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The proper understanding of biomolecular recognitionmechanisms that take place in a drug target is of paramount
importance to improve the efficiency of drug discovery and development. The intrinsic dynamic character of pro-
teins has a strong influence on biomolecular recognition mechanisms andmodels such as conformational selection
have beenwidely used to account for this dynamic association process. However, conformational changes occurring
in the receptor prior and upon associationwith other molecules are diverse and not obvious to predict when only a
few structures of the receptor are available. In view of the prominent role of protein flexibility in ligand binding and
its implications for drug discovery, it is of great interest to identify receptor conformations that play a major role in
biomolecular recognition before starting rational drug design efforts. In this review, we discuss a number of recent
advances in computer-aided drug discovery techniques that have been proposed to incorporate receptor flexibility
into structure-based drug design. The allowance for receptor flexibility provided by computational techniques such
as molecular dynamics simulations or enhanced sampling techniques helps to improve the accuracy of methods
used to estimate binding affinities and, thus, such methods can contribute to the discovery of novel drug leads.
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1. Biomolecular recognition mechanisms

Biomolecular recognition is at the heart of all biological processes
that take place in living organisms. Understanding how a ligand binds
to a biological receptor, how proteins interact with each other, how
lipids and proteins aggregate in the cell membrane, and how these
events trigger or block a wide range of biochemical reactions is of para-
mount importance, not only for the field of biophysics but also for other
disciplines such as rational drugdesign. In the last decades, the interpre-
tation of mechanisms describing biomolecular recognition has been the
focus of a passionate debate that has contributed to push forward the
research in many fields such as biophysics and pharmacology among
others [1–3]. More than 50 years ago, our view of binding events
underwent a Copernican turn evolving from an idea based on rigid
lock-and-key likemodels to be described as a dynamic and flexible pro-
cess [4,5]. All thesefindings not only served to advance thefield towards
a better understanding of protein–ligand binding but also introduced an
extra degree of complexity to the description of biomolecular recogni-
tion processes. Biomolecular recognition is an intricate process of
orchestrated and random motions, where the ligand from one side
and the receptor from the other seek for complementary conformations
to improve the binding affinity with its partner along this fascinating
biomolecular dance.

The description of protein–ligand interactions is not a simple task
due to the variety of motions andmechanisms interplaying in this com-
plex but vital process. To comprehend how biomolecular recognition
occurs, we first need to understand the role of all different partners
involved in this association process. One of themain centers of attention
has been to elucidate the role played by the ligand during the binding
event. In particular, whether it is directly responsible for inducing a con-
formational change to the biological receptor upon binding or whether
it stabilizes specific preexistent conformational states displayed by the
dynamic protein. In other words, by which mechanisms do ligands
such as substrates or synthetic drugs regulate biochemical reactions?
In the last decades, the concepts of inducedfit and conformational selec-
tion emerged as the most popular mechanisms to explain the intricate
biomolecular recognition process. The idea of induced fit, introduced
by Koshlandmore than fifty years ago, relies on the formation of an ini-
tial loose ligand–receptor complex that induces a conformational
change in the protein, resulting in a series of rearrangements that lead
to a complex with tighter binding [4]. This model implies that
interacting biomolecules do not necessarily have a complementary
shape prior the binding event because it is induced by the ligand. How-
ever, experimental evidences based on kinetic studies proved that the
induced fit hypothesis was not able to describe all the variety of binding
scenarios [6]. In 1999, Nussinov and coworkers coined the term confor-
mational selection, also known as population shift, which is based on
the idea that all conformations are present when the ligand is not
bound to the receptor and, then, the ligand acts to selectively stabilize
specific receptor conformations, causing a shift in the populations
observed in the unbound ensemble towards this specific conformation-
al state (see Fig. 1) [7–10]. Both theories, although they appear to be
antagonistic, are not necessarily mutually exclusive. Recent studies
show that conformational selection is usually followed by a conforma-
tional adjustment [11]. In this line, extendedmodels that combine charac-
teristics of conformational selection, induced fit and classical lock-and-
keymechanisms have been reported [3]. Despite being often disregarded,
water plays a crucial role in molecular association. In the last years, great
efforts have been put to determine the nature of the hydrophobic effect
and its implications for biomolecular recognition. Experimental and theo-
retical studies have pointed out the capital importance of both entropic
and enthalpic contributions of water networks to the free energy of bind-
ing [12–15]. Computer-aided drug design techniques try to incorporate
some of themain features of biomolecular recognition process to improve
the accuracy and predictive power of these computational methods. For
example, a plethora of techniques have been proposed to account for
conformational selection and induced fit during the estimation of binding
affinities in structure-based virtual screening [16–19].

The debate onmechanisms underlying biomolecular recognition has
been always strongly linked to the study of allosteric effects. Allostery is
a phenomenon that describes the interaction occurring between a reg-
ulatory site, also called allosteric site, and another site of the protein,
usually the active site, that gives rise to a functional change on the latter
[5,20]. This process ismediated by an effector that binds to the allosteric
site, which induces a conformational change to the protein that affects
the activity of another site, altering protein function. Thus, the allosteric
effector is responsible for regulating the biological activity of the pro-
tein. The allosteric term was coined and popularized in the early
1960s by Changeux, Jacob and Monod from their studies of conforma-
tional changes mediated by signal transduction in several enzymes,
where they tried to initially explain allosteric effects from the induced
fit perspective [21,22]. Despite the youth of the term allostery, this
concept underwent a rapid revolution when the Monod–Wyman–
Changeux (MWC) model was proposed to account for positive
cooperativity and allosteric effects of oxygen binding in myoglobin [5].
This model states that when an allosteric binding event occurs, a shift
of the equilibriumof twopre-existing conformational states is observed.
Consequently, the early works of Changeux and coworkers laid the
foundations of someof the ideas thatwould eventually lead to the intro-
duction of the conformational selection biomolecular recognitionmech-
anism. The MWC theory of allostery was opposed to the Koshland–
Némethy–Filmer (KNF) model, which explained the conformational
transitions observed as a consequence of allosteric binding, in the
same terms as the induced fit theory [23]. The KNF theory also incorpo-
rated some of the ideas introduced by Pauling on the study of
cooperativity in oxygen binding in hemoglobin [24]. After several
years of discussion, theMWCmodel and its subsequent generalizations
[3,25,26] remained as themostwidely used theories to account for allo-
steric effects. A third model of allostery, referred to us as entropic allo-
stery, pictures the remote effects of ligand binding to have a purely



Fig. 1. Schematic pathways of biomolecular recognition. Conformational selection and induced fit mechanisms are depicted in solid and dashed lines respectively.
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dynamical character [27], and some evidence for this model has been
seen in experimental and computational work [28,29]. Allosteric transi-
tions have been proven to be of great importance to explain signal
transduction mediated by G-protein coupled receptors (GPCR) [30,31].
Depending on the nature of the ligand bound to the orthosteric or allo-
steric sites, some GPCRs are able to assume different conformations
that may lead to the activation of different pathways. For example,
β2-adrenergic receptor (β2AR), which activates several G-proteins,
adopts different conformations and binds to a large diversity of
ligands that are able to trigger different signaling pathways [32].

