i^- C_j^+$ bond. The Euler angles Ω are random variables in a powder and relate the molecular frame to a rotor frame. The element $d^{(2)}_{\alpha \beta} (\theta_m)$ of the

$$S = \langle f(t_{CN}) \cos(\omega_{d}^{SN}t_{CN}) \cos(\omega_{d}^{SN+1}t_{CN}) \times \cos(\omega_{d}^{SN+1}t_{CN}) \cos(\omega_{d}^{SN}t_{CN}) \rangle_{\Omega}$$

where $f(t_{CN}) = \sin^2(\omega_d t_{CN})$ is the SPC5 or RFDR polarization transfer function for INADEQUATE or NCOCA NCCN experiments, respectively. The $\langle f(t_{CN}) \rangle_{\Omega}$ indicates a powder average. The dephasing of the signal described by eq 1 is mainly determined by the strength of the two dipolar couplings ω_d^{SN} and ω_d^{SN+1} in the directly bonded $^{13}C^-^{15}N$ spin pairs. The weaker two-bond couplings $\omega_d^{SN+2}, \omega_d^{SN}$, and the anisotropic character of the polarization transfer function $f(t_{CN})$ have a minor effect on the dephasing. However, their orientations are uniquely determined by ψ and hence they can be easily incorporated into the expression for the signal decay. The effective heteronuclear dipolar coupling ω_d^{AB} between two nuclei A, B ($A = ^{13}C_i, ^{13}C_j; B = ^{15}N_i, ^{13}N_j+1$) depends on the crystal orientation and can be written as:

$$\omega_d^{AB} = -\frac{4}{5} \kappa (\text{Re}(\omega_d^{AB}))$$

$$\omega_d^{AB} = \frac{\mu_0 \gamma_A \gamma_B}{4 \pi \tau_{AB}} \sum_{m=-2}^{m=2} D^{(2)}_{m_{\alpha} m_{\beta}} (\Omega_{\alpha \beta}) D^{(2)}_{m_{\alpha} m_{\beta}} (\Omega_{\alpha \beta}) (\theta_m)$$

The Euler angles Ω are random variables in a powder and relate the molecular frame to a rotor frame. The element $d^{(2)}_{\alpha \beta} (\theta_m)$ of the reduced rotation matrix corresponds to the transformation of the rotor-fixed frame into the laboratory frame via a rotation by the magic angle $\theta_m = 54.7^\circ$. The PAS for the $^{13}C_i^- ^{13}C_j$ tensor coincides with the molecule frame, and the corresponding expressions for the effective dipolar constant ω_d^{CC} for SPC5 and RFDR sequences can be found elsewhere. The scaling factor k is determined by the REDOR finite pulse effects and vibrational effects and can be estimated experimentally.
mentally from the dephasing of the 13C$_a$–15N$_{i+1}$ cross-peaks denoted by asterisks in the C_a region of the INADEQUATE spectrum of Figure 2. The decay of these peaks as a function of the dipolar evolution time is mainly determined by the strong 13C$_a$–15N dipolar couplings and should therefore exhibit a typical REDOR-type behavior. In practice, the REDOR decay of the resolved 13C$_a$–13C$_b$ cross-peaks was measured and the effective dipolar couplings were extracted and used in the simulations. The standard backbone geometry used in the simulations was as follows: C$_i$–C$_a$ bond, 1.52 Å; C$_i$–N$_{i+1}$, 1.33 Å; C$_a$–N$_i$ bond, 1.45 Å; N$_i$–C$_a$–C$_i'$ bond angle, 110.7°; C$_a$–C$_i'$–N$_{i+1}$ bond angle, 115.6°. The effective dipolar couplings were found to be scaled by 0.95 compared to this model.

Error Analysis. The best fit to the ψ torsion angle was determined by minimizing the χ^2 function

$$\chi^2 = \frac{1}{n-i} \sum \left(\frac{S_i - E_j}{S_i} \right)^2$$

(3)

where E_j is the experimental value for data point, S_i is the simulated value for data point, and the dispersions σ_i's were estimated from the experimental noise. The dihedral angle ψ was the only free parameter in the fitting simulation. Error limits for the torsion angles were determined using an F-test at the 90% confidence level. The possible systematic errors due to deviations in the bond angles and 13C–13N distances from the standard backbone parameters were discussed elsewhere.

These errors are much smaller than the experimentally observed random errors, and can therefore be neglected. Only the absolute value of the torsion angle can be determined from these experiments.

