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ABSTRACT Troponin (Tn) is an important regulatory protein in the thin-filament complex of cardiomyocytes. Calcium binding
to the troponin C (TnC) subunit causes a change in its dynamics that leads to the transient opening of a hydrophobic patch on
TnC’s surface, to which a helix of another subunit, troponin I (TnI), binds. This process initiates contraction, making it an impor-
tant target for studies investigating the detailed molecular processes that underlie contraction. Here we use microsecond-time-
scale Anton molecular dynamics simulations to investigate the dynamics and kinetics of the opening transition of the TnC
hydrophobic patch. Free-energy differences for opening are calculated for wild-type Ca2þ-bound TnC (~8 kcal/mol), V44Q
Ca2þ-bound TnC (3.2 kcal/mol), E40A Ca2þ-bound TnC (~12 kcal/mol), and wild-type apo TnC (~20 kcal/mol). These results
suggest that the mutations have a profound impact on the frequency with which the hydrophobic patch presents to TnI. In addi-
tion, these simulations corroborate that cardiac wild-type TnC does not open on timescales relevant to contraction without
calcium being bound.

INTRODUCTION
Cardiac troponin (Tn) is an important regulatory protein
complex in the thin-filament complex of the sarcomere in
cardiomyocytes. It initiates a chain of events that allow
the cell to contract, a process that is of paramount impor-
tance to proper heart function. Tn consists of three subunits:
troponin C (TnC), troponin I (TnI), and troponin T (TnT)
(1). When the signaling ion, Ca2þ, binds to the terminal
regulatory domain of TnC, structural and dynamic changes
result that initiate sarcomere contraction (2). A significant
effect of calcium binding to the regulatory domain of TnC
is the exposure of a hydrophobic patch on TnC’s surface.
The switch region of Troponin I (TnI) subsequently associ-
ates with this hydrophobic patch, loosening the inhibition of
TnI on tropomyosin and actin. This process culminates in
the release of TnI’s inhibition of myosin binding, and con-
traction ensues (2,3). Although Ca2þ-binding to the 89-
residue terminal regulatory domain of TnC has been studied
in detail before (4–6), this work focuses on TnC dynamics
exposing the hydrophobic patch. Computationally eluci-
dating these events marks one additional step toward
understanding, on a molecular basis, the cellular processes
governing contraction.

NMR and x-ray crystallography have shed ample light on
the structure of the TnC regulatory domain (7–10). The
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regulatory domain, a highly a-helical molecule that consti-
tutes the first 89 terminal residues of the troponin C protein,
consists of five a-helices (N, A–D). Helices A–D comprise
two EF-hand helix-loop-helix motifs. The EF hands, which
are known to be metal-binding sites, are labeled I and II
(11). Site II, the low-affinity, Ca2þ-specific Ca2þ-binding
site is generally considered the only site directly involved
in calcium regulation of cardiac muscle contraction (12).
Ca2þ-binding to site II of cardiac TnC does not induce an
opening transition akin to skeletal TnC (13) but leaves the
structure more or less unperturbed in the closed conforma-
tion (7,14). It is believed that the TnI switch peptide has
to be present to stabilize the open conformation of the
Ca2þ-bound regulatory domain of cardiac TnC (8,15) sug-
gesting that the open conformation may only be a transient
state that is sampled by TnC after Ca2þ binding (6). Struc-
tures of the apo state, the Ca2þ-bound state, and the Ca2þ-
TnI-switch-peptide-bound state have been determined,
giving valuable snapshots of the closed and open conforma-
tions, respectively, of the TnC hydrophobic patch. In addi-
tion to the structural properties of TnC, the kinetics of its
association have been investigated experimentally, at least
for skeletal muscle (16).

