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Abstract Nmrglue, an open source Python package for

working with multidimensional NMR data, is described.

When used in combination with other Python scientific

libraries, nmrglue provides a highly flexible and robust

environment for spectral processing, analysis and visuali-

zation and includes a number of common utilities such as

linear prediction, peak picking and lineshape fitting. The

package also enables existing NMR software programs to be

readily tied together, currently facilitating the reading,

writing and conversion of data stored in Bruker, Agilent/

Varian, NMRPipe, Sparky, SIMPSON, and Rowland NMR

Toolkit file formats. In addition to standard applications, the

versatility offered by nmrglue makes the package particu-

larly suitable for tasks that include manipulating raw spec-

trometer data files, automated quantitative analysis of

multidimensional NMR spectra with irregular lineshapes

such as those frequently encountered in the context of bio-

macromolecular solid-state NMR, and rapid implementa-

tion and development of unconventional data processing

methods such as covariance NMR and other non-Fourier

approaches. Detailed documentation, install files and source

code for nmrglue are freely available at http://nmrglue.com.

The source code can be redistributed and modified under the

New BSD license.

Keywords Nuclear magnetic resonance � Solid-state

NMR � Data processing � Data analysis � Data visualization �
Python � Open source

Introduction

Nuclear magnetic resonance (NMR) spectroscopy has

become an indispensable tool for the detailed analysis of

biological macromolecules (Wüthrich 2003) and has also

been applied toward imaging (Lauterbur 2005), drug dis-

covery (Shuker et al. 1996; Pellecchia et al. 2008), and

metabolomics (Nicholson et al. 1999). NMR spectra contain

a tremendous amount of information on the structure and

dynamics of the molecule under investigation, but often-

times the extraction of this information can be a complicated

and, at times, highly computationally demanding process. To

address these challenges, a growing collection of software,

aided by the increasing computational power of personal

computers, has been developed to record, process, analyze,

and visualize NMR data (Smith et al. 1994; Delaglio et al.

1995; Pons et al. 1996; Hoch and Stern 1996; Günther et al.

2000; Bak et al. 2000; Blanton 2003; Keller 2004; Veshtort

and Griffin 2006; van Beek 2007; Goddard and Kneller 2008;

Lewis et al. 2009; Short et al. 2011; Nowling et al. 2011;

Stevens et al. 2011). This proliferation of NMR software can

act as both a benefit and a burden to the practitioners of the

technique. The benefit comes from the fact that users can

often locate existing software that will adequately address a
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specific task they wish to accomplish. The downside is that,

as the number of programs used to work with data generated

in a typical experiment or set of experiments grows, new

methods must be devised to allow all of these programs to

effectively interact and exchange information; this problem

is amplified by the lack of a standard format for storing NMR

data.

For example, when performing an NMR structural

analysis of a protein, it is not uncommon to collect the

multidimensional time-domain NMR data using software

provided by the spectrometer vendor, process the data

using a second program, assign the various spectra using a

third, extract structural restraints from peak positions and

intensities with a fourth, and, finally, perform molecular

dynamics simulations subject to these restraints using a

fifth piece of software. Between each of these steps, the

peak lists, restraint tables, and other spectral data must be

converted from the format which was generated by the

program or programs used in the preceding step into the

format required for the next. Depending on the types of

software used for the tasks above, this conversion must

frequently be accomplished by auxiliary scripts and short

software programs written within individual research

groups and seldom shared with the scientific community at

large. Although recent software packages such as the

CCPN NMR FormatConverter (Vranken et al. 2005), the

WeNMR portal (Wassenaar et al. 2012) and the CONN-

JUR Spectrum Translator (Nowling et al. 2011) provide

capabilities for converting between a number of NMR

formats they do not offer a complete solution to this con-

version problem. The FormatConverter and the WeNMR

portal are able to handle peak lists, assignment tables and

other similar data but do not provide functionality to con-

vert the raw numerical spectral data between different file

formats. The CONNJUR Spectrum Translator introduces

this functionality but is currently limited to relatively few

file formats.

Here we describe nmrglue, an open source package for

working with NMR data in the Python programming lan-

guage. Nmrglue is designed to enable the various software

programs that make up an NMR experiment data workflow

to be seamlessly connected together. In addition to pro-

viding resources for handling raw spectrometer data files,

the package furnishes a flexible and robust environment for

rapidly implementing as well as developing new methods

to process, analyze and visualize multidimensional NMR

data sets, including spectra with irregular lineshapes such

as those frequently encountered in the context of biomac-

romolecular solid-state NMR. The design of nmrglue and

how it compares to existing NMR software is discussed,

followed by a detailed description of the various features of

the package. Finally, a number of examples where nmrglue

is used to manipulate NMR data are presented.

Software design

Nmrglue aims to serve as a powerful, yet easy to install and

use, platform for the facile implementation of NMR data

processing, analysis and visualization methods, and one that

also permits existing NMR software to be readily inter-

connected. To achieve these goals, nmrglue is based on the

following design approach: rather than creating a new

environment for handling NMR data the package takes as its

input data stored in any one of a number of different file

formats and provides these data as a multidimensional array

object that can be further manipulated in the Python pro-

gramming language. This approach is analogous to that

taken by matNMR (Van Beek 2007), which works with

NMR data within the MATLAB (MathWorks, Natick, MA)

environment. The macro language used by NMRPipe

(Delaglio et al. 1995) also provides a similar environment in

Tcl/Tk, although this software enables only one-dimen-

sional (1D) slices of NMR data to be manipulated one-at-a-

time. A number of other NMR software packages, such as

CARA (Keller 2004), incorporate the ability to automate

tasks through a macro language or other scripting facilities.

However, in most cases scripting is not the primary interface

but rather a method of automating functions more typically

performed through a graphical user interface (GUI). Finally,

the capabilities of many of the existing NMR software

packages are difficult to extend readily due to their archi-

tecture and lack of access to the source code.

Python is a general purpose, high-level, interpreted pro-

gramming language (Van Rossum 1995), whose clear, read-

able syntax and remarkable power have resulted in it

becoming one of the most widely used scripting languages,

especially for scientific applications. Python is open source

software, which can be readily downloaded, installed, and

used on computers running the Windows, Linux or OS X

operating systems free of charge. The language is considered

to be relatively straightforward to learn and use with ample

documentation available both online (docs.python.org) and in

print (Lutz 2011). Python source code can be executed in

script format or interactively within a Python shell allowing

new scripts to be readily developed and tested. Python’s

standard library is extensive, providing tools for a number of

common computational tasks. Moreover, the language can be

extended with custom modules. Of interest to the scientific

community in general and the NMR community in particular

is the NumPy module (Oliphant 2007), which adds support for

the efficient handling of multidimensional arrays and provides

a large library of mathematical functions that operate on these

arrays at speeds comparable to compiled programming lan-

guages. The SciPy (Jones et al. 2001) and matplotlib (Hunter

2007) libraries, respectively, contain additional mathematical

tools for scientific computing and creating high quality plots

within Python. Collectively, these open source modules give
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Python functionality that is similar to MATLAB and other

numerical computing environments. Recently, a number of

projects have commenced that harness the power and flexi-

bility of these computational tools to address a diverse col-

lection of problems in a wide variety of fields including

astronomy (Turk et al. 2011), bioinformatics (Cock et al.

2009), machine learning (Pedregosa et al. 2011), neuroim-

aging (Gorgolewski et al. 2011) and statistics (Seabold and

Perktold 2010). It is also noteworthy that Python, NumPy,

SciPy, matplotlib, any many other scientific Python packages

are all distributed under open source licenses, which allows

other open source software and, in certain cases, non-open

source or even commercial software to distribute and reuse

code from these packages free of charge as long as appropriate

copyright and license requirements are met.

Nmrglue draws on these powerful open source Python

libraries to create an environment for working with NMR

data. Data stored in a number of common file formats are

made available by nmrglue as NumPy multidimensional

arrays; this provides a robust method for storing spectral

data during processing and analysis. These data can then be

output to various file formats for storage and readily

manipulated using mathematical routines in the NumPy or

SciPy libraries. Nmrglue provides a number of common

NMR processing routines built using the fast and efficient

routines contained in these libraries. In addition, since the

nmrglue source code is freely available under a permissive

license the code for these routines can serve as an example

and be easily adapted or extended for new uses, allowing

novel data processing or analysis methods to be designed

and tested by leveraging the linear algebra and numeric

algorithms that already exist in the different scientific

Python libraries. NMR data accessed in nmrglue can be

visualized using matplotlib (or another Python plotting

library), which can also be employed to create interactive

plots within GUI applications or publication quality figures.