Allosteric effects alter the shape and/or dynamics of the protein.
These changes cause a set of responses to the protein that affect not
only the function of the protein itself but also its cellular pathway, or
they may even produce a large-scale response in the organism. Conse-
quently, the attention has been focused on the design of allosteric
drugs and the study of how these drugs are able to alter protein network
pathways [33–35]. This strategy offers a wide range of possibilities for
the synthesis of new drugs. For example, the chemokine CCR5 can be
modulated by the approved allosteric drug maraviroc, which acts as a
negative modulator [36]. However, the identification of allosteric sites
and allosteric mechanisms is not a straightforward task because confor-
mational states associated with this process may be less populated in
the unbound receptor ensemble and can be difficult to trap by X-ray
crystallography. Therefore, the study of such processes at molecular
level is still a challenging task. In this review, we analyze some of the
computational tools designed to help with the exploration of the free
energy landscape of proteins that one can use to identify biologically
relevant conformational states or to locate potential druggable binding
sites in different drug targets. In particular, wewill focus on how confor-
mational selection and allostery features can be incorporated in the
structure-based drug design process. We address all of thesemethodol-
ogies from the computer-aided drug design perspective with special
focus on their applications. To this end, we selected some examples
that illustrate not only the potential, but also the current limitations
and challenges, of computational methods, these examples include a
number of GPCRs and some highly flexible antibacterial drug targets in-
volved in the isoprenoid biosynthesis.

2. Introduction to receptor flexibility

In parallel to the extensive debate on biomolecular recognition
mechanisms, the fast progress of experimental and computational
techniques has led to a better understanding of biomolecular interac-
tions and ligand binding events, providing better tools to interpret the
ligand recognition process [2,3,37–39]. The picture of a protein changed
from a rigid and inflexible structure to an intrinsically dynamic and flex-
ible body that displays a wide spectrum of motions. Those motions take
place on a broad range of time scales that span from ultrafast bond
vibrations occurring on the femtosecond time scale to large conforma-
tional changes that require milliseconds to even seconds to be complet-
ed. Flexibility has been shown to be a concept inherent to proteins that
gives them the ability to adopt multiple conformations by generating
what is known as a conformational ensemble. This plasticity results in
continuous changes of the shape of the protein, for example, by creating
transient cavities with functional properties or revealing transitions
between conformational states that may open or close the gate for the
interactionwith endogenous or exogenousmolecules. Proteinflexibility
is crucial for biomolecular recognition processes and it is directly linked
to protein dynamics. The understanding of the variety of motions and
dynamic processes interplaying in the protein ensemble is relevant in
rational drug design [17,40,41]. To this end, it is valuable to find ways
not only of analyzing proteinmotions and protein responses upon bind-
ing, but also of accounting for the inherent receptor flexibility when
assessing the binding affinity between a potential therapeutic drug
and its target.

In the last few years, the improvement of experimental techniques
triggered a large number of advances in the field of protein dynamics.
Techniques such as nuclearmagnetic resonance (NMR) have been prov-
en to provide invaluable information on the understanding of protein
motions and the generation of conformational ensembles [38,42,43].
In terms of biomolecular recognition, NMR data allows the visualization
of heterogeneous protein ensembles where bound and unbound recep-
tor conformations are represented. These observations are in line with
the conformational selection view of biomolecular recognition [44].
On the other hand, advances in specialized computer hardware and
software have brought computational methods to a status where they
can provide answers at the atomic level to diverse phenomena such as
protein folding [45] or biomolecular recognition [46], as well as play a
relevant role in the structure-based drug design process [41,47]. Partic-
ularly in the last decade, molecular dynamics (MD) simulations
have undergone a step forward because of the increase in computation-
al power translating to longer and more accurate simulations going
beyond the microsecond time scale [37,48–50]. Similarly, the ad-
vances in enhanced sampling techniques allow us to capture slow
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conformational changes that remain hidden in conventional molec-
ular dynamics simulations [18,51,52]. The combination of experi-
mental techniques, such as NMR, with molecular simulations has
represented a step forward to comprehend how proteins move and
interact with their partners, providing relevant information towards
a better understanding of mechanistic details in biomolecular recog-
nition [32,53–55].

Intra- and inter-molecular interactions interplaying among ligand,
receptor, andwater molecules are the driving force of protein dynamics
and recognition processes. To understand how molecules interact and,
thus, their affinity, it is of great interest to improve the efficiency and
accuracy of rational drug design. Affinity is strongly related to the con-
cept of free energy, a quantity that measures the favorability of one
state over another, for example, between a ligand bound to its target
compared to the unbound situation. In biomolecular recognition,
orchestrated enthalpy and entropy changes determine the favorability
of the binding event. The ability to predict such a property is of great
interest for drug discovery and, consequently, several methods with
different levels of efficiency and accuracy have been proposed to esti-
mate binding free energies. To correctly assess binding affinities, it is
convenient to know the three dimensional orientation of ligands
interacting with their receptors. Molecular docking and scoring func-
tions have been proven useful in assigning rankings and scores to differ-
ent poses that can be used to predict relative ligand orientations with
respect to a receptor. Docking techniques are fast and efficient, present-
ing a wide range of applications in the early stages of virtual screening
when large libraries of compounds are explored [56–58]. Docking
Fig. 2. Accounting for receptor flexibility in structure-based virtual screening. Exa
techniques are fast but the large number of approximations taken into
account limits their applicability beyond pose prediction and very
rough ranking of compounds [59]. Despite somewell-known limitations
such as system dependency, dockingmethods and scoring functions are
key techniques in hit identification. When more precise binding affini-
ties are needed, alchemical free energy methods represent a more ro-
bust and accurate way to compute binding affinities [60]. The
continuous improvements made in the last years are leading towards
a greater applicability of free energy methods in the lead-optimization
stage of the rational drug design process [61–65].

It is crucial to identify the key conformations the drug target before
startingwith structure-based drug design efforts because the inaccurate
description of the binding site region directly affects the correct estima-
tion of binding affinities. Unbound receptors exist in an equilibrium
conformational ensemble characterized by a set of conformational
states and populations. During the binding event, either to a catalytic
or an allosteric site, the relative distribution of states changes while
the set of conformational states remains the same. Thus, it may be pos-
sible to design drugs that stabilize specific conformations of the ensem-
ble by targeting these sites and trapping the active or inactive states of
the protein. To this end, methods that efficiently explore the conforma-
tional space and techniques that provide accurate and fast calculation of
binding affinities are crucial to improve the predictive power of virtual
screening protocols (see Fig. 2). In the last part of this review, we
focus our attention on the estimation of binding energies with special
emphasis on the incorporation of receptor flexibility to account for
different conformational states in the drug design process.
mples of methods used at each step that are discussed in the present review.

image of Fig.�2
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3. Receptor ensemble-based screening methods

Structure-based screeningmethods require an initial receptor struc-
ture of a drug target, either obtained experimentally or through molec-
ular modeling, to start with the rational drug design efforts (see Fig. 2).
Usually these receptor structures correspond to crystallographic and
NMR structures or can be generated from computer modeling, molecu-
lar dynamics simulations, or from enhanced samplingmethods. The use
of high-resolution crystal structures (if available) has long been the
established approach to rationally design small drug molecules. In the
framework of conformational selection, ligands act to selectively stabi-
lize specific protein conformations and, thus, proteins can be co-
crystallized in alternative conformations depending on the nature of
the ligand. The use of only one receptor conformation limits the chem-
ical space of potential ligands for a specific drug target. To improve the
predictive power of receptor-based methods, it is useful to generate
an ensemble of receptor structures where the most relevant conforma-
tions of the receptor are taken into account in the structure-based drug
design process.