An aspect that has not yet been extensively studied compu-
tationally is the association of the TnI switch peptide with
TnC and the dynamical processes in TnC that support this
association. Atomistic-level computational studies of TnC
in various states of calcium and TnI switch peptide associa-
tion are necessary to investigate these phenomena. Assuming
that the frequency of opening is in the high-nanosecond or
low-microsecond regime, long-timescale simulations may
even have the potential to quantitatively investigate the
kinetics of opening and closing of the TnC hydrophobic
http://dx.doi.org/10.1016/j.bpj.2012.08.058
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patch. In this study, we used the Anton supercomputer (17)
to perform microsecond-timescale molecular dynamics
(MD) simulations of TnC in its apo and Ca2þ-bound states.
Long-timescale simulations of Ca2þ-bound TnC gain-of-
function mutant V44Q (18,19) and loss-of-function mutant
E40A (18) were also carried out. Kinetics and a free-energy
difference of the opening-closing process are extracted
from the simulations. The results of these studies give a
quantitative appreciation of the processes involved in TnI
binding to TnC and may be able to guide the improvement
of inotropic pharmaceuticals that target TnC.
MATERIALS AND METHODS

System preparation

Four different systems of the terminal regulatory domain of human cardiac

troponin C (wild-type apo TnC, wild-type Ca2þ-bound TnC, V44Q Ca2þ-
bound TnC, and E40A Ca2þ-bound TnC) were run on Anton. The initial

preparation of the systems was described in (P.M. Kekenes-Huskey,

S. Lindert, and J.A. McCammon, unpublished, and (6)). Well-equilibrated

structures after at least 100 ns of MD were used as input for the Anton

system preparation. According to the instructions on the Anton wiki, the

scripts amber_topNrst2cms.py, convertNAMDtoMaestro.2.5.py, viparr.py,

and build_constraints.py were used to generate cms system files. The script

mae2dms converted the cms files into dms format. Subsequently, guess_

chem, refinesigma, and subboxer were used to prepare all the input files

for the actual simulation. All simulated systems contained explicit solvent.
Anton MD simulations

All Anton simulations were performed under the NPT ensemble at 300 K

using a Berendsen thermostat and barostat. Bonds involving hydrogen

atoms were constrained using the SHAKE algorithm (20), allowing for

a time step of 2 fs. Structures were saved every 100.002 ps. Production

runs were carried out on the 512-node Anton machine, running 15 jobsteps

for the wild-type apo TnC, 49 jobsteps for the wild-type Ca2þ-bound TnC,

34 jobsteps for the V44Q Ca2þ-bound TnC, and 15 jobsteps for the E40A

Ca2þ-bound TnC. A jobstep is an Anton-specific unit of simulation time. It

corresponds to running on all 512 nodes for a time period of 30 min. This

corresponds to a total simulation time of 1.16 ms for the wild-type apo TnC,

9.75 ms for the wild-type Ca2þ-bound TnC, 3.96 ms for the V44Q Ca2þ-
bound TnC, and 1.79 ms for the E40A Ca2þ-bound TnC.
Interhelical-angle analysis and estimation of free-
energy cost of opening the hydrophobic patch

The degree of opening of the hydrophobic patch can best be described by

the interhelical angle between helices A and B (21). For the analysis of in-

terhelical angles, angles were calculated using interhlx (K. Yap, University

of Toronto, Ontario, Canada). Using interhelical-angle analysis, the degree

of openness for every frame of the trajectory can be determined. Defining

a cutoff angle below which a state will be characterized as open and above

which a state will be characterized as closed, the Boltzmann distribution of

states is used to derive the free-energy difference DG from the occupancies

of the open and closed states. DG ¼ kT ln Nclosed=Nopen, where k is the

Boltzmann constant, T is the temperature of the system, and Nclosed and

Nopen are the number of systems found in the closed and open states, respec-

tively, during the simulation. An A/B interhelical angle of 90� will be

considered the most accurate criterion for defining a structure to be open,

since all experimentally determined TnI-bound structures of TnC exhibit
interhelical angles of ~90�. For the analysis, several different cutoff angles
were used. Assuming that, for example, structures with interhelical angles