In conjunction with these comprehensive scientific libraries,

nmrglue provides an environment for rapid prototyping and

testing of new NMR data processing and analysis methods.

New or existing C, C?? or Fortran code can also be interfaced

as extension modules, which operate on NumPy arrays, using

tools such as SWIG (Beazley 2003), F2PY (Peterson 2009) or

Cython (Behnel et al. 2011). Finally, nmrglue can be used from

within a Python shell, or an enhanced Python shell such as

IPython (Perez and Granger 2007), to interactively examine,

process and analyze NMR data.

Software features

In this section, we discuss the main features of nmrglue.

The major modules which make up nmrglue and their

functionalities are listed in Table 1, and a more detailed

listing of the various package components is available

online at the nmrglue website, http://nmrglue.com.

Throughout the paper the names of nmrglue modules are

indicated in bold font, function names in italic font and

references to specific sections of source code or commands

to be entered into a shell in fixed width font.

Reading, writing and converting between common file

formats

First and foremost, nmrglue can be used to read and write

data from and to a number of common NMR file formats.

At the present time, nmrglue can access and save data in

formats recorded on Bruker and Agilent/Varian spectrom-

eters, as well as files used by NMRPipe (Delaglio et al.

1995), Sparky (Goddard and Kneller 2008), SIMPSON

(Bak et al. 2000), and the Rowland NMR Toolkit (Hoch

and Stern 1996). Importantly, support for additional data

formats can be readily implemented owing to the flexibility

of the platform and is planned for future releases of nmr-

glue. Using the read function appropriate for the particular

file format, nmrglue returns to the user the NMR data and

any spectral parameters or other meta-data contained in the

file. One- or multidimensional NMR data are read into

memory and contained in an ndarray, a robust multidi-

mensional array object provided by NumPy with which the

scientific routines in the NumPy and SciPy libraries can

Table 1 A listing of the major modules making up the nmrglue

package

Module Description

Fileio

bruker Reading and writing of Bruker files

pipe Reading and writing of NMRPipe files

rnmrtk Reading and writing of Rowland NMR Toolkit files

simpson Reading of files created by the SIMPSON simulation

program

sparky Reading and writing of Sparky files

varian Reading and writing of Agilent/Varian files

convert Conversion between any of the above formats

Processing

proc_base Common NMR processing functions (apodization, shifts,

transforms, etc.)

proc_bl Baseline filtering, smoothing and correcting functions

proc_lp Linear prediction modeling and extrapolation

pipe_proc Processing functions with names and parameters similar

to those in NMRPipe

Analysis

peakpick Numerous peak picking algorithms which work in

arbitrary dimensions

linesh Fitting and simulation of arbitrary dimensional

lineshapes
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subsequently interact. The dimensionality, size, direct

dimension quadrature, and data type (integer or floating

point values) of this object are set and appropriately con-

verted by nmrglue, based on parameters contained in the

file being read. Since NumPy provides no mechanism for

the representation of hypercomplex data (States et al. 1982;

Delsuc 1988), quadrature in the indirect dimensions must

be manipulated as required when the data are transposed.

Any meta-data and spectral parameters present in the file,

such as the carrier frequencies and sweep widths, are stored

in a dictionary using key-value pairs and returned to the

user. Since each NMR file format contains different num-

bers and formatting styles of the spectral parameters, the

structure and size of these dictionaries are unique to each

file format. Nmrglue has a limited ability to convert

between the parameter dictionaries corresponding to dif-

ferent file formats as discussed in more detail below.

Oftentimes it is neither necessary nor desirable to read

an entire NMR data set into memory, especially when

working with large multi-gigabyte 3D or 4D data sets. In

many cases, only a small subset of the data is actually

required at a given time, and loading the entire data set into

memory can be a time and resource consuming process (or,

indeed, impossible in cases where memory is limited). For

instance, when visualizing a 3D spectrum as a series of 2D

planes, only single 2D slices along a given frequency axis

need to be accessed at any given time. Nmrglue provides

methods for loading limited regions of NMR data into

memory only when the data are needed to perform a cal-

culation. This is accomplished via the read_lowmem

functions, available for most file formats. The resulting

array-like object which is returned behaves similarly to a

NumPy ndarray object. It can be transposed, but no data are

actually loaded into memory until a specific region of the

data set is requested through a slicing operation, at which

point the requested data are read and returned as a NumPy

array.

In addition to being able to read NMR data and

parameters in a number of file formats, nmrglue can write

to most of the supported file formats using write functions

present in the modules. In the case of large data sets, for

which the low memory reading functions are employed,

users can request a region of the data and write that region

to disk using the write function or write the entire data set

to a file trace by trace using the write_lowmem function. By

using this functionality, only a single 1D data trace must be

stored in memory at any given moment. Additional meth-

ods, which allow for writing to specific regions of a file, are

under development and will be available in the future

versions of the package.

Nmrglue can also be used to convert data between dif-

ferent formats. The convert module provides tools for this

functionality. An example of conversion from Sparky to

NMRPipe file format is given in Listing S1 available in the

Supporting Information. As demonstrated by this example,

the mechanism for the conversion is to read in the NMR

data and parameters (line 4), create and load a conversion

object (lines 7 and 8), and request the NMR data and

parameters in the output format (line 9) which are then

written to disk (line 12). Any manipulation of the data

necessary for the conversion (sign changes, data type

modifications, etc.) is performed internally so that the

resulting array is correct for the requested output format.

By using the read_lowmem and write_lowmem functions,

large NMR data sets can be converted in this manner from

one format to another in such a way that only a single trace

is stored in memory at any given time.

Given that the supported file formats store differing

numbers of spectral parameters, many of which are not

specifically linked to a given dimension, it is not always

possible to determine all of the parameters required for a

particular format. During the conversion, nmrglue will

attempt to find the correct parameters in the initial

parameter dictionary or will fill in default values if this

information is not available. Internally nmrglue uses a

‘‘universal dictionary’’ for these conversions, which con-

tains the most fundamental parameters necessary to

describe NMR data. Users can fill in corrected values of the

various parameters by updating the resulting dictionary or

by providing a custom universal dictionary when loading in

the data. An example of this procedure is given in Listing

S8, which will be discussed in detail in the Example

applications section. A more advanced file conversion

system that is focused on ease of use is currently under

development and will be included in future versions of the

software.

Often locations in NMR spectra are referenced not by

points, but in more convenient units such as Hz or ppm. To

allow the use of these units, the file input/output modules

contain functions for creating unit conversion objects,

which convert to and from points in a given dimension to

more common unit types including Hz, ppm, percent,

microseconds, milliseconds, and seconds. The use of these

objects to extract and display a spectrum in units of ppm

will be shown in the Example applications section.

Data processing

In addition to providing the capabilities to read, write, and

convert between various NMR file formats, nmrglue also

contains a number of modules for processing NMR data.

Since most of the data processing methods used in NMR

spectroscopy are identical or highly analogous to signal

processing techniques used in other scientific fields, the

numerical routines in the NumPy and SciPy libraries pro-

vide efficient implementations of these algorithms. The
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proc_base module contains a number of common NMR

processing functions including apodizations, spectral shifts,

transforms, and filters. The proc_bl module provides

functions for filtering, smoothing and flattening spectral

baselines, and the proc_lp module has functions for linear

prediction (Ni and Scheraga 1986), modeling and extrap-

olation using different algorithms including singular value

decomposition (SVD) and total least squares (TLS). Given

the widespread use and popularity of the NMRPipe soft-

ware in the NMR community, the pipe_proc module has

also been created to provide processing functions with

names and parameters similar to their NMRPipe counter-

parts. In addition, the functions in this module also update

the dictionary of spectral parameters as the data are pro-

cessed, so that the file written after processing is nearly

identical to files processed using NMRPipe. Overall, the

simplicity and code readability of the nmrglue processing

modules—which, together with the open distribution of the

source code provide developers with example implemen-

tations of many common NMR processing methods—

comes at some expense of speed. However, the reduced

speed of these functions relative to highly optimized and

specialized code is typically not a major hindrance, as

Fourier transforms and other operations employed in NMR

data processing are no longer time intensive tasks for

modern computers. For example, the processing of a test

1500* 9 166* 2D NMR data matrix with zero-filling to

4096* and 2048* points, respectively, which required

2.04 s using NMRPipe on a Dell Precision Workstation

470 with two Intel Xeon processors and 6 GB of RAM,

could be achieved in 5.85 s using nmrglue. This difference

in processing times can be partially attributed to nmrglue’s

limitation of running on a single processor that is not

present in NMRPipe.

