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ABSTRACT Protein kinase A (PKA) phosphorylation of myofibril proteins constitutes an important pathway for b-adrenergic
modulation of cardiac contractility and relaxation. PKA targets the N-terminus (Ser-23/24) of cardiac troponin I (cTnI), cardiac
myosin-binding protein C (cMyBP-C) and titin. The effect of PKA-mediated phosphorylation on the magnitude of contraction
has been studied in some detail, but little is known about how it modulates the kinetics of thin filament activation and myofibril
relaxation as Ca2þ levels vary. Troponin C (cTnC) interaction with cTnI (C-I interaction) is a critical step in contractile activation
that can be modulated by cTnI phosphorylation. We tested the hypothesis that altering C-I interactions by PKA, or by cTnI
phosphomimetic mutations (S23D/S24D-cTnI), directly affects thin filament activation and myofilament relaxation kinetics. Rat
ventricular myofibrils were isolated and endogenous cTn was exchanged with either wild-type cTnI, or S23D/S24D-cTnI
recombinant cTn. Contractile mechanics were monitored at maximum and submaximal Ca2þ concentrations. PKA treatment
of wild-type cTn or exchange of cTn containing S23D/S24D-cTnI resulted in an increase in the rate of early, slow phase of
relaxation (kREL,slow) and a decrease in its duration (tREL,slow). These effects were greater for submaximal Ca2þ activated contrac-
tions. PKA treatment also reduced the rate of contractile activation (kACT) at maximal, but not submaximal Ca2þ, and reduced the
Ca2þ sensitivity of contraction. Using a fluorescent probe coupled to cTnC (C35S-IANBD), the Ca2þ-cTn binding affinity and C-I
interaction were monitored. Ca2þ binding to cTn (pCa50) was significantly decreased when cTnI was phosphorylated by PKA
(DpCa50 ¼ 0.31). PKA phosphorylation of cTnI also weakened C-I interaction in the presence of Ca2þ. These data suggest
that weakened C-I interaction, via PKA phosphorylation of cTnI, may slow thin filament activation and result in increased myofil-
ament relaxation kinetics, the latter of which could enhance early phase diastolic relaxation during b-adrenergic stimulation.
INTRODUCTION
Cardiac muscle contractile activation is initiated by Ca2þ

binding to troponin C (cTnC) and a subsequent increased
interaction with troponin I (cTnI), leading to increased
tropomyosin mobility and myosin interaction with actin
(1). Relaxation ensues as Ca2þ is released from cTnC and
is pumped back into the sarcoplasmic reticulum, resulting
in reestablishment of cross-bridge inhibition via tropomy-
osin-mediated steric blocking as myosins detach from the
thin filament (2). We (3–8) and others (9,10) have demon-
strated that Ca2þ binding to cardiac troponin C (cTnC)
is less effective than Ca2þ binding to skeletal TnC in
activating contraction, primarily due to weaker affinity of
N-terminal Ca2þ binding and a weaker affinity (KC-I) of
Ca2þ-cTnC for the switch domain of cTnI. This suggests
cTnC-cTnI (C-I) interaction as a potential point for modu-
lation in the thin filament activation pathway to regulate sys-
tolic performance at rest (basal activity) and particularly
during b-adrenergic stimulation. cTnI, along with cardiac
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myosin binding protein C (cMyBP-C) and titin are myofila-
ment protein targets for phosphorylation by b-adrenergic
stimulation (11–14).

For cTnI, b-adrenergic stimulation results in phosphory-
lation of Ser-23 and -24 by protein kinase A (PKA). Phos-
phorylation at these sites has been shown to reduce C-I
interaction strength (15), reduce the Ca2þ sensitivity
(pCa50) of cardiac muscle tension production (11), increase
cross-bridge cycling kinetics, and accelerate cardiac muscle
cell relaxation (11,12). However, little is known about how
PKA phosphorylation of cTnI modulates the kinetics of
thin filament activation or myofibril relaxation, and how
this kinetic modulation may be affected with changing
Ca2þ levels that occur during b-adrenergic stimulation.

In this study, we tested the hypothesis that PKA phos-
phorylation of cTnI Ser-23/24 reduces C-I interaction and
that this directly impacts thin filament activation and myofi-
bril relaxation kinetics in cardiac muscle. We also hypothe-
sized that the modulatory effects of cTnI phosphorylation
are greater at the submaximal Ca2þ levels present in cardi-
omyocytes during a cardiac twitch. To test this, rat ventric-
ular myofibrils were isolated and endogenous cTn was
exchanged with recombinant wild-type (WT) cTn 5 PKA
http://dx.doi.org/10.1016/j.bpj.2014.07.027
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treatment. Considering PKA targets cTnI, cMyBP-C, and
titin, we studied the specific role of cTnI phosphorylation
plays in myofilament tension regulation and relaxation
kinetics by exchanging the endogenous cTn of cardiac myo-
fibrils with recombinant cTn containing a constitutively
phosphorylated state cTnI (S23D/S24D-cTnI).

Using this combination of PKA treatment and the phos-
phomimetic cTnI mutant (S23D/S24D-cTnI), we found
that the Ca2þ sensitivity of contraction is reduced by phos-
phorylation of cTnI Ser-23/24, whereas the maximum ten-
sion production (TMAX) is maintained. The maximal (pCa
4.0) rate of Ca2þ-mediated activation and myofibril tension
generation (kACT) was slower with PKA treatment, although
the rate of tension redevelopment (kTR) following a release-
restretch cycle during steady-state activation was not,
suggesting that PKA treatment affects the maximal rate
of thin filament activation. The PKA treatment of WT
cTn or exchange of cTn containing S23D/S24D-cTnI
also made the early phase of relaxation (kREL,slow) faster
and this effect was greater at submaximal Ca2þ activation.
Interestingly, the larger, faster phase of relaxation (kREL,fast)
was unaffected. Steady-state fluorescence measurements
demonstrated that PKA phosphorylation of cTnI or
phosphomimetic S23D/S24D-cTnI resulted in reduced
Ca2þ-binding affinity (KCa) and C-I interaction (KC-I), as
previously reported (15,16). These results provide evidence
that PKA phosphorylation of cTnI can modulate the kinetics
of both thin filament activation and myofibril relaxation
and the effect may be greater at submaximal Ca2þ levels
seen in cardiomyocytes during twitch activity.
MATERIAL AND METHODS