Ensemble-based screening methods aim to account for receptor
flexibility and are based on using several receptor structures in the
docking phase of the virtual screening protocol [66]. Ensemble-based
methods represent an indirect way of accounting for conformational
selection in structure-based drug design and have been widely used to
improve binding pose prediction and enrichment factors in virtual
screening [67–69]. To illustrate the success of ensemble-based screen-
ing methods in drug lead identification, we selected undecaprenyl
diphosphate synthase enzyme (UPPS) as an example. This enzyme in-
volved in isoprenoid biosynthesis has been the focus of several studies
and a large number of crystal structures co-crystallized with ligands of
different natures have been reported in the last decade [70–72]. In
2013, Zhu and coworkers reported the discovery and design of a large
set of new chemically diverse inhibitors for UPPS [70]. UPPS is an essen-
tial enzyme for the biosynthesis of the bacterial cell wall in most bacte-
ria, such as Staphylococcus aureus or Escherichia coli, and it has been
shown to be an interesting antibacterial drug target [73,74]. According
to the available set of crystal structures, UPPS is a reasonably flexible en-
zyme that can be found in three different conformations (closed, ajar,
and open), depending on the nature of the substrate or the ligand
bound to the different binding sites of the enzyme. In this case, the va-
riety of X-ray crystal structures available is sufficient to build a repre-
sentative receptor ensemble that can be used for structure-based drug
design efforts. The receiver operating characteristic/area under the
curve (ROC/AUC) approach can be used to validate the predictive
power of each structure of the ensemble for the virtual screening. In
the ROC/AUC procedure a set of known active compounds and pre-
sumed inactives are docked into each structure [75]. The AUC is associ-
ated with how well a ranking algorithm will rank and separate actives
from inactives, and it is used to assess the performance that different
conformations of the same receptor may have in virtual screening. Pre-
diction and performance of receptor ensembles in virtual screening
have been discussed at length in the literature [41]. Using a 112-
compound screening dataset for UPPS, the best enrichment was ob-
served for UPPS crystal structures that belong to open and ajar states,
with AUC values close to 0.8. Then, the best predictive structures were
selected and used as receptor structures to computationally screen
large databases of compounds. Some of the computationally predicted
compounds using ensemble-based docking methods led to the discov-
ery of UPPS inhibitors. The reported antibacterial drug leads show ther-
apeutic activity in animal models and have also been shown to restore
the sensitivity of antibiotics such as methicillin, which make them
promising leads for further antibiotic development [70]. In many
cases, the use of an ensemble of conformations enhances the predictive
power of virtual screening. As was shown for UPPS, crystal structure di-
versity is often enough to generate an ensemble that describes themost
relevant receptor conformations to rational design of active compounds.
However, an extensive set of crystal structures of different and relevant
conformations is only available for a very limited number of proteins.

4. Exploration of the conformational space

Crystal structures that capture pharmacologically relevant binding
conformations may not be available or are difficult to obtain and, occa-
sionally, the bound crystal structures available for a drug target do not
represent the conformation of interest. In particular, conformations as-
sociated with important states may be transient and, thus, trapping
these particular conformations with experimental techniques can be a
tedious task. For instance, allosteric sites are particularly difficult to
capture in crystal structures due to their less conserved character with
respect to catalytic sites. Protein function is only superficially under-
stood from a single structure because proteins are inherently dynamic
and display a wide range of motions that span from simple side chain
rotations to accommodate a substrate in the catalytic site to large back-
bone rearrangements that may even alter the secondary structure.
Molecular simulations have been proven as a useful tool to explore
the conformational space of proteins and can overcome the lack of
receptor structures by generating new alternative conformations
[47,76]. In addition, molecular simulations can sample conformational
states that could be important to characterize allosteric sites that are
not evident from the crystal structures available [77]. Protein motions
directly affect the association between the ligand and the receptor but
a single structure does not tell much about the intricate motions of pro-
tein dynamics. Molecular dynamics (MD) simulations are among the
most widely usedmethods to study protein flexibility from the compu-
tational perspective [78,79]. Since the first MD simulation of a protein
performed more than thirty years ago [80], MD has been used in a
wide range of applications in thefield of biomolecular recognition, how-
ever, short time-scale simulation are often not capable of capturing
important conformational changes. In the last years, the significant
increase in computational power has broadened the applicability of
all-atom molecular dynamics; longer and longer simulations were
produced and this had significant implications for the interpretation of
biomolecular recognition at themolecular level. Besides special purpose
hardware [49], graphics-processing-units (GPUs) have been used to
speed up molecular dynamics simulations by an order of magnitude
compared to the central-processing-units (CPUs) [48]. Particularly
interesting was the interplay between individual users and researchers
in the folding-project that resulted in the reconstruction of the free-
energy surface of a protein folding event by means of Markov state
models and the theory of exponential kinetics [81]. In a recent example,
NMR techniques and 550 μs of all-atom MD simulations were used in
conjunction to characterize the dynamic activation process of the β2-
adregeneric receptor, identifying conformational states that were not
observed in the crystal structures available [32]. The role of different li-
gands on the stabilization of selected conformational states was also ex-
plored showing that this GPCR is highly dynamic and adopts a large
number of different conformations. The understanding of GPCR dynam-
ics and how different ligands trigger the association with different sig-
naling proteins paved the way towards structure-based drug design
efforts on these particularly interesting receptors. In addition, the anal-
ysis of binding modes and intermolecular interactions observed during
the binding event may lead to the design of new allosteric modulators
that will be able to modulate the activity of GPCRs. However, all
methods used for molecular simulations have their limitations and it
is important to be conscious of the advantages and drawbacks of each
technique [82]. Some examples of the limitations that have been associ-
ated with molecular dynamics simulations could be: 1) instabilities as-
sociated with force fields in simulations that exceed the microsecond
time-scale; or 2) poor description of quantum effects that, for example,
are particularly important when transition metals take part in ligand
binding, among others. Protonation states of certain residues are also a
key property to consider in MD simulations and binding affinity
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calculations. A change of the protonation state can lead to an overesti-
mation or underestimation of binding affinities, decreasing the success
rate of structure-based screening methods. Running simulations with
different protonation states or constant-pH simulations are tools that
can help to ameliorate these limitations [83,84].

An interesting question is how the use of MD structures affects the
quality of the structure-based virtual screening procedure. In a recent
example, Sinko and coworkers studied the influence of protein flexibil-
ity on the design of UPPS inhibitors [85]. To this end, they ran long MD
simulations and analyzed the performance of high- and low-populated
conformations on the docking of known inhibitors. UPPS is a highly flex-
ible enzyme as shown by the variety of different crystallized conforma-
tions. The conformational changes displayed along the unbound MD
trajectory were similar to those seen in the ensemble of bound and
unbound crystal structures, in line with the conformational selection
idea of biomolecular recognition. In this case, MD simulations are capa-
ble of sampling some of the most relevant conformational states of
UPPS. Particularly interesting was the identification of a rarely sampled
conformational state with an expanded pocket that is significantly
important to properly describe ligand binding in UPPS. The results
obtained from virtual screening suggested that different classes of
known inhibitors recognize different active conformational states of
UPPS. Only when this rarely sampled conformation with an expanded
pocket was used as receptor conformation in the virtual screening pro-
cedure, the poses obtained with docking methods mimicked those
observed in the open bisphosphonate-bound UPPS crystal structures.
This is in contrast to other inhibitor chemotypes, which require a less
expanded active site conformation. Consequently, it is relevant for
drug design to identify the conformational states where a specific inhib-
itor binds. Interestingly, apo MD simulations were able to capture the
most relevant conformational changes that would be involved in the
accommodation of the ligand in the biomolecular recognition process
of UPPS.