Spectral analysis

Extracting the wealth of information present in multidi-

mensional NMR spectra can be a time and labor intensive

task. In biomolecular NMR this analysis is oftentimes

highly repetitive, with each residue in the protein giving

rise to one or more cross-peaks which are analyzed in a

similar manner. The process thus lends itself to stream-

lining and automation. Nmrglue contains basic analysis

tools that can be used to create scripts and programs to

tease out structural and dynamic information from NMR

data. The peakpick module contains a function which can

perform peak picking of NMR spectra of arbitrary

dimensionality using several different algorithms. Estima-

tion of peak positions and linewidths and the clustering of

nearby peaks, which are all required for further analysis,

can be performed within this module. One commonly used

procedure involves fitting the experimental peaks to a

model lineshape, and the linesh module enables such fitting

of a peak or cluster of peaks to be performed in an arbitrary

number of dimensions using the Levenberg–Marquardt

algorithm (Marquardt 1963). Lorentzian, Gaussian, and

Voigt lineshapes most commonly encountered in the

analysis of NMR spectra are built into nmrglue, and users

may also supply their own lineshape functions to be used in

peak fitting.

In addition to the analysis capabilities described above,

nmrglue can be used to rapidly develop new data analysis

approaches. Such developments are aided by the underly-

ing spectral segmentation and peak picking methods, a

Levenberg–Marquardt least squares optimization algorithm

which allows fitting parameters to be constrained and a

spectral simulation function applicable to an arbitrary

number of dimensions, as well as the extensive collections

of fast and efficient scientific and computational routines

available in NumPy and SciPy. Furthermore, C, C?? or

Fortran code can be easily interfaced with Python using the

C-API module in NumPy, F2PY, SWIG, or Cython, which

allows the analysis routines written in these languages to be

included in nmrglue scripts.

Interactivity

In addition to enabling the development of Python scripts

that work with NMR data, nmrglue can also be used to

examine NMR data in an interactive mode. This is most

readily achieved using an enhanced Python shell, such as

IPython, that allows data to be viewed in graphical form

and includes a number of additional advanced features.

Figure 1 shows a sample IPython notebook, in which

nmrglue was used to examine and visualize 1D and 2D

NMR data from within a web browser.

Installation and documentation

Nmrglue was designed to provide a powerful environment

in which NMR data can be converted, processed and ana-

lyzed, with particular attention paid to ease-of-use and

substantial flexibility that allows users to develop and test

new analysis methods. With these goals in mind, creation

of quality documentation was given a high priority. Con-

sequently, all user-facing functions and classes in the

package have been thoroughly documented and are avail-

able using Python’s built-in help function or online at the

nmrglue website at http://nmrglue.com. In addition, a

tutorial introducing many of the features of the package,

multiple examples of nmrglue scripts, as well as instruc-

tions for software installation, are also available at the

website.
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Example applications

In this section we discuss a selection of Python scripts,

available as Listings S1-S15 in the Supporting Information,

as examples of how nmrglue can be used to visualize,

process, and analyze NMR data. All of the scripts and

corresponding NMR data presented in this article as well as

numerous additional examples are available for download

from the nmrglue website, http://nmrglue.com. In order for

the scripts to run, Python and the NumPy, SciPy and

nmrglue libraries must be installed. For the data visuali-

zation examples, matplotlib must also be installed. All the

scripts can be executed from the command line by issuing

the command: python script.py, where script.py

is the name of the script being executed. The files may also

be executed directly; on Linux systems this is done by

adding #!/usr/bin/env python as the first line of

the file, setting the appropriate executable mode and typing

script.py on the command line.

Visualization of 1D time and frequency domain NMR

data

Visualization of NMR spectra is an essential step in the

assignment of the resonances and is helpful in evaluating

various processing methods. Nmrglue can be used in con-

junction with matplotlib or another Python plotting pack-

age to visualize NMR data stored in any of the supported

formats. As an example, Listings S2 and S3 provide Python

scripts which plot the free induction decay (Listing S2) and

corresponding 13C MAS solid-state NMR spectrum (List-

ing S3) recorded for a sample of amyloid fibrils formed

from 13C,15N-enriched Y145Stop variant of the human

prion protein (Helmus et al. 2008b, 2010, 2011). In both

scripts the NMR data are read in from an NMRPipe file

(line 5) and a unit conversion object is created (line 8),

which is used in line 13 to provide a scale for the plot in

milliseconds or ppm. Lines 11–19 plot the time and fre-

quency domain spectra, set the scales of the axes and add

Fig. 1 A sample IPython

notebook, in which nmrglue is

used to interactively examine

and visualize 1D and 2D NMR

spectra
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appropriate labels using the matplotlib library. The last line

in each script creates the output files, ‘‘fid.eps’’ and

‘‘spectrum.eps’’, which are shown in Figs. 2 and 3,

respectively. Features can be added to or removed from the

figures by modifying the Python scripts or using image

editing software, and other graphics output formats,

including png and PDF, can be created by appropriately

modifying the extension of the filename on the last line.

Visualization of 2D NMR spectra

2D NMR spectra can be plotted in a similar manner as

shown in Listing S4 and accompanying Fig. 4. In this

script, a 2D 15N–13C spectrum is read from an NMRPipe

file (line 5), the limits of the ppm scales for both axes are

determined from unit conversion objects (lines 8–11), and a

contour plot of the spectrum is created (lines 14–18). Three

representative 1D 13C slices were also added to the plot in

lines 21–27 to demonstrate the spectral resolution and

signal-to-noise ratio, followed by setting the limits and

labeling the frequency axes (lines 30–34).

Matplotlib and other Python plotting libraries can also

be used to create plots that can be examined interactively.

This is achieved by changing the last line of the Python

scripts in Listings S2, S3 or S4 to fig.show(). Running

the scripts with this modification will open an interactive

window containing the plots in Figs. 2, 3 or 4. In this

environment users can zoom, pan and save the plot, and

even more advanced interactive environments can be cre-

ated using these and other Python tools.

Separation of interleaved pseudo 3D NMR data sets

The next two examples, given in Listings S5 and S6, show

how nmrglue can be used to prepare NMR data for use by

other software. In both of these examples pseudo 3D data

sets, recorded on an Agilent/Varian VNMRS-500 spec-

trometer and consisting of series of 2D chemical shift

correlation spectra acquired in an interleaved fashion as a

function of a relaxation or dipolar evolution delay, are

separated into their constituent 2D’s for processing with

NMRPipe or another software package. These types of

interleaved experiments, where the relaxation or dipolar

Fig. 2 The 13C free induction decay for a cross-polarization (CP)

magic-angle spinning (MAS) NMR experiment recorded for amyloid

fibrils formed by the Y145Stop variant of human protein (Helmus

et al. 2008b, 2010, 2011). The plot was created using the script in

Listing S2

Fig. 3 1D 13C CP MAS NMR spectrum for Y145Stop human prion

protein amyloid fibrils created using the script in Listing S3

Fig. 4 A 2D 15N–13C spectrum of the K28C-EDTA-Cu2? mutant of

GB1 with representative 1D 13C traces inset into the spectrum

(Nadaud et al. 2010) created using the script in Listing S4
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evolution period is incremented as the innermost loop, are

very common in solution and solid-state NMR since the

effects of long-term instrument instabilities on the extrac-

ted relaxation rates or dipolar coupling constants are min-

imized for data collected in this manner (as opposed to

recording complete 2D’s back-to-back with the relaxation

or dipolar evolution period incremented as the outermost

loop of the pseudo 3D data set). While other tools exist for

separating these types of arrayed experiments, they often

require the data to be collected in particular order and fail

otherwise. By providing direct access to the NMR data,

nmrglue can be readily used to create the required scripts

that separate these types of interleaved experiments

regardless of the order in which the parameters were

arrayed.

In the first example (Listing S5), a relaxation experiment

consisting of six 2D 15N–13C solid-state NMR spectra was

recorded. The experiment was set up so that relaxation

delay, labeled by the parameter ‘‘techo’’, was the innermost

arrayed parameter, followed by the phase and then the

delay for the indirect 15N chemical shift dimension. The

Python script separates these data set into six directories

with names ‘‘techo_X.fid’’ where X is the value of the

‘‘techo’’ parameter. Each directory contains the corre-

sponding 2D time-domain data in Agilent/Varian format

for processing with NMRPipe or another software package.

In the script, the interleaved data set is read using the read

function of nmrglue’s varian module (line 4). For data

collected with the arrayed parameter as the innermost loop,

the array containing the NMR data will automatically be

shaped by nmrglue so that the next-to-last dimension varies

with the arrayed parameter. The size of the individual 2D

spectra will be smaller than the full interleaved pseudo 3D

data set, so the parameter dictionary is updated with this

new size on line 7. Line 10 begins a loop over the relax-

ation times ‘‘techo’’. Within each iteration of the loop, the

appropriate region of the data set is extracted and written to

the corresponding directory on line 13, which completes

the script. Note, finally, that this script will work to sepa-

rate other interleaved pseudo 3D NMR data sets, collected

with the arrayed parameter as the innermost loop by

modifying lines 10 and 11 to account for the name of the

parameter being arrayed.