Proteins, cTnC labeling, cTnI phosphorylation,
and cTn complex reconstitution

Construction and expression of WT rat cTnC, cTnI, and cTnT in the pET24

vector has been previously described (17) (see the Supporting Material

for details). C35S-cTnC and S23D/S24D-cTnI were constructed by a

site-directed mutagenesis kit from WT cTnC and cTnI, respectively. The

C35S-cTnC mutation was introduced to allow site-specific attachment

of a fluorescent probe (IANBD ({N-[2-(iodoacetoxy)ethyl]-N-methyl}

amino-7-nitrobenz-2-oxa-1,3-diazole (Mw ¼ 406.14))) at C84 to monitor

Ca2þ binding to cTn as well as the C-I interaction. The labeling efficiency

was determined to be 90% using Bio-Rad protein assay (18,19). Purified

cTnI was phosphorylated by the catalytic subunit of PKA, using a cTnC

affinity column (20), and the phosphorylated product was designated as

pS23/pS24-cTnI. Whole cTn complexes were formed using rat cTnC

(WT or IANBD-cTnCC35S), rat cTnI (WT, pS23/pS24, or S23D/S24D),

and rat cTnT (WT) at a 1:1:1 molar ratio (21,22). The cTn complexes

with IANBD-cTnCC35S and/or pS23/pS24-cTnI forms were only used for

solution biochemistry measurements.
cTn complexes exchange into myofibrils

cTn complexes (final concentration ~1.0 mg/ml) containing either WT

or S23D/S24D cTnI were passively exchanged into isolated myofibrils in

a buffer containing (in mM): 200 KCl, 20 MOPS, 5 MgCl2, 2 EGTA, 1
DTT, and 4 ATP for overnight on a slow rocker at 4�C. Following this, myo-

fibrils were washed twice for 30 min with gentle mixing in relaxing solution

containing 1 mg/ml bovine serum albumin to remove any nonspecifically

bound exogenous cTn.
Solutions for myofibril mechanics

Solution composition was computed by an iterative algorithm that calcu-

lates the equilibrium concentration of ligands and ions based on published

affinity constants (23). Relaxing solutions contained (in mM): 80 MOPS,

15 EGTA, 1 Mg2þ, 5 MgATP, 83 Kþ, 52 Naþ, 15 creatine phosphate,

and 20 units/ml creatine phosphokinase, pH 7.0, solution ionic strength

was 170 mM. The inorganic Pi concentration determined by NMR

measurement was 0.5 mM (24). Experimental temperature was 15�C. For
activation solutions, the Ca2þ level (expressed as pCa ¼ �log [Ca2þ])
was set by adjusting with CaCl2. For PKA treatment, myofibrils were

exposed to 200 mL relaxing solution containing 100 units of the catalytic

subunit of PKA and 6 mM DTT for 45 min at 20�C.
SDS-PAGE and Western blots

To monitor the extent of exogenous cTn incorporation into myofibrils, we

used cTn in which cTnT contained a 9 amino acid myc-tag at the N-termi-

nus, similar to previous studies (25). The exchange efficiency was deter-

mined through Western blot analysis after the proteins were extracted by

SDS sample buffer and separated by 12.5% SDS PAGE. The presence of

the myc-tag allowed us to visibly separate the exchanged protein from

endogenous. Exchange efficiency was determined by calculating the

percent of myc-tagged cTnT (top band) and endogenous cTnT (bottom

band) present in the sample.
Ethical approval and tissue preparation

All animal procedures were performed in accordance with the U.S. National

Institutes of Health Policy on Humane Care and Use of Laboratory Animals

and were approved by the University of Washington (UW) Institutional

Animal Care and Use Committee (IACUC). Rats were housed in the

Department of Comparative Medicine at UW and cared for in accordance

with UW IACUC procedures. Male, Sprague-Dawley rats (150–250 g)

were anesthetized with an intraperitoneal injection of pentobarbital

(50 mg/kg) after initial exposure to isoflurane (3–5% in oxygen). When

the animal had no reflexive response, the heart was rapidly excised and

dissected in oxygenated physiological salt solution containing (in mM):

100 NaCl, 2.5 KCl, 24 NaHCO3, 1 Na2HPO4, 1 MgSO4,7H2O, and 1

CaCl2 (26). Spliced left ventricles were demembranated for 24 h at 4�C
in relaxing solutions containing (in mM): 100 KCl, 9 MgCl2, 4 Na2ATP,

5 K2EGTA, 10 MOPS, 1% nonionic detergent Triton X-100, pH 7.0, and

50% v/v glycerol (8,27).
Myofibril mechanics measurements

Single or small bundles of cardiac myofibrils were prepared from ventric-

ular tissue and experiments were performed as previously described (28)

(see the Supporting Material for details). The sarcomere length was initially

set at ~2.3 mm. Activation and relaxation data were collected at 15�C and fit

with either single-exponential curves or linear coefficients as previously

described, and the solution change was complete in ~10 ms (28–30).

Briefly, the activation rate (kACT; with rapid increase in Ca
2þ) was estimated

from a single-exponential rise to a maximum. Once tension reached steady

state, a release-restretch protocol was performed to measure the time course

of tension redevelopment. A sudden decrease in length (20% of optimal

length) was imposed on the myofibrils, and after 25 ms of unloaded

shorting, myofibrils were rapidly stretched back to their original length.
Biophysical Journal 107(5) 1196–1204
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Relaxation was measured following a step decrease in solution Ca2þ back

to pCa 9.0. Relaxation rate for the early, slow phase (kREL,slow) was deter-

mined from the slope of a regression line fit to the tension trace, normalized

to the tension amplitude. The duration of the slow phase was measured from

the onset of solution change at the myofibril to the shoulder marking the

beginning of the fast phase. Transition from slow to rapid phase was

determined through multiple factors. An apparent change in the slope of

the data or a change in the signal/noise ratio was often apparent at the

transition. The subsequent fast phase of relaxation (kREL,fast) to baseline

(resting) tension was measured from a single exponential decay fitted to

the data. A t1/2 estimation was made in cases where the decay was not

well described by a single exponential, and this was converted to a rate

t ¼ ln (2)/t1/2.
Steady-state fluorescence measurements

Steady-state fluorescent measurements have been previously described in

detail (31). All steady-state fluorescence measurements were taken using

a Perkin-Elmer LS50B luminescence spectrometer at 15�C. IANBD fluo-

rescence was excited at 490 nm and monitored at ~530 nm. Protein buffer

solutions contained (in mM): 20 MOPS, 150 KCl, 3 MgCl2, 2 EGTA, and 1

DTT (pH 7.0). The fluorescence signal of 2 mL of IANBD cTnCC35S or

IANBD cTnC35S (0.6 mM) was monitored with the titration of microliter

amounts of cTnI (WT, pS23/pS24, or S23D/S24D) or Ca2þ in the presence

(100 mM) or absence of Ca2þ. The free Ca2þ concentration was calculated

using Maxchelator (32). The Ca2þ sensitivity of conformational changes

(pCa50, pCa value at half-maximal fluorescence signal change) were ob-

tained by fitting the binding curve with the sigmoid Hill equation as pre-

viously described (33). The reported values are the means of three to six

successive titrations.
RESULTS

Recombinant cTn complex exchange profiles
and phosphorylation profile

Recombinant cTn complex containing WT or S23D/S24D-
cTnI were exchanged into rat ventricular myofibrils to
determine the effects of isometric tension development
and relaxation kinetics. To quantify the extent of the
exchange, cTn containing cTnT labeled at the N-terminus
with a c-myc tag was exchanged into myofibrils. Densitom-
etry analysis of Western blots using cTnT-specific anti-
Biophysical Journal 107(5) 1196–1204
bodies indicated that this procedure typically results in
over 90% endogenous cTn replacement by cTn containing
the c-myc tagged cTnT (Fig. 1 A), similar to the exchange
efficiencies reported by our group and others in myofibrils
and demembranated trabeculae (24,34). This suggests
that the exchange protocol was efficient and changes in con-
tractile parameters should be attributed to the exchanged
cTn containing either WT cTnI or cTnI phosphomimetic
variants.