The ROC and AUC analysis can be also used to quantitatively assess
the performance of MD structures in receptor-based virtual screening.
Nichols et al. used this strategy to assess the performance of MD struc-
tures in HIV reverse transcriptase (RT-HIV), another popular disease
target with multiple experimentally determined crystal structures
available [86]. ROC/AUC analysis can be used to accurately predict the
level of enrichment of a virtual screening run by evaluating the predic-
tive power of different conformations of the same receptor. In this case,
a total of 200 ns ofMD simulations for two bound and two unbound RT-
HIV receptors were used to generate the conformational ensemble for
the virtual screening. The attention was focused on the NNRTI binding
pocket that has been shown to be highly flexible, changing from a
“collapsed” inhibitor-free state to an “open” inhibitor-bound state. The
results obtained from the virtual screening of the NNRTI pocket
were compared with an ensemble of 15 experimentally determined
structures that contain both unbound and bound structures. First, they
found that bound receptors improve virtual screening results compared
to unbound structures. Second, ROC/AUC results showed that the per-
formance of nearly 20% of the MD structures studied was superior to
the available crystal structures.

MD trajectories can be used to interpret and identify conformational
changes that not only play a critical role in the biomolecular recognition
process, but also are a useful tool to improve the predictive power of
virtual screening by generating new structures that broaden the confor-
mational ensemble. The increasing recognition of the importance of
target flexibility culminated in the definition of the relaxed complex
scheme (RCS), which is an ensemble-based docking method that
accounts for receptor flexibility to perform docking studies of com-
pound libraries [87,88]. RCS relies on the use of previously determined
conformations with molecular dynamics simulations that are used as
receptor structures to screen chemical compounds with docking tech-
niques. The idea behind RCS is to enrich the variety of low-energy
conformations present in the ensemble in order to increase the diversity
of ligands that bind to a receptor and, ideally, identify a larger number
of hits obtained from compound libraries. RCS has been successfully
applied to find compounds for several targets. For example, Schames
and coworkers identified a novel binding cavity in HIV integrase using
RCS in conjunction with docking [89], which helped to inspire the
discovery of FDA-approved drug raltegravir [90]. More recently,
Wassman et al. observed by means of MD simulations a transiently
open binding pocket in tumor suppressor p53 [91]. Applying the RSC
virtual screening procedure on this novel site, they identified a com-
pound that is potentially able to reactivate mutated forms of p53 in
human cells. These examples highlight the importance of MD simula-
tions and ensemble-based screening methods on the identification of
new druggable pockets and the design of potential active compounds.

However, care must be taken when using MD structures for virtual
screening because we do not know a priori if a specific MD structure
will improve the estimation of binding affinities [86]. In general, enrich-
ment may be better for ensembles of crystal structures than for ensem-
ble of MD simulations structure [92], however, someMD structures can
enhance the prediction power compared to experimental structures.
Occasionally, MD trajectories are not long enough to identify relevant
conformational transitions that may lead to low-energy configurations
of interest for drug design. The time-scales reached using MD simula-
tions are typically the order of nanoseconds to even sometimes micro-
seconds. However, many interesting processes take place on the
timescales of milliseconds to seconds, which may reveal new binding
sites important for structure-based drug design. These binding sites
would bemissed by conventional MD simulations. Thus, new strategies
are needed to overcome such high-energy barriers associatedwith slow
motions that connect low-energy states. Methods for identifying the
most predictive structures and methods for sampling a greater part of
biomolecular phase space would be useful for structure-based drug
design and they will be the focus of the next sections.

5. Enhanced sampling methods

Some important processes such as biomolecular recognition, alloste-
ric regulation, or signal transduction, usually take place on themicro- to
millisecond or even longer time scales. Low-energy states relevant for
these processes may be separated by high-energy barriers, which are
rarely crossed over the course of conventional MD simulations, unless
the simulation is really long. Such conformational changes associated
with slow motions, may play a critical role in biomolecular recognition
and their description is of capital importance to identify relevant confor-
mations for rational drug design. Moreover, if one wishes to perform
accurate free energy calculations by recovering the Boltzmann ensem-
ble of structures, the crossing of high-energy barriers should be ob-
served multiple times to obtain converged statistics. In the direction of
improving the exploration of the conformational space, new strategies
have been proposed to overcome the, sometimes, scarce conformational
sampling associated with standard molecular dynamics simulations,
and also to speed up the crossing of high energy barriers. Besides the
aforementioned specialized computer hardware improvements and
the increasing popularity of multi-scale techniques [93], a lot of atten-
tion has been paid to simulation techniques that speed up and improve
the efficiency of conformational sampling while keeping the atomistic
description of the system. These methods can be encompassed in the
group of enhanced sampling techniques.

The basis of speeding up conformational sampling is the introduc-
tion of an artificial bias into the model upon which the simulations are
based. These methods go from the simple raising of the temperature
of the system to methods that display different levels of sophistication.
Temperature accelerated replica exchange [94], umbrella sampling
[95–97], metadynamics [98,99], or accelerated molecular dynamics
[100,101] are among themost widely usedmethods to enhance confor-
mational sampling in all-atom simulations. Some of these methods
require an a priori definition of a reaction coordinate: either a transition
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pathway between known initial andfinal states or a set of collective var-
iables (CVs) are defined a priori to drive the course of the simulation.
The calculation of free energy differences between two states connected
by a reaction coordinate requires adequate sampling of both low- and
high-energy regions found along the reaction path. The umbrella sam-
pling method introduces a bias potential to facilitate the transition
over energy barriers, and is an efficient technique to sample high-
energy regions. To this end, separate simulations, which overlap, are
run in a series of windows along the reaction path to connect the initial
and final states. It is important to ensure that the sampling along the
reaction coordinate is as uniform as possible. The main difference
between umbrella sampling and metadynamics is that in the latter a
non-systematic sampling along a set of collective variables is performed.
For this, a history-dependent bias potential is introduced to the Hamil-
tonian. This bias potential enhances sampling by adding Gaussian con-
tributions to the potential energy along the sampled trajectory to
prevent the system from visiting regions that have already been sam-
pled. Then, the free-energy surface of the process can be accurately
reconstructed as a function of the chosen set of collective variables.
In a recent example, that comprehensively shows the potential of
metadynamics to study ligand binding events, Limongelli and co-
workers described the full unbinding pathway of inhibitor SC-558 of
cyclooxygenase-2 and identified an alternative binding-modewith sim-
ilar thermodynamic stability to the one found in experiments that could
help to explain the long occupancy of this inhibitor in the binding site
[102]. However, the results obtained bymeans ofmetadynamics strong-
ly depend on the set of CVs used for the simulations [99]. These tech-
niques work remarkably well in analyzing free energy changes
between known conformations but present some handicaps when
looking for unknown conformations, for instance, when a drug-like
compound binds to the active site of its protein target but there is no
knowledge of the final conformational state.

In this review, we focus our attention on accelerated molecular
dynamics (aMD), an enhanced sampling technique that does not rely
on the a priori definition of reaction coordinates. Extensive reviews on
the theory underlying aMD simulations, its distinct flavors, and a wide
range of applications can be found elsewhere in the literature
[101,103]. Here we focus on the potential of aMD as a tool to efficiently
explore the rough free energy landscape of proteins and its direct con-
tribution to structure-based drug design by providing new structures
that may reveal new binding and allosteric sites relevant for biomolec-
ular recognition.