below equally spaced values between 90� and 130� are considered open,

free-energy differences for the system transitioning into these semiopen

conformations can be computed. For example, using a 105� cutoff angle

for the wild-type Ca2þ-bound TnC simulation, 14 frames (Nopen) in this

semiopen conformation (below interhelical angle 105�) are counted,

whereas 97,503 frames (Nclosed) of the trajectory exhibit an interhelical

angle >105�. According to the Boltzmann distribution, this translates

into a free-energy difference between the closed and open states (defined

by the 105� cutoff angle) of 5.25 kcal/mol. This procedure makes it possible

to extrapolate the free energy even if the trajectory did not contain any

opening event to 90�. We assume a linear extrapolation to be valid, since

we see a linear DG-versus-cutoff angle behavior for the V44Q case and

there is nothing obvious about the other structures that might prevent

them from opening the entire way.
RESULTS AND DISCUSSION

Microsecond Anton simulations show full
opening events for V44Q mutant and partial
opening events for wild-type TnC

Binding of calcium to TnC initiates a chain of events that
eventually lead to contraction of the heart muscle cell.
The second step in the process after binding of calcium is
the exposure of a hydrophobic patch between helices A
and B. The TnI switch peptide then binds to the hydrophobic
surface, in turn disrupting the inhibition interaction between
TnI and tropomyosin on the actin filament. Opening of the
hydrophobic patch is a rare event and thus has only been ob-
served once before in an accelerated MD simulation (6). To
gauge the timescale and kinetics of this rare event, micro-
second simulations on wild-type Ca2þ-bound TnC, V44Q
Ca2þ-bound TnC, E40A Ca2þ-bound TnC, and wild-type
apo TnC were performed on Anton (17). The degree of
opening of the hydrophobic patch can best be described
by the interhelical angle between helices A and B (21).
Fig. 1 shows the A/B interhelical angle as a function of
simulation time for the wild-type Ca2þ-bound TnC, V44Q
Ca2þ-bound TnC, E40A Ca2þ-bound TnC, and wild-type
apo TnC simulations. All simulations except the V44Q
mutation display an average interhelical angle of ~135�,
in agreement with all experimentally determined calcium-
bound cardiac TnC structures having interhelical A/B
angles of ~135�. The effect of the V44Q mutation changes
the dynamics of the molecule as fluctuations are observed
about an average interhelical A/B angle of 110�. This con-
formation is still closed on average but is more predisposed
to open. The simulations are converged in terms of the A/B
interhelical angle. Sudden increases in interhelical angle
that can be seen toward the end of the wild-type-Ca2þ-
bound and wild-type-apo-TnC simulations are most likely
transient shifts toward a higher interhelical angle such as
the one observed in a previously published accelerated
MD simulation of wild-type Ca2þ-bound TnC (6).

There are, however, strong differences between the
systems when it comes to opening events. The Anton
Biophysical Journal 103(8) 1784–1789



FIGURE 1 Interhelical angles over the course

of the simulations for (A) the Anton wild-type

Ca2þ-bound TnC simulation, (B) the Anton

V44Q Ca2þ-bound TnC simulation, (C) the Anton

E40A Ca2þ-bound TnC simulation, and (D) the

Anton wild-type apo TnC simulation. At the top

of the figure is a ribbon representation of TnC in

its closed and open conformations. The helices

and the A/B interhelical angle are labeled.

FIGURE 2 Surface representation of a closed and an open conformation

from the Anton V44Q Ca2þ-bound TnC simulation. (A) TnC in its closed

conformation at the beginning of the trajectory. The interhelical A/B angle

is 135.1�. (B) TnC in its open conformation, after ~1.9 ms of simulation

time. The interhelical A/B angle is 80.9�. Helices A and B are labeled

for clarity.
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wild-type Ca2þ-bound trajectory opens 12 times below
105�, 76 times below 110�, and 291 times below 115�

over the course of ~10 ms. The most open conformation
observed in 10 ms of simulation has an A/B interhelical
angle of 100.2�. The V44Q mutation, characterized as
a gain-of-function mutation (18), causes a massive increase
in opening events. The Anton V44Q Ca2þ-bound trajectory
opens 15 times below 85�, 142 times below 90�, and 742
times below 95� over the course of ~4 ms. For comparison,
there are 3652 opening events below 105� within just 4 ms in
this trajectory. The most open A/B interhelical angle
observed is 80.9�. For illustration purposes, Fig. 2 shows
two configurations extracted from the Anton V44Q Ca2þ-
bound trajectory. Fig. 2 A shows the protein in its closed
conformation (interhelical A/B angle 135.1�) at the begin-
ning of the trajectory. There is no noticeable cleft between
helices A and B. Fig. 2 B depicts the protein in its open
conformation (after ~1.9 ms of simulation time, interhelical
A/B angle 80.9�), where a deep hydrophobic pocket has
been formed by helix B moving away from helix A. The
TnI switch peptide can bind to this pocket. In contrast, the
E40A mutation, characterized as a loss-of-function muta-
tion, has the opposite effect. The opening events seen here
Biophysical Journal 103(8) 1784–1789
are less pronounced and less frequent. The Anton E40A
Ca2þ-bound trajectory opens once below 110�, five times
below 115�, and 61 times below 120� over the course of
~2 ms. The most open A/B interhelical angle observed in
this simulation is 109.7�. The most closed conformations,
however, are observed in the Anton wild-type apo trajec-
tory, which opens only six times below 120� and 208 times
below 125� over the course of ~1.2 ms. The most open A/B



Hydrophobic Patch Opening in Troponin C 1787
interhelical angle observed in the apo simulation is 117.5�.
These long-timescale findings corroborate results reported
in (6) (and P.M. Kekenes-Huskey, S. Lindert, and J.A.
McCammon, unpublished), in that there are virtually no
opening events for an apo-TnC system. This is in agreement
with calcium binding being necessary (but not sufficient) for
TnI association to cardiac TnC (2). As speculated, more
frequent and more pronounced opening events are seen in
microsecond simulations of Ca2þ-bound TnC. The effects
of the mutations seem to directly influence opening-closing
dynamics, resulting in increased opening for the gain-of-
function mutant and decreased opening for the loss-of-func-
tion mutant with respect to wild-type.
Free-energy difference for the opening transition
estimated from simulations

In addition to a qualitative evaluation of the propensity of
opening of the individual structures, the microsecond-time-
scale Anton simulations allow for a quantitative analysis
of the process of opening the hydrophobic patch in TnC.
The Boltzmann distribution of states was used to derive
the free-energy difference, DG, based on the occupancies
of the open and closed states, DG ¼ kT ln Nclosed=Nopen.
Although the experimentally determined TnI-bound struc-
tures of TnC all exhibit A/B interhelical angles of ~90�

(which will be considered the most accurate criterion of
defining a structure to be open), we used a more flexible
criterion in the analysis. Assuming that, for example, struc-
tures with interhelical angles below equally spaced values
between 90� and 130� are considered open, free-energy
differences for the system transitioning into these semiopen
conformations can be computed. Fig. 3 shows computed
free-energy differences between open and closed states for
FIGURE 3 Dependence of computed free-energy differences between