WT-cTnI was phosphorylated by PKA using a cTnC
column. To quantify the extent of cTnI phosphorylation,
the phosphorylation profile was determined by Western
blot using antibodies of rabbit polyclonal to cTnI (phospho
S22 þ S23) and goat antirabbit IgG-HRP, whereas the
total amount of cTnI was determined using antibodies of
rabbit polyclonal lgG to cTnI (H170) and goat antirabbit
IgG-HRP (Fig. 1 B). These measurements suggested the
phosphorylation protocol was very efficient with 87% of
cTnI successfully phosphorylated.

Endogenous cTn in isolated myofibrils was passively
exchanged for recombinant rat cTn containing either WT-
cTnI or S23D/S24D-cTnI overnight, the myofibrils were
then washed with relaxing solution containing bovine serum
albumin twice. The extent of phosphorylation for cMyBP-C
and titin was not measured, however, it should be the
same for each group of WT-cTnI and S23D/S24D-cTnI
exchanged myofibrils, as these preparations were made
from the same hearts. For all WT-cTnI treated groups,
myofibril samples were divided into two aliquots, one
treated with PKA and the other with an equal amount of
buffer, for measurement of the kinetics of thin filament acti-
vation and myofibril relaxation. The extent of phosphory-
lation for cTnI in WT myofibrils (before PKA-treatment)
was related to the exchange efficiency. Because exchange
of recombinant cTn into rat myofibrils for replacing native
cTn was not 100% (but close to it), some small amount of
residual cTnI phosphorylation was likely present in every
exchange batch. Here, we measured the cTnI phosphoryla-
tion profile before and after PKA treatment in both native
FIGURE 1 (A) Exchange efficiency of recom-

binant rat cardiac troponin complex (cTn) into rat

cardiac myofibrils. (B) PKA phosphorylation

profile for WT-cTnI using a cTnC column. (C).

PKA phosphorylation profile of cTnI for native

andWT-cTn exchanged myofibrils before and after

PKA treatment.
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and WT-cTn exchanged myofibrils. It is clear that the
endogenous cTnI phosphorylation levels in native myofi-
brils were ~40%, and the cTnI phosphorylation signal after
PKA treatment was highly increased, showing over 85%
cTnI was phosphorylated. Following exchange of recombi-
nant WT-cTn into native myofibrils, the phosphorylation
level of cTnI was almost completely eliminated, further
confirming the exchange protocol was nearly complete.
Similar to the native myofibrils, PKA treatment also dramat-
ically increased the cTnI phosphorylation signaling, result-
ing in over 85% cTnI phosphorylated.
FIGURE 2 (A) Sample trace for a rat cardiac myofibril after exchanging

recombinant cTn complex. The inset is a close-up of a slow phase of relax-

ation. Contraction and relaxation kinetics parameter for rat cardiac myofi-

bril after exchanging recombinant rat WT cTn complex 5 PKA treatment

at (B) maximal (pCa ¼ 4.0) and (C) submaximal (pCa ¼ 5.4) Ca2þ levels.

To see this figure in color, go online.
Myofibril activation kinetics

Myofibrils exchanged with recombinant cTn complex con-
taining either WT or S23D/S24D cTnI were exposed to
continually flowing solutions that were rapidly switched
for step increases and decreases in [Ca2þ], from pCa 9.0
to either maximal (pCa 4.0) or submaximal [Ca2þ], and
finally back to 9.0. With this protocol, the magnitude and
rate of tension generation and relaxation at 15�C were
then collected, as shown in an example tension trace in
Fig. 2 A. Table 1 and Fig. 2, B and C, summarize the tension
magnitude and kinetic parameters for rat ventricular myofi-
brils exchanged with cTn containing WT cTnI 5 PKA
treatment. The kinetic results of native rat ventricular myo-
fibrils are summarized in Table S1.

We first compared contraction during maximal (pCa 4.0)
Ca2þ activation. TMAX did not differ between untreated and
PKA-treated myofibrils (76 5 9 vs. 73 5 12 mN/mm2,
respectively) containing WT-cTnI, consistent with our pre-
vious results on the demembranated trabeculae (34). The
rate of tension rise with rapid switching from pCa 9.0
to 4.0 solution (kACT) includes the kinetic processes of
Ca2þ-dependent thin filament activation, myosin cross-
bridge binding, and subsequent development of tension.
kACT was 3.7 5 0.3 s�1 for untreated myofibrils and was
significantly slower (2.65 0.4 s�1) for PKA-treated myofi-
brils. To differentiate between the cross-bridge versus thin
filament contributions to kACT, once activation was complete
(tension in steady state), we also measured the rate of
tension redevelopment (kTR) following rapid release and
restretch of myofibrils. The kTR protocol is thought to mea-
sure the rate of myosin cross-bridge attachment and subse-
quent tension generation (27), following myofibril release
and restretch, with Ca2þ binding to cTn and thin filament
activation in near steady state. The kTR (5.6 5 1.3 s�1)
was faster than kACT (3.7 5 0.3), suggesting the thin fila-
ment activation process may be rate limiting for rat cardiac
myofibrils at 15�C, similar to what we have reported for
mouse cardiac myofibrils (24). Following PKA treatment,
kTR (5.8 5 1.3 s�1) did not differ from nontreated myofi-
brils. This suggests that the slowing of kACTwith PKA treat-
ment likely resulted from a slowing of the thin filament
activation process during maximal Ca2þ activation.
In addition to maximal Ca2þ activation, it is important to
determine how the kinetics of contraction are affected by
PKA treatment during submaximal Ca2þ activations, which
is more reflective of what occurs during a cardiac twitch.
For our initial assessment, we chose a Ca2þ level (pCa 5.4
~4 mM), which was below the half-maximal (pCa50) acti-
vation of the rat ventricular myofibrils, producing 0.41
TMAX (30 5 4 mN/mm2). In contrast to TMAX, tension
was lower (19 5 6 mN/mm2) in PKA-treated myofibrils
at pCa 5.4, reflecting the previously reported reduction in
Biophysical Journal 107(5) 1196–1204



