Measurement of 13C–15N Distances in Uniformly 13C Labeled Biomolecules: J-Decoupled REDOR

C. P. Jaroniec, B. A. Tounge, C. M. Rienstra, J. Herzfeld, and R. G. Griffin

Department of Chemistry and Francis Bitter Magnet Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Department of Chemistry, Brandeis University
Waltham, Massachusetts 02254

Received June 24, 1999
Revised Manuscript Received September 10, 1999

Measurement of distances between pairs of heteronuclei is important for constraining the conformation of biomolecules in the solid state. In particular, rotational-echo double-resonance (REDOR) has been extensively applied to problems of biological interest. Most of these experiments have been performed on isolated heteronuclear spin pairs, where the interpretation of experimental results is relatively straightforward. It is preferable to perform REDOR in multi-spin systems, because of the possibility of measuring several distances in a single sample. However, in REDOR experiments on multiply 13C labeled samples the dephasing profiles are complicated by additional interactions. While placing all REDOR dephasing pulses on the 15N channel avoids the recoupling of 13C spins by the π-pulse train, the homonuclear 13C–13C dipole and J couplings can still contribute to the dephasing of 13C coherences. Here we discuss an approach to 13C observe REDOR, which relies on the selective excitation of the 13C spectrum that removes the coherent evolution of the spin system under homonuclear 13C–13C J couplings.

Several recently proposed techniques address the problem of heteronuclear distance measurements in spin systems consisting of multiple 13C and 15N nuclei. The multiple pulse decoupled REDOR sequence was designed to attenuate the effects of residual homonuclear 13C–13C dipole couplings on the dephasing of 13C coherences. However, it does not explicitly account for 13C–13C J couplings, which compromise the accurate measurement of weak heteronuclear dipole couplings. In peptides, J couplings between directly bonded 13C nuclei are ~30–60 Hz, and the most informative 13C–13C dipolar couplings are often of similar magnitude (e.g., 25 Hz for a 5.0 Å C–N distance).

For a spin system consisting of n 13C nuclei and a single 15N spin, the effective Hamiltonian for the REDOR pulse sequence (Figure 1a) in the rapid spinning regime is:

$$H = \sum_{i=1}^{n} \Phi_{CN} \cos(2\pi_{i}^{N}C_{i}^{N}N_{i}) + \sum_{i<j} \pi J_{i}^{C_{i}}C_{j}^{C_{j}}$$

Here J_{CC} is the C_{i}–C_{j} scalar coupling constant, $\Phi_{CN} = \cos(2\pi_{i}^{N}C_{i}^{N}N_{i})$.

Figure 1. Pulse sequences for conventional REDOR (a) and J-decoupled REDOR (b). The 15N pulse length was 10 μs and the pulses were phased according to the xy-16 scheme. For the sequence in part a, the 13C π pulse length was 10 μs, and for experiments on uniformly 13C labeled samples, the coherence filter ($\pi/2$–z–z–$\pi/2$) was inserted prior to signal acquisition. For J-decoupled REDOR (b) the Gaussian π pulse parameters were $\tau_{cusp} = 0.6$ ms, 64 increments, and 5% truncation. π 1H decoupling at 100 kHz was applied during the evolution period, and 83 kHz TPPM was used during acquisition. The phase cycle used, $\phi_{cusp} = \pi/2$ and $\phi_{cusp} = \pi/4$, ensures that the only 13C spins contributing to the observable signal are those inverted by the selective pulse.

$-\sqrt{2}b_{CN} \sin(2\beta) \sin(\gamma)$ is the effective C_{i}–N dipolar coupling, with the constant coupling $b_{CN} \propto r_{CN}^{-3}$ (r_{CN} is the internuclear distance), and the Euler angles β and γ relate the principal axis system of the interaction to the rotor-fixed reference frame. Equation 1 assumes that (i) J couplings can be treated in the weak coupling limit and (ii) coherent evolution of 13C signals under ~2 kHz dipolar couplings between directly bonded 13C nuclei is refocused by rapid spinning ($\omega/2\pi \sim 10$ kHz) for integer multiples of the rotor period. For a coupled three-spin system ($C_{1}–C_{2}–N$) the initial density operator $\rho(0) = C_{1} + C_{2} \nu$ evolves under the effective Hamiltonian into observable coherences $C_{1} \nu \nu \nu \cos(\pi J_{1}C_{1}^{C_{1}}C_{2}^{C_{2}})$ and $C_{2} \nu \nu \nu \cos(\pi J_{1}C_{1}^{C_{1}}C_{2}^{C_{2}})$, and antiphase coherences $2C_{1}C_{2} \nu \nu \nu \sin(\pi J_{1}C_{1}^{C_{1}}C_{2}^{C_{2}})$ and $2C_{1}C_{2} \nu \nu \nu \sin(\pi J_{1}C_{1}^{C_{1}}C_{2}^{C_{2}})$. The antiphase coherences can evolve into observable magnetization under J_{CE} during the detection period, leading to phase-twisted spectra (Figure 2a). This problem can be overcome by filtering the coherence prior to detection (see Figure 1 caption). Figure 2a shows slices from spin–echo experiments for [1,2-13C,15N]glycine for 8.4 ms of J_{CE} evolution acquired with and without the coherence filter. The spectrum obtained with a simple spin–echo experiment displays phase-twisted line shapes. In contrast, the spin–echo experiment followed by the coherence filter results in purely absorptive signals.