For interleaved experiments with a different order of the

arrayed parameters the script in Listing S5 will fail, as will

other programs that separate experiments collected in this

manner. However, nmrglue provides the facilities for the

rapid development of new scripts to deal with these cases.

One such Python script, which separates a pseudo 3D data

set consisting of a series of 2D z-filtered TEDOR spectra

(Jaroniec et al. 2002) collected with the quadrature phase

as the innermost loop, is given in Listing S6. In this case

the number of applied TEDOR dipolar mixing cycles, set

by the parameter ‘‘nredor’’, corresponds to the next-to-last

loop. This script has a similar layout to Listing S5, with a

few minor modifications as required by the difference in

the data ordering. Specifically, the Agilent/Varian data are

read on line 5 with the keyword as_2d assigned a value of

True which results in the NMR data being returned as a

two-dimensional array. Lines 8–10 calculate and set the

new size of the outputted data. Line 13 begins the loop over

the ‘‘nredor’’ values. For each iteration of the loop a

directory name is created (line 14) and the traces which

make up the individual 2D spectra are extracted and added

in the correct order to the sdata array (lines 16–18),

which are then written to disk (line 19).

Processing of 2D NMR spectra collected with a S3E

filter

Recently it has been demonstrated that the spin-state

selective excitation (S3E) approach (Meissner et al. 1997)

can be used in the context of protein solid-state NMR to

obtain high-resolution 15N–13C chemical shift correlation

spectra for which the effects of 13C–13C J-coupling evo-

lution during signal acquisition have been suppressed

(Laage et al. 2009). We have employed this methodology

for proteins containing covalently attached paramagnetic

tags to rapidly collect 2D and 3D NMR spectra with high

resolution and sensitivity (Nadaud et al. 2010, 2011;

Sengupta et al. 2012). Processing data collected with a S3E

filter involves separating the ‘A’ and ‘B’ blocks of the

experiment, recombining them as the sum and difference

data sets, processing these two data sets independently, and

finally coadding the two resulting spectra. While this type

of processing can be carried out entirely with existing

software, such as NMRPipe, creating the necessary pro-

cessing scripts requires the use of NMRPipe functions that

are not common in routine processing scripts. Nmrglue can

be used to accomplish such data processing in a very

straight forward manner as illustrated by the Python script

in Listing S7. This script takes an Agilent/Varian 2D data

set recorded with a S3E filter, extracts the ‘A’ and ‘B’

blocks which were collected as the even and odd traces of

the experiment (lines 4 and 5), and saves the sum and

difference data sets as binary Agilent/Varian files (lines 6

and 7). These files can be converted and processed as

conventional 2D 15N–13C NMR spectra using NMRPipe or

other software, or processed further using nmrglue as

demonstrated below.

Prior to processing the two data sets they are converted to

NMRPipe files using the script in Listing S8. Here the Agi-

lent/Varian ‘‘fid_sum’’ file is read (line 4), spectral parame-

ters for the 2D spectra are recorded in the universal parameter

dictionary (lines 8–14), a converter object is created and

loaded with the Agilent/Varian data and the universal
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dictionary (lines 17 and 18) and NMRPipe formatted data are

requested (lines 19). Finally, these data are written to the

‘‘test_sum.fid’’ file. The entire process is then repeated for the

difference data set (lines 25–29), but without setting the

spectral parameters which are identical to the sum data set.

Listing S9 provides a script in which the direct dimensions of

the sum (lines 4–12) and difference (lines 15–24) data sets are

processed using nmrglue’s pipe_proc module. Note that the

requisite 27.5 Hz shift of the spectra, corresponding to one

half of the one-bond 13CO–13Ca J-coupling constant, is

converted to points using a unit conversion object (lines 8–9).

With the direct dimension processing completed, the two data

sets can be coadded (lines 27) and the indirect dimension can

be processed (lines 31–37) before saving the resulting spectra

(line 40).

Covariance processing of 2D NMR spectra

In addition to conventional NMR data processing, nmrglue

provides a convenient platform for the facile development of

new processing methods that are not included in the com-

mon software packages. One example is covariance pro-

cessing, which is an alternative to the Fourier transform for

the processing of 2D NMR spectra (Brüschweiler and Zhang

2004). Recently, the Covariance NMR Toolbox, which

enables covariance processing of NMR data within MAT-

LAB or OCTAVE (Short et al. 2011), was released; to the

authors’ best knowledge, this is currently the only available

non-commercial software package for such data processing.

At the root of covariance NMR is the computation of the

covariance of a matrix. The NumPy library contains an

efficient algorithm to perform such a calculation and can be

used for covariance processing, provided that the data are

appropriately prepared before and after the calculation. The

script in Listing S10 uses nmrglue to read in data from a 2D

solid-state NMR 13C–13C chemical shift correlation exper-

iment—recorded with the dipolar assisted rotational reso-

nance (DARR) mixing scheme (Takegoshi et al. 2001) for a

sample of nanotubes formed by the bolaamphiphilic self-

assembly of 1,4,5,8-naphthalenetetracarboxylic acid dii-

mide with L-lysine headgroups (Shao et al. 2010)—which

have been Fourier transformed along the direct dimension

(line 5). Subsequently, the script computes the covariance of

the data using NumPy’s efficient algorithm (line 8), updates

the necessary spectral parameters (line 11–14), and writes

out the resulting covariance processed spectrum (line 17),

which is shown in Fig. 5.

Preparation of strip plots from multiple 3D NMR

spectra

Triple resonance 3D chemical shift correlation experiments

have become the standard methodology for determining the

sequential backbone resonance assignments for 13C,15N-

enriched proteins. In solid-state NMR these assignments

can frequently be established within Sparky or other soft-

ware by using a combination of several complementary 3D
15N–13C–13C spectra (e.g., NCACX and NCOCX) (Baldus

2002). For publications and presentations, resonance

assignment data are most conveniently summarized by

showing aligned strips from multiple 3D data sets. This

process, which can be rather tedious and time consuming,

can be readily automated in nmrglue. This is illustrated in

Fig. 6, which shows representative strip plots from 3D

CONCA, NCACX, and NCOCX spectra of the B3 immu-

noglobulin binding domain of protein G (GB3) in the

microcrystalline solid phase (Nadaud et al. 2007). The

Python script used to generate Fig. 6 is presented in Listing

S11. This script can be readily edited to alter the various

aspects of the figure such contour colors, fonts, tick

placement and labeling.

Analysis of NMR relaxation data

A multitude of NMR methods have been developed to

extract structural and dynamic data in biological macro-

molecules in site-specific fashion. These methods typically

rely on the quantification of an observable, such as a

dipolar coupling or relaxation rate constant, in one of the

indirect dimensions of a multidimensional NMR experi-

ment. While existing software packages, such as NMR-

Pipe, provide facilities for the rapid analysis of such data

sets based on peak heights or volumes extracted using

lineshape fitting routines, they often yield suboptimal

Fig. 5 2D 13C–13C DARR solid-state NMR spectrum generated

using covariance processing for a sample of nanotubes formed by the

bolaamphiphilic self-assembly of 1,4,5,8-naphthalenetetracarboxylic

acid diimide with L-lysine headgroups (Shao et al. 2010). The figure

was generated from the spectrum processed using the script in Listing

S10
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results in the context of solid-state NMR spectra which

exhibit irregular lineshapes and/or limited sensitivity and

resolution. In such cases a simple summation of spectral

intensities within a small rectangular region around each

peak provides a robust approach for estimating the exper-

imental peak volumes, and also, importantly, their uncer-

tainties based on the intrinsic spectral signal-to-noise ratio.

Our group has made extensive use of this approach to

analyze multiple dipolar (Helmus et al. 2008a, 2010) and

relaxation (Nadaud et al. 2009, 2010, 2011; Helmus et al.

2010; Sengupta et al. 2012) trajectories in solid proteins in

an automated manner.