Accelerated molecular dynamics enhances sampling through modi-
fication of the system's Hamiltonian in a relatively simpleway (only two
to four parameters are required). In addition, it does not rely on the
definition of a reaction coordinate or a set of collective variables (a priori
knowledge of the underlying free energy landscape is not needed), and
Fig. 3.Acceleratedmolecular dynamics. Equations to calculate boost energy,V� r!ð Þ, and boost po
series of modified potential energy functions are represented in different colors for various val
it conserves the essential details of the free-energy landscape. AMD typ-
ically modifies the underlying potential energy surface by applying a

boost potential ΔV r!
� �

at each point of the MD trajectory according

to the equation in Fig. 3 [100]. The value of ΔV r!
� �

depends on the

difference between a reference, ‘threshold’, or ‘boost’ energy, E, and
the actual potential energy. Based on initial conventional MD simula-
tions, the reference energy is chosen to lie above the minimum of the
potential energy surface (PES). All states with energy above E are not
modified in the standard aMD method. The larger the difference, the
greater the modification of the PES becomes, pushing up low-energy
valleys and in effect decreasing the magnitude of energy barriers.

Acting as anMD simulation catalyst, aMD speeds sampling by lower-
ing the size of energy barriers and smoothening the potential energy
landscape as a function of parameters E and α, which regulate the
level of acceleration, and their optimal values are system specific.
Since the system moves in a smoother potential energy surface, high-
energy barriers can bemore easily conquered, making possiblemultiple
transitions over these previously impassable barriers and, then, unex-
plored low-energy states are visited multiple times along the aMD
trajectory. aMD is a flexible technique that allows different variants
and extensions [101]. The most popular is the dual boost approach,
which combines two different levels of acceleration, a more aggressive
one applied to only the torsional angles of the system, and a less vigor-
ous acceleration applied to all elements of the force field including
explicit solvent, which is to sample diffusive motions in the solvent.
The modifications introduced to the Hamiltonian bias the actual poten-
tial energy surface; the low-energy conformations become less stable
and the populations are altered with respect to the original PES and,
consequently, the systemmoves over a non-Boltzmann energy surface.
Since we know the modification of the potential energy introduced at
each point, a corresponding reweighting function is used to recover
the Boltzmann statistics, and then thermodynamic properties may be
accurately determined. However, recovering the canonical ensemble
from non-Boltzmann aMD simulations is not a straightforward task,
which complicates obtaining accurate free energy statistics When lon-
ger timescales are reachedwith aMD, the reweighting procedure is sub-
ject to statistical errors in the estimate of the weighting factor at each
point [104]. A sufficiently long simulation is required to observe a prop-
er reweighting of the Boltzmann canonical ensemble, which may limit
the applicability and efficiency of free energy aMD-based calculations
for certain large bio-molecular systems. Several alternative solutions
have been proposed to improve reweighting process. In the case of
drug design, selective aMD is a particularly interesting technique,
which limits acceleration to a few dihedrals angles [105]. This reduces
the amount of statistical error and the free-energy statistics can beprop-
erly recovered using the re-weighting factor.
tential,ΔV r!
� �

. The true potential energy function is shownas a solid black line,ΔV r!
� �

. A
ues of α as shown in the plot while E was always fixed at 60 (black dashed line).
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aMDhas been applied to several systems andhas also been validated
with experiments. Recently, Gasper and coworkers found a good
correlation between experimental NMR order parameters and order pa-
rameters which were computationally predicted with aMD simulations.
There was a significant improvement over standard MD predictions
[106]. They made use of aMD simulations to describe the correlation of
the structural fluctuations of thrombin in great detail. In addition, two
allosteric pathways that mediate the activity of thrombin were identi-
fied [29]. From theperspective of drug design, GPCRs are at the epicenter
of experimental and computational efforts. It is of great importance to be
able to understand the activation mechanism of such complex drug tar-
gets prior to starting with structure-based drug design efforts, but most
of these mechanisms remain unclear due to the lack of experimental
structures. AMD is a powerful tool to explore conformational space
and can be used to elucidate the activation pathways of these important
receptors thatmay take on the order of milliseconds to be completed. In
a recent example, Miao et al. focused their attention on the activation
and dynamics of M2 muscarinic receptor, which regulates heart rate
and contractile forces of cardiomyocytes [107]. The crystal structure of
M2 receptor was recently determined in the inactive antagonist bound
state. Interestingly, aMDwas capable of capturing the activation process
that was not observed in previousmicrosecond time-scale conventional
MD simulations. It was found that the activation takes place through a
series of events that trigger the formation of a Tyr206–Tyr440 hydrogen
bond and relocation of alpha helix 6. Moreover, these results identified a
dynamic network for allosteric regulation of M2 receptor that may open
the way towards structure-based design of allosteric drugs [108]. AMD
can also be used in combinations with other enhanced sampling tech-
niques such as the adaptive biasing forcemethod to determine the ener-
getics of conformational changes upon the biomolecular recognition
process. Recently, Wereszczynski and McCammon probed the confor-
mational space of Get3 protein, by means of aMD simulations and ana-
lyzed conformational changes undergone in the presence of various
bound nucleotides [109]. The calculation of an accurate potential of the
mean force was used to compute the free-energy landscape of the
Get3 opening/closing pathway. In addition, it was found in the apo
aMD simulation that a semi-open conformation might be sampled
when Get3 is free in solution, as well as play a crucial role on nucleotide
recognition and be important for drug discovery.

Improvements in hardware, algorithms andmethodological develop-
ments can be combined to perform high-throughput simulations to ac-
cess the millisecond time scale. For instance, Pierce et al. amalgamated
aMD simulations and GPUs to routinely study millisecond events from
a desktop computer [110]. In particular, calculations were done on the
bovine pancreatic trypsin inhibitor (BPTI) to show that 500 ns of aMD
simulation sample the same conformational space as a previously per-
formed millisecond conventional MD simulation on the same protein.
In another recent example, Buch and coworkers reconstructed the
enzyme-inhibitor binding process of the complex trypsin–benzamidine,
including the description of its diffusion pathway, surface exploration
and final binding [50]. The binding paths obtained from almost 500
molecular dynamic simulations of 100 ns length were used to recon-
struct the kinetic pathway of the inhibitor benzamidine from the
solvent to the bound state passing through two different metastable
states. To this end, GPUs, the ACEMD software, andMarkov state models
were used to describe the drug binding pathway to the drug target. The
absolute binding free energy of the process was also estimated and
showed a good agreement with the experimental value. Since enhanced
sampling techniques probe a vast variety of protein conformational
states, it is of great importance to make use of methods that are able to
extract themost relevant information from thesemolecular simulations.

6. Extraction of the most relevant protein motions

Protein dynamics is a key concept in conformational selection theory
where the ligand selectively stabilizes certain conformational states that
preexist in the unbound ensemble of protein conformations. In other
words, a population shift towards the conformations stabilized by the
ligand is observed upon the ligand binding event [2]. How can we eval-
uate this population shift that takes place in biomolecular recognition
from a conformational ensemble that could be either generated by a
MD trajectory or from a set of experimentally determined structures?
MD trajectories contain a large amount of information thatmay obscure
conformational changes relevant for function and rational drug design.
Several methods were proposed with the aim to reduce the amount
of MD trajectory data and analyze collective motions in proteins
[111–113]. The concept of “essential dynamics” introduced by
Berendsen and coworkers symbolized one of the first popular ways of
extracting themost relevant motions frommolecular dynamics simula-
tions [114]. In essential dynamics, the conformational space is divided
into different subspaces, the “essential” subspace that contain the rele-
vant collective degrees of freedom or principal components of protein
motion, and the remaining space. In general, principal component anal-
ysis (PCA) is a tool to extract the most important motions of a protein
conformational ensemble and it is frequently used to describe impor-
tant conformational phenomena [115,116]. In the case of molecular
dynamics simulations, the complex motions associatedwith anMD tra-
jectory are split into just a few variables giving an idea of the regions of
the conformational space sampled during theMD simulation. Thus, it is
a useful tool to study conformational selection by assessing a shift on the
equilibrium distributions of ligand bound and unbound receptors. Sinko
and coworkers made use of PCA to study the population shift mecha-
nism in changing the equilibrium towards other conformations upon
inhibitor binding in the UPPS enzyme. As we have mentioned above, a
considerable expansion of the active pocket size is observed in UPPS
upon binding of bisphosphonates inhibitors, which stabilize open struc-
tures that are only occasionally sampled conformations in the apo-
simulation [85]. Thus, a shift in the populations towards a markedly
different conformation was observed in the bisphosphonate bound
UPPS structures. PC analysis shows howafter the binding event the pop-
ulations are shifted from the center of PC plot corresponding to the apo
structure towards other regions of the conformational space (see Fig. 5
in reference [85]). Principal component analysis of the MD trajectory
showed that inhibitors recognize different sets of conformations,
which can vary significantly between families of ligands.