Experimental Results

The spectral assignments were confirmed using the dipolar INADEQUATE21 DQ-SQ 13C–13C correlation spectrum shown in Figure 2 and the NCOCA chemical shift correlation spectrum illustrated in Figure 4. The isotropic chemical shifts determined from these spectra were within 0.1 ppm of the reported shifts.17 There are 10 and 12 well-resolved cross-peaks in the CO and CA regions, respectively. Among 10 cross-peaks of interest resolved in the CO region of the spectrum in Figure 2, the D14, T24, and G51 residues show relatively slow decays, indicative of the torsion angle ψ being in the range $|\psi| \leq 140^\circ$. For example, the dephasing of the G51 cross-peak shown in Figure 3, agrees well with the $|\psi|$ conformation of 180°, as evident from the corresponding χ_r^2 plot. In contrast, the cross-peak intensities corresponding to Y15, K27, G28, T32, T37, P54, A55 residues decay fast, and the corresponding values for $|\psi|$ were found to be in the insensitive region of the NCCN experiment, $|\psi| < 140^\circ$. Figure 3 illustrates the dephasing curve for the K27 residue. As can be clearly seen from the corresponding χ_r^2 curve, all $|\psi|$ values below $<140^\circ$ can occur with nearly equal probability. Most of the peaks resolved in the CO region are fully resolved in the C_a region as well. However, a few extra peaks appear in the C_a part of the spectrum. For example, the cross-peaks between the 13C$_j$ and 13C$_a$ carbons in V23, V44, and V58 residues are clearly seen. These three residues dephase slowly, indicating that the corresponding N$_i$C$_a$C$_{i+1}$N$_{i+1}$ dihedral angles are close to $|\psi| = 180^\circ$. The values of the torsion angles ψ, measured in the INADEQUATE NCCN experiment are summarized in Table 1.

An alternative experimental scheme, which provides improved spectral resolution, is based on the NCOCA chemical shift.

correlation and shown in Figure 1b. In this case the dipolar evolution period is split into two separate periods in which $^{13}\text{C}^i-^{15}\text{N}_{i+1}$ and $^{15}\text{N}_i-^{13}\text{C}_w$ dipolar interactions are recovered, respectively. The $^{15}\text{N}_{i+1}-^{13}\text{C}_w$ region of the NCOCA correlation spectrum shown in Figure 4 has better resolution than the INADEQUATE NCCN spectrum, and there are 22 resolved cross-peaks in the spectrum.

In this case the cross-peaks due to V9, V23, T24, V44, G51, and V58 residues dephase slower than the other cross-peaks, indicating that $|\psi| = 140-180^\circ$. An example of the dephasing of the V9 cross-peak as a function of the dipolar evolution t_{CN} is shown in Figure 5. The corresponding χ_i^2 plot has one deep minimum corresponding to the absolute value for the torsion angle of 158°.

The L8, Q50, and F52 residues dephase more rapidly and have two minima of comparable depth in the χ_i^2 plot, as shown in Figure 5, indicating that the experimental data can be fit to a family of conformations centered around these minima.

The rest of the curves are in the insensitive region of the experiment, and one can only conclude that the absolute value of the torsion angle in these residues is smaller than approximately 145°. The values for the torsion angles determined at the 90% confidence level are listed in the Table 1. Two experimental schemes discussed above should lead to similar dephasing curves. A few considerations should be taken into account when deciding what experiment to choose. The INADEQUATE NCCN experiment has a few important advantages over the NCOCA NCCN scheme. First, the initial signal loss in the INADEQUATE experiment is defined by the efficiency of the double quantum filter, which is on the order of 30–35%. In comparison, the NCOCA experiment involves two polarization transfer steps: $^{15}\text{N}_{i+1}$ to $^{13}\text{C}_i$ CP, and $^{13}\text{C}_i$ to $^{13}\text{C}_w$ RFDR transfer, with overall efficiency of approximately 20%.

Second, while in the DQ state, the J-couplings do not affect the dipolar evolution of the DQ coherences in the INADEQUATE experiment. The decay of the DQ coherences will therefore be determined by the $^{13}\text{C}^i-^{15}\text{N}$ dipolar couplings as well as by the transverse relaxation. In contrast, the J-couplings are active during the REDOR dipolar evolution in the NCOCA NCCN experiment, which results in additional signal reduction and will therefore require more averaging to achieve the same signal-to-noise as that in INADEQUATE NCCN.

An important advantage of the NCOCA NCCN experiment, which is of great importance for uniformly labeled proteins, is that it provides significantly better spectral resolution. In addition, the NCOCA polarization transfer scheme can be extended to an NCOCA experiment by using an additional selective mixing step\(^{55}\) to transfer polarization from $^{13}\text{C}_i$ to $^{13}\text{C}_w$ prior to detection. The chemical shift dispersion of $^{15}\text{C}_i$ and $^{13}\text{C}_w$ carbons is generally better than that of $^{13}\text{C}_w$, and one can expect an additional resolution enhancement. Therefore, in small peptides, or in other cases where sufficient spectral resolution can be achieved in the DQ-SO $^{13}\text{C}^i-^{13}\text{C}_w$-correlation spectrum, it is advisable to use the INADEQUATE NCCN experiment. In larger systems the NCOCA NCCN scheme seems to be more suitable for constraining NCCN conformations.