This type of analysis in nmrglue is demonstrated here

for a set of residue-specific longitudinal relaxation trajec-

tories extracted from a series of 2D chemical shift corre-

lation spectra recorded for the model B1 immunoglobulin

binding domain of protein G (GB1). The Python script in

Listing S12 reads in the integration limits and a list of

spectra to analyze from text files (examples of which are

available at the nmrglue website) on lines 5 and 6. An array

that will hold the trajectories is created on line 9. Line 12

begins a loop in which a spectrum stored in an NMRPipe

formatted file is read (line 16). An inner loop (lines 19–27)

determines the correct order of the integration limits for

each peak (lines 21–24) and computes the summation of all

points within the spectrum that fall within these integration

limits (line 27). Lines 30–36 create a series of text files

ending with a ‘‘.dat’’ extension that contain the normalized

relaxation trajectories. Trajectories which have not been

normalized can be obtained by omitting line 31. Accurate

locations of the integration regions around the cross-peaks

are crucial for the reliable extraction of individual trajec-

tories, especially for clusters of peaks exhibiting partial

overlap. To aid in determining these locations the Python

script in Listing S13 creates a series of 2D contour plots for

each peak of interest (see Fig. 7 for a representative

example). These plots display the region defined by the

current set of integration limits as well as somewhat

smaller and larger integration rectangles.

The relaxation trajectories extracted using the script in

Listing S12 can be further analyzed with a variety of

commercial or home-built software. Here this analysis,

consisting of a fit of the experimental trajectory to a

decaying single exponential, is illustrated using the con-

strained least-squares optimization method in nmrglue. The

Python script in Listing S14 defines the fitting function

(lines 7–9) as well as a residuals function that calculates the

difference between the experimental and simulated trajec-

tories (lines 12–14). The latter function is required for the

least squares optimization procedure on line 33. Lines

17–19 read in the relaxation times and set the initial values

and constraints on the fit parameters. The bounds defined

on line 19 restrict the amplitude scaling factor A to values

between 0.98 and 1.02, a reasonable range for the nor-

malized experimental relaxation trajectories. The script

then creates an output file ‘‘fits.txt’’ for storing the fitting

Fig. 6 Representative strips

from 3D CONCA (blue
contours), NCACX (green
contours), and NCOCX (red
contours) spectra corresponding

to amino acid residues K13-K19

of GB3 (Nadaud et al. 2007).

The figure was generated using

the script in Listing S11
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results (line 22–23). Line 26 begins a loop over all the peak

trajectory files which have the ‘‘.dat’’ extension. The peak

assignment is determined (line 28) and the corresponding

trajectory loaded (line 32) based on the filename. Nmr-

glue’s least-squares optimization algorithm is then utilized

to find the best-fit values for the amplitude scaling and

relaxation rate parameters (lines 33 and 34), and the fitting

results are stored in the output file. The quality of the fitting

can be examined using the Python script in Listing S15,

which creates plots of the experimental and simulated

relaxation trajectories for each cross-peak. An example of

such a plot, for GB1 residue D40, is shown Fig. 8.

Collectively, the set of nmrglue scripts shown in List-

ings S12-15 enables the extraction and fitting of relaxation

trajectories from a series of 2D NMR spectra in an auto-

mated and interactive manner. With relatively minor

modifications these scripts can be used to analyze relaxa-

tion data from a series of 3D NMR chemical shift corre-

lation spectra, or fit data from other types of arrayed NMR

experiments by changing the fitting function in Listings

S14 and S15.

Conclusions

We have introduced nmrglue, an open source software

package for working with multidimensional NMR spectra

in the Python programming language. Nmrglue harnesses

the powerful and efficient NumPy, SciPy and matplotlib

scientific Python libraries to provide a robust, flexible, and

easy-to-use platform for NMR data processing, analysis

and visualization, and contains numerous useful function-

alities including linear prediction, peak picking and line-

shape fitting. The software can also read, write and convert

data stored in a variety of file formats including Bruker,

Agilent/Varian, NMRPipe, Sparky, SIMPSON, and Row-

land NMR Toolkit, enabling a number of existing programs

to be easily interconnected. To demonstrate the utility and

versatility of nmrglue, representative applications to the

visualization of 1D, 2D and 3D NMR spectra, separating

interleaved pseudo 3D experiments, covariance processing

and analysis of solid-state NMR relaxation data were pre-

sented. Numerous additional examples, a tutorial and

detailed documentation for the entire package are available

online at the nmrglue website, http://nmrglue.com. Also

available at the website are the install files for Linux,

Windows and OS X operating systems, as well as the

source code which can be freely redistributed and modified

under the New BSD license.
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experimental longitudinal 15N relaxation trajectory for the residue

D40 in GB1 (red dots) and the best-fit simulated trajectory (solid
black line) as determined by Listing S14
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S2 
 

import nmrglue as ng 1 
 2 
# read in the Sparky file 3 
sdic, sdata = ng.sparky.read('data.ucsf') 4 
 5 
# convert to NMRPipe format 6 
C = ng.convert.converter() 7 
C.from_sparky(sdic, sdata) 8 
pdic, pdata = C.to_pipe() 9 
 10 
# write results to NMRPipe file 11 
ng.pipe.write('data.ft2', pdic, pdata) 12 

 
 
Listing S1. A Python script for converting a 2D NMR data set between the Sparky and 
NMRPipe formats.  
 
 
 
 
 
 
import nmrglue as ng 1 
import matplotlib.pyplot as plt 2 
 3 
# read in the data from a NMRPipe file 4 
dic, data = ng.pipe.read("test.fid") 5 
 6 
# make a unit conversion object for the axis 7 
uc = ng.pipe.make_uc(dic, data) 8 
 9 
# plot the spectrum 10 
fig = plt.figure() 11 
ax = fig.add_subplot(111) 12 
ax.plot(uc.ms_scale(), data.real, 'k-') 13 
 14 
# decorate axes 15 
ax.set_yticklabels([]) 16 
ax.set_xlabel("Time (ms)") 17 
ax.set_ylim(-100000, 100000) 18 
 19 
# save the figure 20 
fig.savefig("fid.eps")21 

 
 
Listing S2. A Python script for plotting the time domain data contained in an NMRPipe 
formatted file. The resulting plot is shown in Figure 2. 
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import nmrglue as ng 1 
import matplotlib.pyplot as plt 2 
 3 
# read in the data from a NMRPipe file 4 
dic, data = ng.pipe.read("test.ft") 5 
 6 
# create a unit conversion object for the axis 7 
uc = ng.pipe.make_uc(dic, data) 8 
 9 
# plot the spectrum 10 
fig = plt.figure() 11 
ax = fig.add_subplot(111) 12 
ax.plot(uc.ppm_scale(), data, 'k-') 13 
 14 
# decorate axes 15 
ax.set_yticklabels([]) 16 
ax.set_xlabel("13C ppm") 17 
ax.set_xlim(200, 0) 18 
ax.set_ylim(-80000, 2500000) 19 
 20 
# save the figure 21 
fig.savefig("spectrum.eps")22 

 
 
Listing S3. A Python script which plots the 1D 13C CP MAS NMR spectrum shown in Figure 3. 
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import nmrglue as ng 1 
import matplotlib.pyplot as plt 2 
 3 
# read in data 4 
dic, data = ng.pipe.read("test.ft2") 5 
 6 
# find PPM limits along each axis 7 
uc_15n = ng.pipe.make_uc(dic, data, 0) 8 
uc_13c = ng.pipe.make_uc(dic, data, 1) 9 
x0, x1 = uc_13c.ppm_limits() 10 
y0, y1 = uc_15n.ppm_limits() 11 
 12 
# plot the spectrum 13 
fig = plt.figure(figsize=(10, 10)) 14 
fig = plt.figure() 15 
ax = fig.add_subplot(111) 16 
cl = [8.5e4 * 1.30 ** x for x in range(20)] 17 
ax.contour(data, cl, colors='blue', extent=(x0, x1, y0, y1), linewidths=0.5) 18 
 19 
# add 1D slices 20 
x = uc_13c.ppm_scale() 21 
s1 = data[uc_15n("105.52ppm"), :] 22 
s2 = data[uc_15n("115.85ppm"), :] 23 
s3 = data[uc_15n("130.07ppm"), :] 24 
ax.plot(x, -s1 / 8e4 + 105.52, 'k-') 25 
ax.plot(x, -s2 / 8e4 + 115.85, 'k-') 26 
ax.plot(x, -s3 / 8e4 + 130.07, 'k-') 27 
 28 
# label the axis and save 29 
ax.set_xlabel("13C ppm", size=20) 30 
ax.set_xlim(183.5, 167.5) 31 
ax.set_ylabel("15N ppm", size=20) 32 
ax.set_ylim(139.5, 95.5) 33 
fig.savefig("spectrum_2d.eps")34 

 
 
Listing S4. A Python script which creates the plot of the 2D 15N-13C NMR spectrum and 
representative 1D traces shown in Figure 4. 
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import nmrglue as ng 1 
 2 
# read in the NMR data 3 
dic, data = ng.varian.read('arrayed_data.fid') 4 
 5 
# set the new size of the separated data 6 
dic['nblocks'] = data.shape[0] 7 
 8 
# loop over the echo times, separating and saving each 2D 9 
for i, techo in enumerate(dic['procpar']['techo']['values']): 10 
    dir_name = 'techo_' + techo + '.fid' 11 
    print "Creating directory:", dir_name 12 
    ng.varian.write(dir_name, dic, data[:, i, :], overwrite=True)13 

 
 
Listing S5. A Python script which separates a pseudo 3D NMR data set collected in an 
interleaved manner into a series of 2D NMR chemical shift correlation spectra. The relaxation 
delay, given by the parameter “techo”, was the innermost loop. 
 