The principal component space can also be built froma set of NMRor
crystal structures in order to discern between different conformational
states associated with different substrates or inhibitors bound to the
receptor. Fig. 4 shows the PCA of some of the E. Coli UPPS crystal struc-
tures available [70]. The analysis of the principal components clearly
separates the three binding conformations of UPPS: substrates are
bound to closed structures, non-bisphosphonate inhibitors belong to
the group of slightly open conformations, and bisphosphonates are
part of the widely open conformational states. It can be seen that the
apo-crystal structure also belongs to the ‘ajar’ group of crystal struc-
tures, which suggests that non-bisphosphonate inhibitors require less
energetic costs to accommodate the ligand, because the equilibrium
distribution is not strongly shifted from the apo structure. Open and
ajar crystal structures were used as UPPS receptor structures in virtual
screening that led to the discovery of new inhibitorswith potent activity
in cells and animal models [70].

The principal component space built from the available crystal or
NMR structures can be used in conjunction with molecular dynamics
simulations to assess the conformational space explored during the
MD trajectory and to compare the population shift of ligand-bound
trajectories with respect to experimentally obtained structures. The
extraction of the most relevant motions may also reveal new binding
or allosteric sites. Multidimensional nuclear magnetic resonance and
other advanced experimental techniques have been used to demon-
strate the predominance of the conformational selection mechanism
in a wide range of proteins [2]. From the computational perspective,
the role of conformational selection in the formation of ligand–receptor
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complexes can be studied through molecular dynamics simulations by
evaluating how the equilibrium distribution is shifted towards different
distributions in the ligand-bound receptor simulations compared to the
unbound receptor trajectory. Grant and coworkers used this methodol-
ogy to study conformational selection in G-proteins [117]. In particular,
they focused their attention on the activation mechanism of Ras and
Rho G-proteins through GTP binding that was traditionally described
in terms of induced fit theory. To this end, they performed a series of
conventional and accelerated MD simulations of free Ras and Rho pro-
teins. Interestingly, free-nucleotide aMD simulations sampled multiple
conformations, including regions populated by GTP and GDP crystal
structures. These results show the ability of unbound G-proteins to
interconvert between different conformations in the absence of a ligand.
On the other hand, the conformational space explored by GTP and GDP
aMD simulations was found to be more restricted to the region of avail-
able nucleotide-bound crystal structures. The influence of correlated
motions in the aMD simulations was also studied by means of correla-
tion diagrams that provide information about significant correlatedmo-
tions between residues. These results predicted the coupling between
nucleotide-site and theC-terminus via highlyflexible Loop 3, suggesting
that Loop 3 may represent a potential allosteric site present in G-
proteins. PC analysis helped to classify the ensemble of structures in
terms of the most important motions and to assess the enhanced sam-
pling obtained by aMD. Then, MD trajectories are useful to connect
these low-energy regions by describing the transitions between them.
This information is useful for structure-based drug design because it
can help to group the most relevant structures for drug discovery.

7. Selection of biologically relevant structures for
ensemble-based methods

An intrinsically dynamic receptor samples a substantial number of
conformations, but only a subset of them are stabilized by the ligand
upon binding, producing a shift of the population towards the confor-
mations that favor binding. Consequently, it is of great importance to
find ways of extracting these biologically relevant conformations from
Fig. 4. Principal component analysis. PCA build with E. coli UPPS crystal structures. Substrate b
inhibitors in red are in slightly open conformation; bisphosphonate inhibitors in blue are cryst
amolecular dynamics trajectory in order to identify the best set of struc-
tures to use in virtual screening. One option is to pick MD snapshots at
regular time intervals from theMD trajectory. However, all proteins dis-
play different flexibility patterns and binding properties that vary with
time and have an impact on the formation of favorable receptor–ligand
complexes. The regular extraction of frames may contain redundant in-
formation and may not reflect the variety of the ensemble. Clustering
techniques have been proven to be useful for generating representative
structures for virtual screening [88,118]. Among the variety of clustering
techniques, particularly popular is the RMSD-based clustering that
groups structures from the MD trajectory based on mutual structure
similarity criteria. The idea behind clustering is to avoid the loss of en-
semble information that may otherwise be lost in the selection of single
snapshots. To identify relevant conformations, subsets of representative
coordinates are chosen for the RMSD-based clustering calculation. For
example, relevant binding conformations can be captured using the
set of residues that embrace the binding site. More general information
about the proteinmotions can be obtained using all alpha carbons of the
protein of interest. Other ensemble selection methods have been pro-
posed such as the QR-factorization technique, which relies on the
reordering of the redundant data in terms of increasing linear depen-
dence [88,119]. In a recent example, Durrant et al. ran MD simulations
of the drug target Uridine Diphosphate Galactose 4′-Epimerase found
in Trypanosoma brucei and involved in the African sleeping sickness
[120]. They successfully applied RMSD-based clustering of the active
site that led to the identification of 14 low-micromolar inhibitors with
an impressive hit rate of 62%. A total of 24 cluster structures were
used in combination with the AutoDock Vina docking scoring function
[121] and a population-weighted ensemble-based docking score to
rank the compounds obtained from the screening of theNational Cancer
Institute Diversity Set II.

The same protocol was used by Durrant et al. to rationally design
inhibitors for the anticancer and antibacterial drug target farnesyl
diphosphate synthase (FPPS) [122]. Bisphosphonates are known to
tightly bind the active site of isoprenoid biosynthesis diphosphate
synthases such as FPPS and UPPS, two enzymes that work in series in
ound structures in yellow are closed; apo (PDB ID code 3QAS) and non-bisphosphonate
allized in open conformations.
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Fig. 5. Binding sites of UPPS. Site 1 (substrate site) and sites 2–4 are binding sites where
inhibitors can bind. Bisphosphonates can bind to all sites as shown in PDB ID code 2E98.
All of these sites were predicted by FTMAP to be druggable.
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the same pathway. As bisphosphonates present several undesired fea-
tures due to their high polarity, it is strongly desirable tofind alternative
compounds for these interesting drug targets. To achieve this, Durrant
and coworkers made use of the relaxed complex scheme, with an MD
structure-based ensemble of protein conformations, to identify low-
micromolar non-bisphosphonate inhibitors for FPPS. In 2010, several
non-bisphosphonate inhibitors that bind to a FPPS allosteric site were
identified to block the synthesis of farnesyl diphosphate [123]. In a re-
cent publication, Lindert and coworkers identified, bymeans of RCS vir-
tual screening protocol, a number of leads for non-bisphosphonate
inhibitors that target the allosteric site of FPPS [124]. These compounds
are classified as bisamidines and are chemically different from the com-
pounds found to target the active site of FPPS [122]. As we have seen
above, the best scoring receptors for some compounds were obtained
from MD structures. NMR and X-ray crystallographic structures may
not reveal allosteric sites that are less conserved due to protein dynam-
ics. MD simulations in combination with clustering techniques can
overcome this limitation, generating conformations where allosteric
sites are well defined providing an enrichment in the virtual screening
process. Interestingly, some of the compounds found by Durrant et al.
[122] and Lindert et al. [124] also bind and inhibit UPPS, opening up
the possibility of developing dual FPPS/UPPS inhibitors that target iso-
prenoid biosynthesis in bacteria, which may help to tackle future prob-
lems associated with drug resistance.