Conclusions

In conclusion, we have demonstrated the feasibility of the measurement of multiple ψ-torsion angle constraints in a uniformly $^{13}\text{C},^{15}\text{N}$ labeled protein. The combination of the chemical shift correlation and NCCN dipolar correlation experiment makes it a powerful tool for structural determinations in biological solids. Two experiments, INADEQUATE NCCN and NCOCA NCCN are applied to a uniformly $^{13}\text{C},^{15}\text{N}$-labeled α-spectrin SH3 domain. While the INADEQUATE NCCN experiment provides better signal-to-noise and is better compensated with respect to the homonuclear J-coupling effects, the NCOCA NCCN scheme has the advantage of having better spectral resolution, which results in the larger number of ψ torsion angle constraints that can be determined. The sensitivity of the experiment is optimal for the conformations with $|\psi| > 145^\circ$.

We expect that the NCCN and similar dipolar correlation methods will become an integral component of structural studies

Table 1. $|\psi|$ Torsion Angles Measured in α-Spectrin SH3 Domain by INADEQUATE NCCN and NCOCA NCCN Experiments

<table>
<thead>
<tr>
<th>residue</th>
<th>INADEQUATE NCCN</th>
<th>NCOCA NCCN</th>
<th>ψ (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L8</td>
<td>75 ± 20</td>
<td>149.6</td>
<td></td>
</tr>
<tr>
<td>V9</td>
<td>149 ± 16</td>
<td>157.5</td>
<td></td>
</tr>
<tr>
<td>L12</td>
<td>158 ± 9</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>D14</td>
<td>148 ± 12</td>
<td>145.5</td>
<td></td>
</tr>
<tr>
<td>Y15</td>
<td><146, <150</td>
<td>117.8</td>
<td></td>
</tr>
<tr>
<td>P20</td>
<td><147</td>
<td>-36.6</td>
<td></td>
</tr>
<tr>
<td>V23</td>
<td>158 ± 9</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>T24</td>
<td>152 ± 8</td>
<td>147.5</td>
<td></td>
</tr>
<tr>
<td>K27</td>
<td><137, <141</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>G28</td>
<td><146, <156</td>
<td>-9.3</td>
<td></td>
</tr>
<tr>
<td>I30</td>
<td><144</td>
<td>114.5</td>
<td></td>
</tr>
<tr>
<td>T32</td>
<td><141, <145</td>
<td>123.3</td>
<td></td>
</tr>
<tr>
<td>L34</td>
<td><148</td>
<td>-42</td>
<td></td>
</tr>
<tr>
<td>S36</td>
<td><146</td>
<td>28.8</td>
<td></td>
</tr>
<tr>
<td>T37</td>
<td><145, <144</td>
<td>-33.7</td>
<td></td>
</tr>
<tr>
<td>K39</td>
<td><145</td>
<td>-21.9</td>
<td></td>
</tr>
<tr>
<td>V44</td>
<td>162 ± 12</td>
<td>170.9</td>
<td></td>
</tr>
<tr>
<td>Q50</td>
<td>74 ± 20</td>
<td>145.9</td>
<td></td>
</tr>
<tr>
<td>G51</td>
<td>180 ± 11</td>
<td>-175.7</td>
<td></td>
</tr>
<tr>
<td>F52</td>
<td>74 ± 24</td>
<td>145.2</td>
<td></td>
</tr>
<tr>
<td>P54</td>
<td><142, <151</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>A55</td>
<td><145, <156</td>
<td>-35.4</td>
<td></td>
</tr>
<tr>
<td>V58</td>
<td>154 ± 9</td>
<td>153.7</td>
<td></td>
</tr>
<tr>
<td>K60</td>
<td><156</td>
<td>130.7</td>
<td></td>
</tr>
</tbody>
</table>

Simultaneous Determination of ψ Torsion Angles

in uniformly labeled proteins. These methods are able to provide direct experimental restraints on the local backbone conformations. The combination of dipolar56–58 or chemical shift-based56–58 torsion angle methods and of internuclear distance measurement techniques19,28 will make it possible to obtain reliable solid-state NMR 3D protein structures.

Acknowledgment. We thank Nathan Astrof and Mike McMahon for stimulating discussions. C.P.J. thanks the NSF for a Predoctoral Fellowship. This research was supported by NIH Grants GM-23403 and RR-00995.

JA029082C