TABLE 1 Tension generation and relaxation parameters after recombinant rat WT cTn or rat cTn contained S23D/S24D-cTnI

exchange into rat ventricular myofibrils at 15�C

Myofibril batches (n) pCa

Tension generation

kTR (s�1)

Relaxation

Slow phase Fast phase

Tmax (mN/mm2) kACT (s�1) tREL,slow (ms) kREL,slow (s�1) kREL,fast (s
�1)

WT (16) 4.0 76 5 9 3.7 5 0.3 5.6 5 1.3 85 5 8 0.9 5 0.2 18 5 3

(12) 5.4 30 5 4 1.6 5 0.2 3.4 5 0.6 94 5 14 2.1 5 0.3 17 5 2

WTþPKA (14) 4.0 73 5 12 2.6 5 0.4a 5.8 5 1.3 56 5 4a 1.7 5 0.3b 24 5 3b

(10) 5.4 19 5 6a 1.4 5 0.1 2.9 5 0.5 60 5 4a 7.1 5 2.1a 16 5 3

S23D/S24D (20) 4.0 61 5 5a 2.7 5 0.3a 7.1 5 0.4 65 5 5a 2.7 5 0.6b 22 5 3

(8) 4.8 46 5 13 3.1 5 0.4 7.2 5 0.4 55 5 5 4.5 5 0.5 23 5 2

(7) 5.2 26 5 6 3.0 5 0.4 6.7 5 0.4 49 5 7 6.1 5 1.9 18 5 2

(7) 5.4 17 5 3a 3.1 5 0.3b 6.5 5 0.4a 52 5 6a 6.1 5 1.6b 20 5 3

(7) 5.6 8 5 2 3.2 5 0.3 4.5 5 1.6 67 5 12 6.4 5 2.1 17 5 4

Values given are mean 5 SE. Number in parentheses is number of myofibrils. ap < 0.05 vs. WT, and bp < 0.01 vs. WT.
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the Ca2þ sensitivity of tension that occurs with PKA treat-
ment (11). The contraction kinetics for these activations is
summarized in Fig. 2 C. At pCa 5.4, both kACT and kTR
were considerably slower than during maximal Ca2þ activa-
tions (no PKA treatment), as previously reported for mouse
cardiac myofibrils (24), demonstrating the Ca2þ sensitivity
of contraction kinetics. Furthermore, similar to maximal
Ca2þ activation, kACT was significantly slower than kTR,
again suggesting thin filament activation kinetics are
limiting to the rate of tension development. However, in
contrast to maximal Ca2þ activations, there was no differ-
ence in kACT between untreated and PKA-treated myofibrils
(1.6 5 0.2 vs. 1.4 5 0.1 s�1, respectively). This suggests
that for activations with subsaturating levels of Ca2þ, the in-
fluence of PKA-mediated phosphorylation of myofilament
protein to attenuate the kinetics of thin filament activation
is reduced or eliminated. This will be discussed in more
detail below.
Myofibril relaxation kinetics

Because b-adrenergic modulation of cardiac function also
includes elevated heart rate, faster relaxation is important
to ensure maintained or increased diastolic ventricular
filling. Thus, we also measured how the kinetics of relax-
ation are affected by PKA treatment at maximal and sub-
maximal Ca2þ levels. For myofibrils producing isometric
tension, rapid switching back to Ca2þ free solution (pCa
9.0) results in an early, slow phase of relaxation followed
by a more rapid (fast) phase back to baseline tension
(Fig. 2 A). The rate (kREL,slow) of slow phase relaxation
(0.9 5 0.2 s�1), which is thought to be determined pri-
marily by the cross-bridge detachment rate (24,29,35–
38), was almost twice as fast for PKA-treated myofibrils
(1.7 5 0.3 s�1). The duration (85 5 8 ms) of the slow
phase (tREL,slow) was also significantly shorter for PKA-
treated myofibrils (56 5 4 ms). Here, we also analyzed
the contribution of the slow phase relaxation, and found
that the contributions before and after PKA phosphoryla-
Biophysical Journal 107(5) 1196–1204
tion at pCa 4.0 were 6% and 10%, respectively. We pre-
viously demonstrated that tREL,slow is sensitive to the
properties of cTn and that a reduction in Ca2þ-binding af-
finity and/or C-I interaction can result in a shorter dura-
tion of the slow phase (24). The much larger, fast phase
of relaxation (kREL,fast) is thought to be reflective of
several sarcomere properties and also uneven relaxation
kinetics between sarcomeres in series (29,36–38). This
rate (18 5 3 s�1) was also faster for PKA-treated myofi-
brils (24 5 3 s�1).

During relaxation from contractions at pCa 5.4, kREL,slow
was >twofold faster (2.1 5 0.3 s�1) than during maximal
Ca2þ activation, but tREL,slow of the slow phase (94 5
14 ms) and the fast phase rate kREL,fast (17 5 2 s�1) were
not significantly affected. Similar to pCa 4.0, PKA-treated
myofibrils had significantly reduced tREL,slow (60 5 4 ms)
at pCa 5.4 compared to nontreated myofibrils. Interestingly,
PKA treatment greatly increased kREL,slow at pCa 5.4 (7.15
2.1 s�1) compared with nontreated myofibrils, whereas
kREL,fast was not affected (16 5 3 s�1). At pCa 5.4, the
contributions of slow phase relaxation before and after
PKA phosphorylation were 10% and 18%, respectively.
These data suggest the primary effect of PKA treatment
during submaximal Ca2þ activation is to reduce myofibril
tension and the slow phase of relaxation, which speeds
overall relaxation.
Myofibril activation and relaxation kinetics
with S23D/S24D-cTnI

To determine the specific role of cTnI phosphorylation
(without phosphorylation of cMyBP-C or titin), we
exchanged cTn containing the phosphomimetic mutant
S23D/S24D-cTnI into myofibrils to study activation and
relaxation at maximal and submaximal Ca2þ concentra-
tions. S23D/S24D-cTnI has previously been demonstrated
to mimic the effect of PKA phosphorylation of cTnI at
Ser-23/24 both structurally and functionally (39,40). Ca2þ

levels were chosen to produce tensions that were <25%
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(pCa 5.6), ~25% (pCa 5.4), ~50% (pCa 5.2), and ~75% (4.8)
of maximal (pCa 4.0) activated tension. The data of tension
magnitude and kinetics parameters are also summarized in
Table 1. Similar to PKA treatment, myofibrils containing
S23D/S24D-cTnI slowed the kinetics of maximal Ca2þ