open and closed states on the cutoff angle. Values for the Anton wild-

type Ca2þ-bound TnC simulation, the Anton V44Q Ca2þ-bound TnC

simulation, the Anton E40A Ca2þ-bound TnC simulation, and the Anton

wild-type apo TnC simulation are shown. Free energies are calculated

based on the Boltzmann distribution of states. The widely accepted open-

closed cutoff criterion of 90� is marked by a vertical black line.
multiple angles for the systems under investigation.
There is a clear, linear relationship between the interhelical
open/closed cutoff angle and the free-energy difference
separating the open and closed states. The Anton V44Q
Ca2þ-bound trajectory is the only simulation that allowed
for direct observation of opening events below 90� within
the low-microsecond simulation time. Therefore, a free-
energy difference for opening of 3.2 kcal/mol can be
directly extracted from the data. None of the other simula-
tions opened up to a 90� interhelical angle. Using the linear
relationship apparent in the data, however, it is possible to
extrapolate the free energy of opening the hydrophobic
patch to be ~8 kcal/mol for wild-type Ca2þ-bound TnC,
~12 kcal/mol for the E40A mutant of Ca2þ-bound TnC,
and~20 kcal/mol for wild-type apo TnC. The time between
opening events is another quantity that can be extracted
from the simulations and is directly proportional to the
free-energy difference. Fig. 4 shows the time between
opening events for multiple open/closed angles for the
simulated systems. Again, there seems to be a linear rela-
tionship between the angle and the logarithm of the average
time between opening events. The V44Q TnC mutant opens
to <90� on average every 28 ns, a value directly obtained
from the simulation. For all other systems under investiga-
tion, extrapolation is used to determine the frequency of
opening events. Wild-type Ca2þ-bound TnC opens every
50 ms to <90�; the E40A mutant of TnC opens every
~10 ms, whereas the extrapolated value for the wild-type
apo TnC is well beyond the second regime. These simula-
tions thus corroborate that cardiac wild-type TnC does not
open on timescales relevant to contraction without calcium
being bound. We are also able to predict that at least a
millisecond of simulation time is necessary to observe a sig-
nificant number of opening events in the wild-type Ca2þ-
bound TnC system.
FIGURE 4 Dependence of average simulation time between opening

events on the cutoff angle. Values for the Anton wild-type Ca2þ-bound
TnC simulation, the Anton V44Q Ca2þ-bound TnC simulation, the Anton

E40A Ca2þ-bound TnC simulation, and the Anton wild-type apo TnC

simulation are shown. The widely accepted open-closed cutoff criterion

of 90� is marked by a vertical black line.

Biophysical Journal 103(8) 1784–1789
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CONCLUSION

Microsecond-timescale Anton simulations were used to in-
vestigate the exposure of the hydrophobic patch in Ca2þ-
bound TnC and some of its mutants. Not only could the
dynamics of a single exposure event be seen in the simula-
tions; a sufficient number of opening events were observed
to also extract the kinetics of opening. A free-energy esti-
mate for the transition from the closed to open states was ob-
tained for the different simulated systems. The free energy
for opening increased from the V44Q mutant to the wild-
type protein to the E40Amutant. The increased or decreased
frequency of exposure of the hydrophobic patch, and thus
increased or decreased opportunity for binding the TnI
switch peptide, is consistent with V44Q being a gain-of-
function mutation and E40A being a loss-of-function muta-
tion. This, in addition to differences recently observed in
calcium affinity (6) (and P.M. Kekenes-Huskey, S. Lindert,
and J.A. McCammon, unpublished) establishes the modu-
lated opening frequency of the hydrophobic patch as a lead-
ing factor by which the mutations control their different
levels of function. A detailed discussion of the key changes
in molecular interactions upon mutation can be found in
(P.M. Kekenes-Huskey, S. Lindert, and J.A. McCammon,
unpublished, and (6)) for both the V44Q and the E40A
mutations. In summary, we speculate that the introduction
of a polar residue into the hydrophobic patch (in the case
of V44Q) destabilizes hydrophobic interactions, leading to
an increase in opening frequency. In contrast, it is specu-
lated that the replacement of a charged residue with an apo-
lar amino acid in the hydrophobic patch (in the case of
E40A) further stabilizes the hydrophobic interaction, result-
ing in a decrease in opening frequency. This is in agreement
with reports by Tikunova and Davis (19), who speculated
that introduction of a polar residue into the hydrophobic
patch could lead the BC unit to move away from the NAD
unit, in fact widening the opening angle.

To our knowledge, this is the most comprehensive com-
putational investigation to date of the dynamics and kinetics
of opening of the hydrophobic patch in TnC. Estimation of
the free-energy cost for opening for different mutations is
of great value to multiscale modeling approaches. The bind-
ing of the TnI switch peptide is one crucial input parameter
for subcellular models of cardiomyocyte contractility. The
ability to predict these parameters computationally offers
great potential to complement experimental input by com-
biningmolecular and subcellular modeling techniques inves-
tigating myocyte contractility and the effect of mutations. In
addition, the Anton simulations could be used in connection
with relaxed-complex-scheme-type approaches (22) to find
actionable pharmaceutical leads using structurally represen-
tative conformations for docking druglike small molecules.
One possible therapeutic strategy may be to modulate TnI
affinity to TnC by finding drugs that alter the dynamics of
the opening or closing of the hydrophobic patch.
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