The problem of coherent evolution under 13C–13C J couplings during dipolar dephasing (S_{x}) and reference (S_{y}) experiments is addressed by replacing the hard π pulse with a rotor-synchronized, frequency-selective Gaussian π pulse applied to one 13C spin (Figure 1b). For all evolution times the dipole interaction between this 13C and the 15N spin is retained as in conventional REDOR, while the J couplings to the remaining 13C nuclei are refocused (the signs of all spin terms having the form $2C_{i}C_{j}; j = 1, 2, ..., n \neq i$, are reversed following the selective inversion of the C_{i} spin). This type of homonuclear J-decoupling was used previously to enhance resolution in two-dimensional solution spectra and solids-state spectra. With the assumption that the selective pulse on

C_i can be treated as an ideal pulse, the effective Hamiltonian for the pulse sequence in Figure 1b is given by the two-spin REDOR Hamiltonian, $H = \Phi_{C_N} 2J_{CN}$, and the observable signal averaged over the crystallite ensemble is then $s(t) = \int \bar{S}/S_0 = \Delta S_\text{S} \delta(t)$. Since the selective pulse removes all 13C resonances, it is a constant-time element present in all S_0 and S_i experiments and any effects due to the pulse can be taken into account by calculating $S_0 = S_i/S_0 = \Delta S_\text{S} \delta(t)$. For $[1,2-^{13}$C,15N]glycine at $\omega_0/2\pi = 10.0$ kHz and 500 MHz 1Hz frequency (data not shown), S_0 and S_i curves experience only an overall scaling ($\sim 25\%$ loss in signal intensity) for 0.6 ms Gaussian pulse relative to a hard pulse.

Figure 2b compares S_0 curves for $[1,2-^{13}$C,15N]glycine and $[1,2-^{13}$C,15N]threonine obtained with conventional and J-decoupled REDOR. However, for multiply 13C labeled systems the quality of experimental data is compromised due to multiple zero-crossings and low signal intensities in S and S_0 curves. This is demonstrated in Figure 3 for the case of ~ 50 Hz C^a-N dipole coupling in $[U-^{13}$C,15N]threonine, where ΔS_S curves obtained with conventional and J-decoupled REDOR are compared. Accurate determination of weak couplings requires evolution times on the order of 30 ms. However in the presence of homonuclear J couplings, conventional REDOR ΔS_S curves can account for J coupling effects only up to ~ 10 ms (depending on the exact value of J_{CJ}). On the other hand, J-decoupled REDOR has the ability to provide useful experimental data for the entire evolution period because the S_0 curve for $[1-^{13}$C,15N]glycine (\bullet). All experiments were performed at 500 MHz 1Hz frequency and $\omega_0/2\pi = 10.0$ kHz (± 5.0 Hz).

Figure 2. Comparison of conventional REDOR and J-decoupled REDOR for samples with single and multiple 13C labels. (a) Slices through S_0 curves acquired for $[1,2-^{13}$C,15N]glycine (only C^a resonance is shown) with the following pulse sequences on 13C: (i) CP-$\pi-\pi-\pi$-acquire; (ii) CP-$\pi-\pi-\pi$-coherence filter- acquire; (iii) CP-$\pi-\pi$ (Gauss)-π-acquire; $r = 4.2$ ms. (b) S_0 curves for the C^a resonance in $[1,2-^{13}$C,15N]glycine ($\Phi = $ conventional REDOR; $\square = $ J-decoupled REDOR) and the C^a resonance in $[U-^{13}$C,15N]threonine ($\Phi =$ conventional REDOR; $\bigcirc =$ J-decoupled REDOR). Also shown is the S_0 curve for $[1-^{13}$C,15N]glycine (\bigcirc). (c) ΔS_S/S_0 curves obtained with conventional REDOR for C^a resonance in $[1-^{13}$C,15N]glycine (\bigcirc) and J-decoupled REDOR in $[1,2-^{13}$C,15N]glycine (\bullet). All experiments were performed at 500 MHz 1Hz frequency and $\omega_0/2\pi = 10.0$ kHz (± 5.0 Hz).

Figure 3. $\Delta S_\text{S}/S_0$ curves for the C^a resonance in $[U-^{13}$C,15N]threonine obtained with conventional REDOR (\bigcirc) and J-decoupled REDOR (\bullet). $\Delta S_\text{S}/S_0$ curve (\bigcirc) simulated according to the analytical expression (see text) for the C^a-N coupling of 54 Hz obtained from the neutron diffraction structure and curves (\bigcirc) for 44 and 64 Hz couplings are shown for comparison.

Acknowledgment. We thank M. Hohwy, B. Reif, D. J. Ruben, and C. J. Turner for stimulating discussions. C.P.J. is a NSF Predoctoral Fellow. B.A.T. is an American Cancer Society Postdoctoral Fellow (PF-99-260-01-GMC), and C.M.R. was a Howard Hughes Medical Institute Predoctoral Fellow. This research was supported by the NIH grants GM-23289, GM-36810, and RR-00995.