8. Mapping of druggable binding sites

One of the first steps in structure-based drug design is to identify
where a drug could possibly bind. The most common targeted sites
are: active sites, allosteric sites, and protein–protein interaction sites
[125,126]. These binding sites present different features, shape and
dynamics that sometimes make them difficult to target. A growing
number of promising allosteric drugs are showing that structure-
based drug design efforts can usefully go beyond the active site region
of the protein of interest. Some of these allosteric compounds exhibit
higher target specificity or reduced toxicity and, thus, they also open
the way for the exploration of new regions of the chemical space
[127]. Allosteric effects are often related to protein conformational
changes induced by a population shift between conformational states
that belong to the conformational ensemble and, thus, allosteric sites
may not be evident from theunboundX-ray crystal structures. The tran-
sient character associated with allosteric pockets make them difficult to
predict when no bound crystal structure is available. Thus, it is impor-
tant tofindmethods that account for proteinflexibility in order to reveal
druggable binding sites on the protein surface that are not evident on
the initial structure. Ivetac and McCammon described a protocol to
identify druggable binding sites that takes into account the receptor
flexibility by means of molecular dynamic simulations [128]. MD simu-
lations are used to sample multiple protein conformations and also for
identifying novel structures different from the experimental structure,
some of which may expose druggable binding sites not observed in
the initial conformation. Once the MD ensemble was generated, the
most representative conformations were selected using a RMSD-based
clustering method. Then, they performed solvent mapping analysis on
each structure obtained from the MD ensemble using the FTMAP algo-
rithm developed by Vadja and coworkers (http://ftmap.bu.edu) [129].
In the FTMAP algorithm, a set of small probe molecules corresponding
to drug fragments is docked to the protein surface using empirical scor-
ing functions in order to identify the so-called “consensus sites” that are
represented by the accumulation of probes in certain regions of the pro-
tein surface and could be associated with potential druggable binding
sites. In addition, residues can be ranked according to non-bonded
interactions with probe molecules in order to identify the most favor-
able binding sites.

Ivetac and McCammon used this method to identify potential allo-
steric binding sites on the protein surface of two well-known GPCRs,
β1 and β2 adrenergic receptors. The combination of an ensemble of 15
MD receptor structures and surface mapping analysis led to the detec-
tion offive potentially druggable allosteric sites onβ1 andβ2. The results
were compared with available experimental data to confirm the exis-
tence of these druggable pockets. Two sites were found to be solvent-
exposed corresponding to the extracellular and intracellular mouths of
the GPCR. The extracellular site coincides with a well-known region of
allosteric-binding activity, which may block the entrance of ligands to
the orthosteric site of GPCR. Then, the other three pockets were found
in the lipid–protein interface. Particularly interesting is the site that
corresponds to the cholesterol-binding site, which has been found to
be important to stabilize distinct states of β2-AR and may be important
from the structure-based drug design perspective. GPCR activity can be
regulated through allosteric modulation; the identification of potential
allosteric sites on GPCRs without the knowledge of crystal structures
opens the way towards the identification of new therapeutic agents
for such important drug targets. In another illustrative example, Zhu
and coworkers used a similar protocol to identify potential binding
sites on their study of undecaprenyl diphosphate synthase (UPPS), a po-
tent antibacterial drug target [70]. The variety of inhibitor-bound crystal
structures shows four different binding sites on the UPPS surface. In the
case of bisphosphonate structures, the substrate site (site 1 in Fig. 5)
is always occupied. Surprisingly, the most potent inhibitors were
found to bind in site 4, which is quite far from the flexible region
of the substrate site. Interestingly, it is the site where potent non-
bisphosphonate inhibitors are mainly bound. All of these sites were
also predicted to be druggable by solvent mapping program FTMAP.

9. Accounting for receptor flexibility in the estimation of
binding affinities

Once the conformational ensemble, containing the most relevant
and predictive structures for virtual screening, is defined for the differ-
ent binding sites that one wants to target, the focus is shifted to how
one can predict reliable binding affinities to rank and predict the most
suitable compounds for interacting with each drug target. The level of
accuracy of the prediction of binding affinities will depend on the
stage of the drug design process. For instance, in the lead-optimization
stage where accurate binding affinities are necessary, alchemical free
energy methods are one of the most precise choices, while in the
early-stages of drug discovery dockingmethods combined with scoring
functions are of great use to rank large libraries of chemical compounds

http://ftmap.bu.edu
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and reduce the search space because of their simplicity and speed. All of
these methods contribute in different capacities to the identification
and design of new candidate compounds. It is of great importance to
understand the current limits of applicability and different sources of
error in the estimation of binding affinities; several reviews extensively
discuss the best practices in virtual screening and free energy calcula-
tions with particular focus on rational drug design [60–63,130,131]. In
this section, we will briefly discuss the inclusion of receptor flexibility
in the estimation of binding affinities using different methods. Protein
flexibility and receptor conformational changes upon binding strongly
affect the calculation of ligand-binding affinities and, consequently,
the predictive power of virtual screening.

Docking methods in combination with scoring functions are used for
defining rankings of compounds based on specific bindingmodes and af-
finities by performing three-dimensional searches of the best ligand pose
and using a wide spectrum of different scoring algorithms [58,121,132].
One of the reasons for the relative speed of dockingmethods is that often
a rigid receptor conformation is used, in a way that the ligand just needs
to be accommodated in a fixed structure. However, docking and scoring
functions can account for receptorflexibility in differentways [133–135].
As we have seen, an indirect way is to use a receptor ensemble where
different conformations of the active site are included [88]. Using tech-
niques such as soft docking, or the softening of van derWaals potentials,
that allow for certain overlap between the ligand and the receptor, one
can also introduce some flexibility [136,137]. The main drawback of
thismethod is that itmay increase the rate of false positives, and theflex-
ibility of the receptor is not fully taken into account. On the other hand,
some docking algorithms have been developed to explicitly account for
protein flexibility in the estimation of binding modes and affinities. A
few of them allow selected side chains to rotate and account partially
for the receptor flexibility in the active region [138]. A different approach
is introduced by inducedfit docking algorithms,where the inducedfit re-
arrangements associated with ligand binding are also considered in the
docking procedure [139,140]. However, it is still a challenge to predict
large conformational changes that may lead to different binding
modes. Rosetta Ligand offers a different perspective on ligand docking
by accounting for both receptor and ligand flexibility during the docking
stage [141]. Currently, this method allows for full protein backbone and
side-chain flexibility [142]. Finally, there are also strategies used to
account for conformational selection in ligand docking, where methods
used for the prediction of protein–protein interactions are combined
with ensemble-based docking methods [19]. The study of docking and
scoring functions that account for receptor flexibility is an active field
in constant evolution and to improve the performance and transferabil-
ity of scoring functions among different systems is one of themajor chal-
lenges of current research. The description of large-scale conformational
motions is still challenging andmay represent a step forward for docking
techniques. In summary, accounting for receptor flexibility in docking
protocols often improves the prediction of binding affinities that may
lead to the selection of more adequate compounds for experimental
validation.