(pCa 4.0) activation (2.7 5 0.3 s�1) compared with WT
cTn exchanged myofibrils (3.75 0.3 s�1), though the effect
was somewhat smaller in magnitude for kACT. Also similar,
kACT was significantly slower than kTR. Akin to the PKA-
treated myofibril, the kREL,slow (2.7 5 0.6 s�1) is signifi-
cantly faster and the tREL,slow (65 5 5 ms) is shorter in
the myofibrils containing S23D/S24D-cTnI compared with
WT cTn exchanged myofibrils, especially for submaximal
Ca2þ conditions. An example tension trace demonstrating
this is shown in Fig. 3. Interestingly, no clear changes
were detected in kREL,fast in the S23D/S24D-cTnI
exchanged myofibrils.
FIGURE 4 Changes in the IANBD fluorescence emission intensity of (A)

cTnCC35S in complex with cTnTWT and cTnI variants with titration of Ca2þ

and (B) of cTnCC35S alone with titration of cTnI variants in the presence of

100 mM Ca2þ. To see this figure in color, go online.
Steady-state fluorescence measurements
of KC-I and KCa

To determine the effects of PKA phosphorylation on KC-I

and KCa of cTn, in the absence of confounding influences
of other myofilament proteins, we performed steady-state
biochemical measurements with the fluoroprobe IANBD

attached at the C84 of cTnCC35S
IANBD. IANBD, serves as

an environment-sensitive and sulfhydryl-reactive extrinsic
fluorophore, and has been used to label protein molecules
for studying the intramolecular interactions (18,31,41).
Fluorescence labeling at C84 reports on conformational
changes in NcTnC resulting from Ca2þ binding. We first
compared the Ca2þ-dependent conformational changes of
cTn containing either WT-cTnI, phosphorylated-cTnI
(pS23/pS24-cTnI), or S23D/S24D-cTnI. As shown in
Fig. 4 A, phosphorylation (pS23/pS24-cTnI) reduced
Ca2þ-binding affinity compared to the WT-cTn complex.
FIGURE 3 Slow phase relaxation transient at submaximal Ca2þ level for

WT-cTn (black) and S23D/S24D-cTn (red) exchanged rat cardiac myofi-

brils. To see this figure in color, go online.
The Ca2þ sensitivity of the fluorescence signal (reported
as pCa50) was shifted �0.31 pCa units, from 7.05 5
0.03 (WT-cTnI) to 6.74 5 0.03 (pS23/pS24-cTnI).
cTn containing S23D/S24D-cTnI also demonstrated a
similar right shift (pCa50 ¼ 6.77 5 0.03) compared to
WT-cTn.

C-I interaction plays a gate keeper role in translating
the Ca2þ signal to other myofilament proteins to initiate
cardiac muscle contraction. Binding of cTnI to cTnC
was measured by titrating labeled cTnCC35S

IANBD with cTnI
variants in the presence of 100 mM Ca2þ. Fig. 4 B shows
the IANBD fluorescence change as the cTnI concentration
is increased up to 0.8 mM in solutions containing 0.6 mM

cTnCC35S
IANBD. The lack of further change in the fluorescence

signal beyond 0.6 mM cTnI suggests a strong affinity of
cTnI for cTnC and that 1:1 binding of cTnC/cTnI was
achieved. Both the phosphorylated-cTnI (pS23/pS24-
cTnI) and the cTnI phosphomimetic (S23D/S24D-cTnI)
reduced C-I affinity compared to WT-cTnI. We are
currently studying the structural basis of how phosphory-
lation of cTnI influences C-I interaction and Ca2þ
Biophysical Journal 107(5) 1196–1204
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sensitivity via long-timescale molecular dynamics simula-
tions (42).
DISCUSSION

It is well established that cTnI is phosphorylated by PKA at
sites Ser-23/24 during b-adrenergic stimulation, and that
this affects Ca2þ-mediated contraction of cardiac muscle.
Zhang et al. (11) demonstrated that PKA phosphorylation
of a cardiac skinned muscle results in decreased Ca2þ

sensitivity of muscle contraction, as well as an increased
rate of cardiac muscle relaxation. Kentish et al. (12) also
reported that PKA phosphorylation accelerated the myofi-
brillar relaxation rate, and suggest that this is due, at least
in part, to faster cross-bridge cycle kinetics. Both of these
studies used Diazo-2, a Ca2þ chelator, which does not
allow complete relaxation from maximal activation.
Although faster cross-bridge cycling was implicated as a
means to faster relaxation, there was no direct assessment
of cross-bridge detachment rate. Additionally, the role of
thin filament activation kinetics, which is modulated by
Ca2þ and cTnI phosphorylation, in accelerating cross-
bridge detachment and relaxation was not examined.
Here, we provide evidence that thin filament activation ki-
netics is affected by PKA-mediated phosphorylation of
cTnI (via a reduction in C-I interaction), that this can
slow the kinetics of both tension development and relaxa-
tion, and that this effect is larger at the submaximal levels
of Ca2þ that the heart operates during a cardiac twitch.
Comparisons of kACT vs. kTR allowed us to distinguish
thin filament activation kinetics (with activation defined
as the availability of strong myosin binding sites on F-actin
of the thin filament) from the rate of tension development
(24), although measures of the initial, slow phase of relax-
ation provide a putative measure of the rate of cross-bridge
detachment (35,43).

The lusitropic effect of PKA phosphorylation on cTnI at
Ser-23/24 appears to result from two functional mecha-
nisms: i), a decrease in the Ca2þ-binding affinity of cTnC
and subsequent interactions of cTnC with cTnI to reduce
the Ca2þ-dependent activation of thin filament (44,45) and
ii), an increase in cross-bridge cycling rate (12,44) that is
likely due to increasing the rate-limiting process, detach-
ment of myosin from actin. To study the role of cTnI-spe-
cific effects, separate from potential effects from other
myofilament proteins phosphorylated by PKA (cMyBP-C
and titin) (11–14), we compared contraction and relaxation
of myofibrils treated with PKAversus those exchanged with
recombinant cTn containing the phosphomimic S23D/
S24D-cTnI. Our solution biochemical measurements of
cTn-Ca2þ binding affinity and C-I interaction gave nearly
identical results with comparing PKA treatment versus the
phosphomimic, validating its use to study the role of
cTnI-specific effects of phosphorylation on the kinetics of
myofibril contraction and relaxation.
Biophysical Journal 107(5) 1196–1204
Contractile activation kinetics

To better understand how PKA phosphorylation affects thin
filament activation, we compared kACT and kTR as Ca2þ was
varied. Here, kACT reflects the combined rate of Ca2þ bind-
ing to cTn, subsequent changes in interaction between cTn
subunits that allow thin filament activation and tension
generation. In contrast, kTR reports the rate of myosin
cross-bridge attachment and subsequent tension generation
when Ca2þ binding to cTn and thin filament activation are
in or near steady state. We found that there is no difference
for TMAX between untreated and PKA-treated myofibrils
at maximal Ca2þ level (pCa 4.0), although tension was
reduced by PKA treatment at submaximal Ca2þ, consistent
with our previous findings in rat trabeculae (34), and with
other reports (11,12).