 
 
 
 
 
import nmrglue as ng 1 
import numpy as np 2 
 3 
# read the NMR data, forcing the data to be two dimensional 4 
dic, data = ng.varian.read('arrayed_data.fid', as_2d=True) 5 
 6 
# set the new size of the separated data 7 
array_size = len(dic['procpar']['nredor']['values']) 8 
out_shape = int(data.shape[0] / array_size), data.shape[1] 9 
dic['nblocks'] = out_shape[0] 10 
 11 
# loop over the redor multiples, separating and saving each 2D 12 
for i, nredor in enumerate(dic['procpar']['nredor']['values']): 13 
    dir_name = 'nredor_' + nredor + '.fid' 14 
    print "Creating directory:", dir_name 15 
    sdata = np.empty(out_shape, dtype=data.dtype) 16 
    sdata[::2] = data[2 * i::2 * array_size] 17 
    sdata[1::2] = data[2 * i + 1::2 * array_size] 18 
    ng.varian.write(dir_name, dic, sdata, overwrite=True)19 

 
 
Listing S6. A Python script which separates a pseudo 3D NMR data set consisting of a set of z-
filtered TEDOR spectra collected in an interleaved manner. The dipolar mixing period, given by 
the parameter “nredor”, was the next-to-last loop with the indirect dimension quadrature phase 
being the innermost loop. 
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import nmrglue as ng 1 
dic, data = ng.varian.read('.', as_2d=True) 2 
dic['nblocks'] /= 2 3 
A = data[::2] 4 
B = data[1::2] 5 
ng.varian.write_fid('fid_sum', dic, A + B, overwrite=True) 6 
ng.varian.write_fid('fid_dif', dic, A - B, overwrite=True)7 

 
 
Listing S7. A Python script for manipulating the data from a 2D NMR data set collected using a 
S3E filter (Laage S et al. (2009) J Am Chem Soc 131:10816-10817) in which the sum and 
difference between the alternating traces, the ‘A’ and ‘B’ blocks, must be calculated. 
 

 

 

import nmrglue as ng 1 
 2 
# read in the sum data set 3 
dic, data = ng.varian.read('.', fid_file='fid_sum', as_2d=True) 4 
 5 
# set the spectral parameters 6 
udic = ng.varian.guess_udic(dic, data) 7 
udic[1]['size']     = 1500             ; udic[0]['size']     = 256 8 
udic[1]['complex']  = True             ; udic[0]['complex']  = True 9 
udic[1]['encoding'] = 'direct'         ; udic[0]['encoding'] = 'states' 10 
udic[1]['sw']       = 50000.000        ; udic[0]['sw']       = 5000.0 11 
udic[1]['obs']      = 125.690          ; udic[0]['obs']      = 50.648 12 
udic[1]['car']      = 174.538 * 125.690; udic[0]['car']      = 119.727 * 50.648 13 
udic[1]['label']    = 'C13'            ; udic[0]['label']    = 'N15' 14 
 15 
# convert to NMRPipe format 16 
C = ng.convert.converter() 17 
C.from_varian(dic, data, udic) 18 
pdic, pdata = C.to_pipe() 19 
 20 
# write out the NMRPipe file 21 
ng.pipe.write("test_sum.fid", pdic, pdata, overwrite=True) 22 
 23 
# repeat for the difference data set 24 
dic, data = ng.varian.read('.', fid_file='fid_dif', as_2d=True) 25 
C = ng.convert.converter() 26 
C.from_varian(dic, data, udic) 27 
pdic, pdata = C.to_pipe() 28 
ng.pipe.write("test_dif.fid", pdic, pdata, overwrite=True)29 
 
 
Listing S8. A Python script for converting the two data sets created by Listing S7 from the 
Agilent/Varian format into NMRPipe format. 
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import nmrglue as ng 1 
 2 
# process the direct dimension of the sum data set 3 
sdic, sdata = ng.pipe.read('test_sum.fid') 4 
sdic, sdata = ng.pipe_proc.sp(sdic, sdata, off=0.45, end=0.95, pow=1, c=1.0) 5 
sdic, sdata = ng.pipe_proc.zf(sdic, sdata, size=8192) 6 
sdic, sdata = ng.pipe_proc.ft(sdic, sdata) 7 
uc = ng.pipe.make_uc(sdic, sdata, dim=1) 8 
pts = uc.f('27.5 Hz') - uc.f('0 Hz') 9 
sdic, sdata = ng.pipe_proc.fsh(sdic, sdata, dir='ls', pts=pts) 10 
sdic, sdata = ng.pipe_proc.ps(sdic, sdata, p0=-79.0, p1=0.0) 11 
sdic, sdata = ng.pipe_proc.di(sdic, sdata) 12 
 13 
# process the direct dimension of the difference data set 14 
ddic, ddata = ng.pipe.read('test_dif.fid') 15 
ddic, ddata = ng.pipe_proc.sp(ddic, ddata, off=0.45, end=0.95, pow=1, c=1.0) 16 
ddic, ddata = ng.pipe_proc.zf(ddic, ddata, size=8192) 17 
ddic, ddata = ng.pipe_proc.ft(ddic, ddata) 18 
ddic, ddata = ng.pipe_proc.ps(ddic, ddata, p0=-90.0, p1=0.0) 19 
uc = ng.pipe.make_uc(ddic, ddata, dim=1) 20 
pts = uc.f('27.5 Hz') - uc.f('0 Hz') 21 
ddic, ddata = ng.pipe_proc.fsh(ddic, ddata, dir='rs', pts=pts) 22 
ddic, ddata = ng.pipe_proc.ps(ddic, ddata, p0=-79.0, p1=0.0) 23 
ddic, ddata = ng.pipe_proc.di(ddic, ddata) 24 
 25 
# sum the different and sum data sets 26 
data = sdata + ddata 27 
dic = ddic 28 
 29 
# process the indirect dimension 30 
dic, data = ng.pipe_proc.tp(dic, data) 31 
dic, data = ng.pipe_proc.sp(dic, data, off=0.45, end=0.95, pow=1, c=1.0) 32 
dic, data = ng.pipe_proc.zf(dic, data, size=2048) 33 
dic, data = ng.pipe_proc.ft(dic, data, neg=True) 34 
dic, data = ng.pipe_proc.ps(dic, data, p0=0.0, p1=0.0) 35 
dic, data = ng.pipe_proc.di(dic, data) 36 
dic, data = ng.pipe_proc.tp(dic, data) 37 
 38 
# write out the results 39 
ng.pipe.write('test.ft2', dic, data, overwrite=True)40 

 
 
Listing S9. A Python script which processes the two NMRPipe formatted files created in Listing 
S8. The direct dimensions of the two components of the S3E filtered 2D NMR experiment are 
processed independently and subsequently the two data sets are coadded before processing the 
indirect dimension. 
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import nmrglue as ng 1 
import numpy as np 2 
 3 
# open the data 4 
dic, data = ng.pipe.read("test.ft") 5 
 6 
# compute the covariance 7 
C = np.cov(data.T).astype('float32') 8 
 9 
# update the spectral parameter of the indirect dimension 10 
dic['FDF1FTFLAG'] = dic['FDF2FTFLAG'] 11 
dic['FDF1ORIG'] = dic['FDF2ORIG'] 12 
dic['FDF1SW'] = dic['FDF2SW'] 13 
dic["FDSPECNUM"] = C.shape[1] 14 
 15 
# write out the covariance spectrum 16 
ng.pipe.write("test.ft2", dic, C, overwrite=True)17 
 