A believed-novel finding is that kTR was faster than kACT
at both maximal and submaximal Ca2þ levels. This result is
different from most previous studies (29,35,43), where no
difference between kACT and kTR has been reported. The
most likely explanation for this difference with previous
reports is the level of contaminant Pi in experimental solu-
tions. Most previous reports involved using the enzyme pu-
rine nucleoside phosphorylase with the substrate 7-methyl
guanosine (the phosphate mop), such that Pi contamination
was reduced to<5 mM, and the solutions were referred to as
Pi-free solutions. In our study, we did not use this phosphate
mop and NMR measurement of our solutions determined
that contaminant Pi was ~0.5 mM (24). This level of Pi
is closer to what is present in the heart. The presence of
Pi influences cross-bridge cycling specifically, without
affecting thin filament activation kinetics. We previously re-
ported (24) that under phosphate mop conditions there was
no difference between kACT and kTR at the maximal Ca2þ

level. However, without this mop in activation solutions
(0.5 mM contaminant Pi), kACT was slower than kTR. Our
current results confirm those previous findings during
maximal Ca2þ activation, and extend them by demon-
strating a similar effect at submaximal levels of Ca2þ and
at maximal Ca2þ when cTnI is phosphorylated by PKA.
Myofibril relaxation kinetics

Measurements of relaxation rates of myofibrils by rapid
solution switching can provide insights into the role of
cross-bridge dynamics in this process. The time course of
full tension relaxation following Ca2þ removal (pCa 9.0,
Fig. 2 A) is most often biphasic, beginning with an early,
slow phase of relaxation followed by a more rapid (fast)
relaxation phase. Here, we reported that kREL,slow was accel-
erated at the submaximal Ca2þ level, even without cTnI
phosphorylation. This result is different from previous re-
ports, where this rate did not differ between relaxations
from maximal or submaximal Ca2þ activation (35,43,46).
Relaxation is a complicated process, involving Ca2þ
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removal from cTnC and the effect of its loss and cross-
bridge detachment on thin-filament deactivation. The rate
and duration of the slow phase are very sensitive to the con-
ditions that affect cross-bridge kinetics, such as temperature,
muscle fiber type (myosin isoform), mechanical perturba-
tion, and chemical interventions. During submaximal
Ca2þ activations, we might expect the initial phase of relax-
ation to be faster than during maximal activation because
there is less Ca2þ binding to thin filaments at any given
time. Thus, when myosins detach, it is easier for the thin
filament to become deactivated. This is especially true for
cardiac muscle, where myosin binding has been shown to
enhance Ca2þ binding to the thin filament. Furthermore,
the presence of Pi (0.5 mM Pi in our study) should exacer-
bate this effect, as it results in a reduction of the tension
(strain) bearing cross-bridges. This may accelerate the
detachment of myosin cross-bridges from the thin filament,
thus contributing to an increase in the slow phase of
relaxation.

Both kTR and kREL,slow have commonly been used as a
reflection of the cross-bridge cycling rate and/or the rate
of cross-bridge detachment (35,43,47). However, it is impor-
tant to remember the differences in conditions during these
two measurements. For example, kTR is measured when
Ca2þ in activation solutions is constant and Ca2þ binding
to cTn is in a relative steady state. However, kREL,slow is
measured following the abrupt removal of Ca2þ from the
system. Thus, the amount of Ca2þ bound to the thin filament
is more dynamic and is reduced at a rate determined by the
Ca2þ dissociation rate (koff) of cTn. The change in bound
Ca2þ is likely most dramatic at the beginning of the relaxa-
tion phase, when the gradient of Ca2þ bound (to cTn) versus
that in solution is highest. Additionally, Ca2þ koff may be
further increased as cross-bridges start to detach (48) at
the beginning of relaxation. As such, it is difficult to make
strong correlations between kTR vs. kREL,slow as a measure
of cross-bridge cycling or detachment kinetics.

Similar to most previous findings for rodent cardiac
muscle, we found that PKA phosphorylation of cTnI re-
duces the Ca2þ sensitivity of tension, and speeds overall
relaxation. However, Walker et al. (49) reported that PKA
phosphorylation does not change cross-bridge kinetics in
human cardiac myofibrils. The reason for this difference
may be due to the different myosin isoforms in human
and rat cardiac myofibrils. Another possible reason is the
inorganic Pi concentration of solutions. The Walker study
did not report the Pi concentration, however, in an earlier
report, their Pi concentration is <5 mM. Perhaps more
interesting is our finding that the modulatory effect of
cTnI phosphorylation on myofibril relaxation is greater at
the submaximal Ca2þ and that this is correlated with a
reduction in C-I interaction. Thus, it may be that conditions
that reduce C-I interaction (here either reduce Ca2þ or cTnI
phosphorylation) result in reduced contractile activation, a
more rapid deactivation of the thin filament when Ca2þ is
removed and a more rapid initiation of the relaxation
process.
CONCLUSION

The most significant findings of the current study are i),
the Ca2þ sensitivity of tension is decreased by PKA phos-
phorylation, although the maximal tension production is
maintained, as previously reported (34); ii), the phosphory-
lation of cTnI, rather than that of cMyBP-C and titin, is
responsible for the reduction of slow phase relaxation,
thus speeding overall relaxation; and iii), PKA phosphoryla-
tion of cTnI decreases C-I interaction (as well as the binding
affinity of Ca2þ to cTnC). These findings suggest a connec-
tion between C-I interaction and the kinetics of thin filament
activation, tension development, and the initial phase of
myofibril relaxation. Thus, the degree of C-I interaction
may act as a regulator that is modulated by changes in
Ca2þ and cTn phosphorylation during b-adrenergic stimula-
tion of the heart.
SUPPORTING MATERIAL

One table and detailed Material and Methods section are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(14)00745-0.

We thank Drs. An-yue Tu and Charles Luo for preparations of cTnI mutant

proteins and protein isolation. We appreciate the help and support of Prof.

Rommie Amaro, Dr. Maria V. Razumova, and Dr. Peter Kekenes-Huskey.

We are indebted to Martha Mathiason for the development of data acquisi-

tion and analysis software.

This research was supported by National Institutes of Health (NIH) R01

HL-65497 & HL-11197 (M.R.), American Heart Association (AHA)

11POST7400069 (V.S.R.), and AHA 12POST11570005 (S.L.). Funding

and support from the National Biomedical Computation Resource

(NBCR) is provided through NIH P41 GM103426. Work in the JAM group

is supported in part by National Science Foundation (NSF), NIH, Howard

Hughes Medical Institute (HHMI), and the NSF Supercomputer Centers.
REFERENCES

1. Gordon, A. M., E. Homsher, and M. Regnier. 2000. Regulation of
contraction in striated muscle. Physiol. Rev. 80:853–924.