 
Listing S10. A Python script for performing covariance processing on a NMRPipe formatted 
file, which has been previously processed along the direct dimension using a Fourier transform. 
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#! /usr/bin/env python 1 
 2 
import nmrglue as ng 3 
import numpy as np 4 
import matplotlib.pyplot as plt 5 
 6 
# NMRPipe files of spectra to create strip plots from 7 
spectrum_1 = 'GB3-CN-3DCONCA-041007.fid/ft/test%03d.ft3' 8 
spectrum_2 = 'GB3-CN-3DNCACX-040507.fid/ft/test%03d.ft3' 9 
spectrum_3 = 'GB3-CN-3DNCOCX-040807.fid/ft/test%03d.ft3' 10 
 11 
# contour parameters 12 
contour_start_s1 = 1.0e5 13 
contour_step_s1 = 1.15 14 
 15 
contour_start_s2 = 2.3e5 16 
contour_step_s2 = 1.15 17 
 18 
contour_start_s3 = 3.0e5 19 
contour_step_s3 = 1.20 20 
 21 
colors_s1 = 'blue' 22 
colors_s2 = 'green' 23 
colors_s3 = 'red' 24 
 25 
cl_s1 = contour_start_s1 * contour_step_s1 ** np.arange(20) 26 
cl_s2 = contour_start_s2 * contour_step_s2 ** np.arange(20) 27 
cl_s3 = contour_start_s3 * contour_step_s3 ** np.arange(20) 28 
 29 
# open the three data sets 30 
dic_1, data_1 = ng.pipe.read_lowmem(spectrum_1) 31 
dic_2, data_2 = ng.pipe.read_lowmem(spectrum_2) 32 
dic_3, data_3 = ng.pipe.read_lowmem(spectrum_3) 33 
 34 
# make unit conversion objects for each axis of each spectrum 35 
uc_s1_a0 = ng.pipe.make_uc(dic_1, data_1, 0)  # N 36 
uc_s1_a1 = ng.pipe.make_uc(dic_1, data_1, 1)  # CO 37 
uc_s1_a2 = ng.pipe.make_uc(dic_1, data_1, 2)  # CA 38 
 39 
uc_s2_a0 = ng.pipe.make_uc(dic_2, data_2, 0)  # CA 40 
uc_s2_a1 = ng.pipe.make_uc(dic_2, data_2, 1)  # N 41 
uc_s2_a2 = ng.pipe.make_uc(dic_2, data_2, 2)  # CX 42 
 43 
uc_s3_a0 = ng.pipe.make_uc(dic_3, data_3, 0)  # CO 44 
uc_s3_a1 = ng.pipe.make_uc(dic_3, data_3, 1)  # N 45 
uc_s3_a2 = ng.pipe.make_uc(dic_3, data_3, 2)  # CX 46 
 47 
# read in assignments 48 
table_filename = 'ass.tab'  49 
table = ng.pipe.read_table(table_filename)[2] 50 
assignments = table['ASS'][1:] 51 
 52 
# set strip locations and limits 53 
x_center_s1 = table['N_PPM'][1:] # center of strip x axis in ppm, spectrum 1 54 
x_center_s2 = table['N_PPM'][1:] # center of strip x axis in ppm, spectrum 2 55 
x_center_s3 = table['N_PPM'][2:] # center in strip x axis in ppm, spectrum 3 56 
x_width = 1.8               # width in ppm (+/-) of x axis for all strips 57 
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 58 
y_min = 40.0   # y axis minimum in ppm 59 
y_max = 65.0   # y axis minimum in ppm 60 
 61 
z_plane_s1 = table['CO_PPM'][:]   # strip plane in ppm, spectrum 1 62 
z_plane_s2 = table['CA_PPM'][1:]  # strip plane in ppm, spectrum 2 63 
z_plane_s3 = table['CO_PPM'][1:]  # strip plane in ppm, spectrum 3 64 
 65 
 66 
fig = plt.figure() 67 
for i in xrange(7): 68 
 69 
    ### spectral 1, CONCA 70 
    # find limits in units of points 71 
    idx_s1_a1 = uc_s1_a1(z_plane_s1[i], "ppm") 72 
    min_s1_a0 = uc_s1_a0(x_center_s1[i] + x_width, "ppm") 73 
    max_s1_a0 = uc_s1_a0(x_center_s1[i] - x_width, "ppm") 74 
    min_s1_a2 = uc_s1_a2(y_min, "ppm") 75 
    max_s1_a2 = uc_s1_a2(y_max, "ppm") 76 
 77 
    if min_s1_a2 > max_s1_a2: 78 
        min_s1_a2, max_s1_a2 = max_s1_a2, min_s1_a2 79 
 80 
    # extract strip 81 
    strip_s1 = data_1[min_s1_a0:max_s1_a0+1, idx_s1_a1, 82 
min_s1_a2:max_s1_a2+1] 83 
 84 
    # determine ppm limits of contour plot 85 
    strip_ppm_x = uc_s1_a0.ppm_scale()[min_s1_a0:max_s1_a0+1] 86 
    strip_ppm_y = uc_s1_a2.ppm_scale()[min_s1_a2:max_s1_a2+1] 87 
    strip_x, strip_y = np.meshgrid(strip_ppm_x, strip_ppm_y) 88 
     89 
    # add contour plot of strip to figure 90 
    ax1 = fig.add_subplot(1, 21, 3 * i + 1) 91 
    ax1.contour(strip_x, strip_y, strip_s1.transpose(), cl_s1,  92 
                    colors=colors_s1, linewidths=0.5) 93 
    ax1.invert_yaxis()  # flip axes since ppm indexed 94 
    ax1.invert_xaxis() 95 
 96 
    # turn off tick and labels, add labels 97 
    ax1.tick_params(axis='both', labelbottom=False, bottom=False, top=False, 98 
                    labelleft=False, left=False, right=False) 99 
    ax1.set_xlabel('%.1f'%(x_center_s1[i]), size=6) 100 
    ax1.text(0.1, 0.975, '%.1f'%(z_plane_s1[i]), size=6, 101 
                                        transform=ax1.transAxes) 102 
     103 
    # label and put ticks on first strip plot 104 
    if i == 0:   105 
        ax1.set_ylabel("13C (ppm)") 106 
        ax1.tick_params(axis='y', labelleft=True, left=True, direction='out') 107 
 108 
    ### spectra 2, NCACX 109 
    # find limits in units of points 110 
    idx_s2_a0 = uc_s2_a0(z_plane_s2[i], "ppm") 111 
    min_s2_a1 = uc_s2_a1(x_center_s2[i] + x_width, "ppm") 112 
    max_s2_a1 = uc_s2_a1(x_center_s2[i] - x_width, "ppm")  113 
    min_s2_a2 = uc_s2_a2(y_min, "ppm") 114 
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    max_s2_a2 = uc_s2_a2(y_max, "ppm") 115 
 116 
    if min_s2_a2 > max_s2_a2: 117 
        min_s2_a2, max_s2_a2 = max_s2_a2, min_s2_a2 118 
 119 
    # extract strip  120 
    strip_s2 = data_2[idx_s2_a0, min_s2_a1:max_s2_a1+1, 121 
min_s2_a2:max_s2_a2+1]  122 
 123 
    # add contour plot of strip to figure 124 
    ax2 = fig.add_subplot(1, 21, 3 * i + 2) 125 
    ax2.contour(strip_s2.transpose(), cl_s2, colors=colors_s2, 126 
linewidths=0.5) 127 
     128 
    # turn off ticks and labels, add labels and assignment 129 
    ax2.tick_params(axis='both', labelbottom=False, bottom=False, top=False, 130 
                    labelleft=False, left=False, right=False) 131 
    ax2.set_xlabel('%.1f'%(x_center_s2[i]), size=6) 132 
    ax2.text(0.2, 0.975, '%.1f'%(z_plane_s2[i]), size=6,  133 
                                        transform=ax2.transAxes) 134 
    ax2.set_title(assignments[i]) 135 
 136 
    ### spectral 3, NCOCX 137 
    # find limits in units of points 138 
    idx_s3_a0 = uc_s3_a0(z_plane_s3[i], "ppm")  139 
    min_s3_a1 = uc_s3_a1(x_center_s3[i] + x_width, "ppm") 140 
    max_s3_a1 = uc_s3_a1(x_center_s3[i] - x_width, "ppm") 141 
    min_s3_a2 = uc_s3_a2(y_min, "ppm") 142 
    max_s3_a2 = uc_s3_a2(y_max, "ppm") 143 
 144 
    if min_s3_a2 > max_s3_a2: 145 
        min_s3_a2, max_s3_a2 = max_s3_a2, min_s3_a2 146 
     147 
    # extract strip 148 
    strip_s3 = data_3[idx_s3_a0, min_s3_a1:max_s3_a1+1, 149 
min_s3_a2:max_s3_a2+1]  150 
 151 
    # add contour plot of strip to figure 152 
    ax3 = fig.add_subplot(1, 21, 3 * i + 3) 153 
    ax3.contour(strip_s3.transpose(), cl_s3, colors=colors_s3, 154 
linewidths=0.5) 155 
     156 
    # turn off ticks and labels, add labels 157 
    ax3.tick_params(axis='both', labelbottom=False, bottom=False, top=False, 158 
                    labelleft=False, left=False, right=False) 159 
    ax3.set_xlabel('%.1f'%(x_center_s3[i]), size=6) 160 
    ax3.text(0.1, 0.975, '%.1f'%(z_plane_s3[i]), size=6,  161 
                                        transform=ax3.transAxes) 162 
 163 
# add X axis label, save figure 164 
fig.text(0.45, 0.05, "15N (ppm)") 165 
fig.savefig('strip_plots.eps')166 
 