2. Zaugg, M., andM. C. Schaub. 2004. Cellular mechanisms in sympatho-
modulation of the heart. Br. J. Anaesth. 93:34–52.

3. Regnier, M., H. Martin, ., E. Clemmens. 2004. Cross-bridge versus
thin filament contributions to the level and rate of force development
in cardiac muscle. Biophys. J. 87:1815–1824.

4. Regnier, M., D. A. Martyn, and P. B. Chase. 1998. Calcium regulation
of tension redevelopment kinetics with 2-deoxy-ATP or low [ATP] in
rabbit skeletal muscle. Biophys. J. 74:2005–2015.

5. Gillis, T. E., D. A. Martyn, ., M. Regnier. 2007. Investigation of thin
filament near-neighbour regulatory unit interactions during force
development in skinned cardiac and skeletal muscle. J. Physiol. 580:
561–576.

6. Racca, A. W., A. E. Beck, ., M. Regnier. 2013. Contractility and
kinetics of human fetal and human adult skeletal muscle. J. Physiol.
591:3049–3061.
Biophysical Journal 107(5) 1196–1204

http://www.biophysj.org/biophysj/supplemental/S0006-3495(14)00745-0
http://www.biophysj.org/biophysj/supplemental/S0006-3495(14)00745-0


1204 Rao et al.
7. Regnier, M., A. J. Rivera,., A. M. Gordon. 2002. Thin filament near-
neighbour regulatory unit interactions affect rabbit skeletal muscle
steady-state force-Ca(2þ) relations. J. Physiol. 540:485–497.

8. Regnier, M., A. J. Rivera, ., P. B. Chase. 2000. 2-deoxy-ATP en-
hances contractility of rat cardiac muscle. Circ. Res. 86:1211–1217.

9. Li, M. X., L. Spyracopoulos, and B. D. Sykes. 1999. Binding of cardiac
troponin-I147-163 induces a structural opening in human cardiac
troponin-C. Biochemistry. 38:8289–8298.

10. Parvatiyar, M. S., J. R. Pinto, ., J. D. Potter. 2010. Predicting cardio-
myopathic phenotypes by altering Ca2þ affinity of cardiac troponin C.
J. Biol. Chem. 285:27785–27797.

11. Zhang, R., J. Zhao,., J. D. Potter. 1995. Cardiac troponin I phosphor-
ylation increases the rate of cardiac muscle relaxation. Circ. Res.
76:1028–1035.

12. Kentish, J. C., D. T. McCloskey, ., R. J. Solaro. 2001. Phosphoryla-
tion of troponin I by protein kinase A accelerates relaxation and
cross-bridge cycle kinetics in mouse ventricular muscle. Circ. Res.
88:1059–1065.

13. Colson, B. A., T. Bekyarova, ., R. L. Moss. 2008. Protein kinase
A-mediated phosphorylation of cMyBP-C increases proximity of
myosin heads to actin in resting myocardium. Circ. Res. 103:244–251.

14. Yamasaki, R., Y. Wu, ., H. Granzier. 2002. Protein kinase A phos-
phorylates titin’s cardiac-specific N2B domain and reduces passive
tension in rat cardiac myocytes. Circ. Res. 90:1181–1188.

15. Solaro, R. J., P. Rosevear, and T. Kobayashi. 2008. The unique func-
tions of cardiac troponin I in the control of cardiac muscle contraction
and relaxation. Biochem. Biophys. Res. Commun. 369:82–87.

16. Ward, D. G., S. M. Brewer, ., I. P. Trayer. 2004. Characterization of
the interaction between the N-terminal extension of human cardiac
troponin I and troponin C. Biochemistry. 43:4020–4027.
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Material and Methods 

Recombinant Protein Isolation  

Site directed mutagenesis was performed using QuickChange II Site-Directed Mutagenesis 

Kit (Stratagene, La Jolla, CA) to substitute serines 23, 24 in cardiac troponin I (cTnI) with 

aspartic acid (S23D/S24D-cTnI) to mimic the N-terminal phosphorylated cTnI state. A 

pET-24 (Novagen, Madison, WI.) vector containing the T7 promoter, lac operator and a 

kanamycin resistant gene was used for expression of wild-type (WT) and mutant proteins in 

Escherichia coli (BL21). The DNA sequences of the expressing constructs were verified by 

DNA sequencing. The expressed protein was extracted from bacterial cells as previously 

described (1) and purified on DE 52 or CM 52 (Whatman) columns equilibrated by 6 M 

Urea, 25 mM Tris at pH 8.0, 1 mM EDTA and 15 mM 2-mercaptoethanol. Proteins were 

eluted with a salt gradient washing in the same buffer from 0 to 0.3 M NaCl. The fractions 

containing the desired protein and their concentrations were monitored by SDS PAGE and 

DU 800 Spectrophotometer. Proteins were stored at -80 C before use.  

Fluorescent Labeling of Protein 

Fluorescent labeling of cardiac troponin C (cTnC) has been previously described (2, 3). 

Briefly, the cTnC C35S mutation was introduced to allow site-specific attachment of a 

fluorescent probe at position C84. cTnCC35S
 was first dialyzed against 5 mM DTT in a buffer 

containing 6 M urea, 25 mM Tris, and 1 mM ethylenediamine-N,N,N9,N9-tetracetic acid 

(EDTA) (pH 8.0), and the proteins were dialyzed against the same buffer without DTT for at 

least 24 h with three buffer changes. Then, 100 mM IANBD ({N-[2-(iodoacetoxy)ethyl] 

-N-methyl}amino-7-nitrobenz-2-oxa-1,3-diazole (Mw = 406.14)) (in dimethylformamide) 

was added in a 3-fold molar excess over cTnCC35S, and the protein solutions were gently 

shaken in the dark for >4 h at 4C. The labeling reaction was terminated by the addition of 10 

mM DTT, and the labeled protein was dialyzed against a buffer containing (in mM): 20 

MOPS, 150 KCl, 3 MgCl2, 2 EGTA, and 1 DTT (pH 7.0) to remove unreacted IANBD (three 

times for at least 12 h). Labeling efficiency was determined by measuring the IANBD 

fluorophore to protein molar concentration ratio (2). The IANBD concentration in the labeled 
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protein was determined by dividing the absorbance of the labeled protein at the maximal 

absorbance for the fluorophore by the extinction coefficient of IANBD (21000 M− 1cm− 1) at a 

wavelength of 481 nm. All protein concentrations were determined using the Bio-Rad protein 

assay. The final labeling efficiency was then determined to be 90%. 