 
Listing S11. A Python script which creates the strip plots of the 3D NMR spectra shown in 
Figure 6.  
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import nmrglue as ng 1 
import numpy as np 2 
 3 
# read the integration limits and list of spectra 4 
peak_list = np.recfromtxt("boxes.in", names=True) 5 
spectra_list = np.recfromtxt("spectra.in") 6 
 7 
# create an array to hold the trajectories 8 
trajectories = np.empty((peak_list.size, spectra_list.size), dtype='float') 9 
 10 
# loop over the spectra 11 
for sn, spectra in enumerate(spectra_list): 12 
 13 
    # read in the spectra data 14 
    print "Extracting peak intensities from:", spectra 15 
    dic, data = ng.pipe.read(spectra) 16 
 17 
    # loop over the integration limits 18 
    for i, (name, x0, y0, x1, y1) in enumerate(peak_list): 19 
 20 
        if x0 > x1: 21 
            x0, x1 = x1, x0 22 
        if y0 > y1: 23 
            y0, y1 = y1, y0 24 
 25 
        # integrate the region and save in trajectories array 26 
        trajectories[i][sn] = data[y0:y1 + 1, x0:x1 + 1].sum() 27 
 28 
# write out the trajectories for each peak 29 
for itraj, peak_traj in enumerate(trajectories): 30 
    peak_traj /= peak_traj.max()    # normalize the peak's trajectory 31 
    fname = peak_list.peak_label[itraj] + '.dat' 32 
    f = open(fname, 'w') 33 
    for v in peak_traj: 34 
        f.write(str(v) + '\n') 35 
    f.close()36 
 
 
Listing S12. A Python script used to extract relaxation trajectories from a series of 2D NMR 
spectra by integrating over rectangular regions around the assigned peaks. See the nmrglue 
website (http://nmrglue.com) for examples of the “boxes.in” and “spectra.in” input files. 
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import numpy as np 1 
import nmrglue as ng 2 
import matplotlib.pyplot as plt 3 
import matplotlib.cm 4 
 5 
# plot parameters 6 
xpad = 5                        # padding around peak box on x-axis 7 
ypad = 5                        # padding around peak box on y-axis 8 
cmap = matplotlib.cm.Blues_r    # contour map (colors to use for contours) 9 
 10 
# contour levels 11 
cl = 30000 * 1.20 ** np.arange(20) 12 
 13 
# read in the box limits and list of spectra 14 
peak_list = np.recfromtxt("boxes.in", names=True) 15 
spectra_list = np.recfromtxt("spectra.in") 16 
 17 
# loop over the spectra  18 
for spec_number, spectra in enumerate(spectra_list): 19 
 20 
    # read in the spectral data 21 
    dic, data = ng.pipe.read(spectra) 22 
 23 
    # loop over the peaks 24 
    for peak, x0, y0, x1, y1 in peak_list: 25 
 26 
        if x0 > x1: 27 
            x0, x1 = x1, x0 28 
        if y0 > y1: 29 
            y0, y1 = y1, y0 30 
 31 
        # slice the data around the peak 32 
        slice = data[y0 - ypad:y1 + 1 + ypad, x0 - xpad:x1 + 1 + xpad] 33 
 34 
        # create the figure 35 
        fig = plt.figure() 36 
        ax = fig.add_subplot(111) 37 
 38 
        # plot the contours 39 
        print "Plotting:", peak, spec_number 40 
        extent = (x0 - xpad + 1, x1 + xpad - 1, y0 - ypad + 1, y1 + ypad - 1) 41 
        ax.contour(slice, cl, cmap=cmap, extent=extent) 42 
 43 
        # draw a box around the peak 44 
        ax.plot([x0, x1, x1, x0, x0], [y0, y0, y1, y1, y0], 'k--') 45 
 46 
        # draw lighter boxes at +/- 1 point 47 
        ax.plot([x0 - 1, x1 + 1, x1 + 1, x0 - 1, x0 - 1], 48 
                [y0 - 1, y0 - 1, y1 + 1, y1 + 1, y0 - 1], 'k--', alpha=0.35) 49 
        ax.plot([x0 + 1, x1 - 1, x1 - 1, x0 + 1, x0 + 1], 50 
                [y0 + 1, y0 + 1, y1 - 1, y1 - 1, y0 + 1], 'k--', alpha=0.35) 51 
 52 
        # set the title, save the figure 53 
        ax.set_title('Peak: %s Spectrum: %i'%(peak, spec_number)) 54 
        fig.savefig('peak_%s_spectrum_%i'%(peak, spec_number)) 55 
        del(fig)56 
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Listing S13. A Python script to create plots of showing small spectral and integration regions 
from which the relaxation trajectories were extracted using the script in Listing S12. A sample 
plot created by this script is shown in Figure 7. 
 
 
 
 
 
import glob 1 
 2 
import numpy as np 3 
from nmrglue.analysis.leastsqbound import leastsqbound 4 
 5 
# exponential function to fit data to. 6 
def fit_func(p, x): 7 
    A, R2 = p 8 
    return A * np.exp(-1.0 * np.array(x) * R2 / 1.0e6) 9 
 10 
# residuals between fit and experimental data. 11 
def residuals(p, y, x): 12 
    err = y - fit_func(p, x) 13 
    return err 14 
 15 
# prepare fitting parameters 16 
relaxation_times = np.loadtxt("relaxation_times.in") 17 
x0 = [1.0, 0.10]  # initial fitting parameter 18 
bounds = [(0.98, 1.02), (None, None)] # fitting constraints 19 
 20 
# create an output file to record the fitting results 21 
output = open('fits.txt', 'w') 22 
output.write("#Peak\tA\t\tR2\t\tier\n") 23 
 24 
# loop over the trajecory files 25 
for filename in glob.glob('*.dat'): 26 
     27 
    peak = filename[:3] 28 
    print "Fitting Peak:", peak 29 
 30 
    # fit the trajectory using contrainted least squares optimization 31 
    trajectory = np.loadtxt(filename) 32 
    x, ier = leastsqbound(residuals, x0, bounds=bounds,  33 
                            args=(trajectory, relaxation_times)) 34 
     35 
    # write fitting results to output file 36 
    output.write('%s\t%.6f\t%.6f\t%i\n' % (peak, x[0], x[1], ier)) 37 
 38 
output.close()  # close the output file39 
 
 
Listing S14. A Python script that fits the experimental relaxation trajectories extracted by Listing 
S12 to a single exponential decay by using nmrglue’s constrained least-square minimization 
algorithm. Example input and output files for this script are available at the nmrglue website 
(http://nmrglue.com). 
  



S15 
 

import numpy as np 1 
import matplotlib.pyplot as plt 2 
 3 
# exponential function used to fit the data 4 
def fit_func(p, x): 5 
    A, R2 = p 6 
    return A * np.exp(-1.0 * np.array(x) * R2 / 1.0e6) 7 
 8 
fitting_results = np.recfromtxt('fits.txt') 9 
experimental_relaxation_times = np.loadtxt("relaxation_times.in") 10 
simulated_relaxation_times = np.linspace(0, 4000000, 2000) 11 
 12 
# loop over the fitting results 13 
for peak, A, R2, ier in fitting_results: 14 
 15 
    print "Plotting:", peak 16 
     17 
    # load the experimental and simulated relaxation trajectories 18 
    experimental_trajectory = np.loadtxt(peak + '.dat') 19 
    simulated_trajectory = fit_func((A, R2), simulated_relaxation_times) 20 
     21 
    # create the figure 22 
    fig = plt.figure() 23 
    ax = fig.add_subplot(111) 24 
    ax.plot(experimental_relaxation_times, experimental_trajectory, 'or') 25 
    ax.plot(similated_relaxation_times, simulated_trajectory, '-k') 26 
    ax.set_title(peak) 27 
    fig.savefig(peak + "_plot.eps")28 
 
 
Listing S15. A Python script that plots the experimental relaxation trajectories extracted in 
Listing S12 and simulated relaxation trajectories obtained by the fitting performed in Listing 
S14. Example input and output files for this script are available at the nmrglue website 
(http://nmrglue.com), and a sample plot created by the script is provided in Figure 8.    
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