PKA Phosphorylation of cTnI  

The protocol for PKA phosphorylation of cTnI has been previously described (4). Briefly, 

cTnI was phosphorylated by the catalytic subunit of PKA, using a cTnC affinity column. 

Purified cTnI was loaded on a cTnC affinity column equilibrated in 50 mM KH2PO4 at pH 

7.0, 500 mM KCl, 10 mM MgCl2, 0.5 mM DTT, and 125 U PKA/mg. cTnI was added 

directly to the column and followed by adding ATP to the column to initiate the reaction. The 

column was incubated in water bath at 30ºC for 30 min, and then washed with a buffer 

containing (in mM): 50 MOPS, 500 KCl, 2 CaCl2 and 0.5 DTT at pH 7.0. Phosphorylated 

cTnI was eluted with a buffer containing 6 M urea, 10 mM EDTA, 0.5 mM DTT and 50 mM 

MOPS at pH 7.0. We further verified the phosphorylation profile by western blot using 

antibodies of rabbit polyclonal to cTnI (phospho S22 + S23) (from Abcam, ab58545) and 

goat anti-rabbit IgG-HRP (Santa Cruz Biotechnology, Inc., sc2004). The total amount of cTnI 

was determined by western blot using antibodies of rabbit polyclonal lgG to cTnI (H170) 

(Santa Cruz Biotechnology) and goat anti-rabbit IgG-HRP (Santa Cruz Biotechnology, Inc., 

sc2004). 

Reconstitution of cTn Complexes 

The cTn subunits cTnI and cTnT were first dialyzed separately against 6 M urea, 25 mM Tris, 

and 1 mM EDTA (pH 8). After dialysis, cTnC or IANBD-cTnCC35S, cTnI (WT, pS23/pS24, 

or S23D/S24D), and cTnT were mixed in a 1:1:1 molar ratio (5). After being incubated at 

room temperature for 30 min, the protein solution was dialyzed through a series of steps 

against (i) 2 M urea, 0.75 M KCl, 20 mM MOPS, 3 mM MgCl2, and 1 mM CaCl2 (pH 7.0), 

(ii) 1 M urea, 0.75 M KCl, 20 mM MOPS, 3 mM MgCl2, and 2 mM EGTA (pH 7.0), (iii) 

0.75 M KCl, 20 mM MOPS, 3 mM MgCl2, and 2 mM EGTA (pH 7.0), (iv) 0.5 M KCl, 20 

mM MOPS, 3 mM MgCl2, and 2 mM EGTA (pH 7.0), (v) 0.25 M KCl, 20 mM MOPS, 3 

mM MgCl2, and 2 mM EGTA (pH 7.0), and (vi) 150 mM KCl, 20 mM MOPS, 3 mM MgCl2, 
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2 mM EGTA, and 1 mM DTT (pH 7.0) for steady-state fluorescence measurements use or 

(vi) 200 mM KCl, 20 mM MOPS, 5 mM MgCl2, 2 mM EGTA, and 1 mM DTT (pH 7.0) for 

myofibril use. All dialysis was done in the dark (without stirring) at 4°C. Proteins that 

precipitated during the dialysis with decreasing KCl concentrations were removed by 

centrifugation (6). 

Myofibril Mechanics Measurements 

Cardiac muscle tissue slices were demembranated for 24 hours at 4°C in a solution 

containing 50% glycerol, 1% Triton detergent, and 50% muscle relaxing solution with (in 

mM): 100 KCl, 9 MgCl2, 4 Na2ATP, 5 K2EGTA, and 10 MOPS, as previously described (7, 

8). These tissue slices were then wash three times and stored at -20°C in the same solution 

without Triton for use up to one week. Tissue slices were manually minced, placed into rigor 

solution and shredded with a high speed homogenizer for 2 bursts of 20-30 seconds. 

Myofibrils were stored at 4°C and used within 2 days. 

   Myofibril experiments were performed as previously described (9). Briefly, myofibrils 

were mounted between two needles micro-forged from borosilicate glass capillary tubes (OD 

1.0 mm, ID 0.5 mm, Sutter Instruments, Novato, CA). One of these needles acted as a force 

transducer which deflected in a predictable manner upon application of force (9). Needle 

stiffness was determined by first deflecting the needle with a known amount of force using a 

galvanometer and measuring its deflection under a 40x lens. This yielded stiffness in nN 

µm-1, and needles used for these experiments ranged between 6 and 12 nN µm-1. This needle 

was positioned over a dual diode system, which records needle displacement and correlates 

displacement to force development. A calibration curve was performed at the end of each 

experiment in which this needle was moved in 1 µm steps over the range of the diodes using 

micromanipulators (MP-285, Sutter Instruments, Novato, CA). A second, straight needle 

attached to the other end of the myofibril and was used to rapidly shorten and stretch the 

fibril through a computer interface and a Piezo-controller motor (PZT Servo controller, 

LVPZT amplifier, Physik Instrumente, Irvine CA).  

A double-barreled borosilicate theta glass pipette (Capillary glass tubing OD 2.0 mm, ID 

1.4 mm, SEP 0.2 mm, modified in house to OD of 0.55 mm, Warner Instruments, Hamden, 
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CT) was used to stream low (10-9 M, pCa 9.0) and high (10-4 M, pCa 4.0) Ca2+ containing 

solutions to the mounted preparation, and stepping for solution switch over the preparation 

was controlled by a computerized motor (SF-77B Perfusion Fast step, Warner Instruments 

Corporation, Hamden, CT). The solution change was complete in ~10 ms (9, 10).  
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Table S1. Tension generation and relaxation parameters for native rat ventricular myofibrils 

at 15C. Values given are mean ± SEM. Number in parentheses is number of myofibrils. *p 

<0.05 vs. native (without PKA treatment). 

Myofibril 

Batches (n) 

 Tension generation   Relaxation 

Slow Phase  Fast Phase 

pCa Tmax 

(mN/mm2) 

kACT (s-1) kTR  (s-1)  tREL,slow 

(ms) 

kREL,slow  

(s-1) 

 kREL,fast 

 (s-1 ) 

native (9) 4.0 77 ± 11 3.2 ± 0.4 5.5 ± 1.3  74 ± 8 1.2 ± 0.3  19 ± 3 

(7) 5.4 26 ± 4 1.5 ± 0.2 3.2 ± 0.7  79 ± 12 3.2 ± 0.7  19 ± 2 

native+PK

A (8) 

4.0 75 ± 13 2.7 ± 0.4 5.7 ± 1.2  60 ± 4* 1.6 ± 0.3  22 ± 3 

(6) 5.4 20 ± 5 1.4 ± 0.2 3.1 ± 0.5  61 ± 5* 6.8 ± 1.8*  18 ± 3 
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