Docking methods have been shown to be extremely useful to sort
out a large number of chemical compounds and identify potential hits
in the very first stages of structure-based drug design processes, when
a large high-throughput virtual screening of large libraries of com-
pounds is performed. Once the initial hits are confirmed by experi-
ments, some of the chemical features of these compounds are
finely tuned up to improve binding affinities in the so-called lead-
optimization stage. Scoring methods are still quite limited beyond the
hit identification phase, but may be used to visualize the binding
mode associated with small compound modifications. Thus, less
approximate andmore robust techniques are needed for further refine-
ment of the prediction of binding affinities for potential drug candidates.
An intermediate method between the efficiency of docking and the
accuracy of free energy perturbations (FEP) and thermodynamic inte-
gration (TI) methods are the molecular mechanics/generalized Born
surface area (MM/GBSA) [143] and the molecular mechanics/Poisson–
Boltzmann surface area (MM/PBSA) [144]. These methods, that try to
find the balance between efficiency and accuracy, consist of calculating
binding free energies frommolecularmechanics force fields and contin-
uum solvent models. In contrast to alchemical free energy calculations,
only the states corresponding to the ligand bound andunbound are sim-
ulated using MD. To improve the accuracy of the method, binding free
energies are averaged through multiple conformations. These tech-
niques fail to achieve convergence when large conformational changes
are observed in protein dynamics and then, multiple conformations or
MD snapshots are required. However, the calculation of the entropy
term becomes remarkably costly when the number of conformations
taken into account increases, which prevents its application. Then, this
method may suffer from insufficient sampling in some cases due to
difficulties in achieving convergence. Some truncation methods have
been proposed to reduce the computational cost using a certain cut-
off [145]. Other alternatives are focused on just taking into account
the protein–ligand MD simulation, reducing computational cost but
this does not account for conformational changes in the free and
bound receptor [146]. In a recent example Rastelli et al. used a single-
energy minimized ligand–receptor complex in MM/GB(PB)SA to
successfully estimate binding free energies of a set of inhibitors of
Plasmodium falciparum DHFR [147]. Both MM/GBSA and MM/PBSA
exhibited good correlations with experimental values and with binding
affinities obtained after averaging over multiple MD snapshots. The ac-
curacy of MM/PBSA was found to be higher than that of MM/GBSA for
the calculation of absolute binding free energies but the performance
was similar for relative free energy calculations [148].

In the lead-optimization phase, it is of great importance to under-
stand the relative differences between binding affinities of related
ligands to the same drug target. Currently, the most accurate ways of
computing relative binding free energies are the FEP and TI techniques
[61]. In contrast to endpoint techniques, FEP and TI belong to the
group of pathway methods, where the system is transformed from
one state to the other by means of alchemical changes introduced to
the Hamiltonian in combination with MD or Monte Carlo simulations
in explicit solvent water molecules. These methods rely on the defini-
tion of a thermodynamic cycle to calculate absolute or relative binding
free energies [149]. Alchemical transformations between two states
are possible with the fine-tuning of ligand–receptor interactions. Free
energy differences can be calculated between the bound and unbound
states of the ligand and its receptor, however, alternate cycles can be
defined to account for free energy of solvation or relative binding free
energy between two ligands. Using FEP, Bollini and coworkers were
able to optimize a number of docking hits to obtain potent anti-HIV
inhibitors with EC50 values in the range of 55 to 320 pM in human
T-cells [150]. Further chemical modifications of these inhibitors pro-
posed by means of FEP calculations have been shown to improve the
solubility and activity against other HIV variants with respect to pre-
viously approved FDA drugs. However, alchemical free energy calcu-
lations are associated with an elevated computational cost because
they require sufficient sampling to obtain suitable overlap between
the phase space of the successive states of the reaction coordinate that
connects the initial and final states. Consequently, to achieve conver-
gence of free energy calculations, it is of great importance to sufficiently
sample the conformational changes that the system undergoes under
alchemical conditions, as well as converge the energy of those confor-
mations, which can require large amounts of sampling. Since the
value of the binding free energy relies on sampling, all simulations
will be different, leading to different values. This problem can be partial-
ly offset by runningmultiple independent simulations to get better sta-
tistics and an estimation of the error. For instance, methods such as the
independent-trajectory thermodynamic integration (IT-TI) that take
into account multiple independent simulations have been used to cal-
culate accurate relative binding free energies for some inhibitors of
the H5N1 avian influenza virus neuramidase [151]. Alchemical free
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energy methods are accurate but time consuming and the analysis of
several ligands that bind to the same receptor still requires large
amounts of computational time. Additionally, the best accuracy is
often achieved within a congeneric series of compounds. Enhanced
samplingmethods can be used to address the sampling limitation asso-
ciated with free energy calculations by exploring the free energy land-
scape more effectively, as discussed below.

Biomolecular recognition is an intricate process that takes place in a
series of orchestrated ligand and receptor motions and conformational
changes. In this conformational dance, the ligand acts to selectively
pick some preexistent receptor conformation, which leads to the stabi-
lization of certain conformations. Consequently, it is crucial to identify
the conformations that will improve the estimation of binding affinities.
As we have seen above, enhanced sampling techniques perform
remarkably well to rapidly identify low energy configurations. If these
methods are combined with existent alchemical free-energy methods,
the convergence of these calculations may be more quickly achieved,
decreasing computational cost as well as making free energy methods
more applicable for the rational drug design process [52]. Accelerated
molecular dynamics have been applied in a number of different
ways to free-energy calculations. To overcome the issues related to
reweighting and improve free-energy convergence, Oliveira and
coworkers proposed the upside down aMDmethod [152]. This method
makes the energy barriers more accessible by lowering high-energy
barriers and keeping low-energy configurations unchanged. This tech-
nique improves population statistics of low energyminima,while accel-
erating the transition between energy barriers and facilitates the
exploration of the conformational space. However, when the system
of interest has a large number of degrees of freedom and a complex
free energy landscape themethod is difficult to parameterize. To extend
the application of the upside down approach to biomolecules, Sinko
et al. proposed what they called windowed aMD [153]. This method
requires more parameters than original aMD, but has been shown to
achieve a rapid convergence of free energy calculations. However, the
improvement in reweighting efficiency stemmed from the frequent
transitions between the normal potential energy surface and the modi-
fied potential energy surface. These transitions can be harder to param-
eterize with increasing system complexity, but windowed aMD was
successfully used to calculate binding free energies between the antibi-
otic vancomycin and two small glycopeptide-binding partners. Finally,
one of the main sources of error associated with reweighting is the
level of acceleration and the size of the system. Selectively applied
aMD restrains the acceleration to only a portion of the system, more
precisely, to a set of predefined dihedral angles in order to overcome
the issues associated with reweighting [105]. Free energy calculations
on the decoupling of oseltamivir's binding to neuromidase were per-
formed for a set of twenty dihedrals. However, while this technique pro-
vides a better statistical recovery it requires the manual selection of
dihedral angles that are important for the biomolecular recognition
process.

10. Conclusions

Over the last decades, several biomolecular recognitionmechanisms
have been proposed that try to explain how ligand binding occurs and
how such a binding event triggers a set of responses in the receptor. Pro-
teins are inherently flexible bodies displaying a wide range of motions
that span from local side-chain rotations to global conformational
changes. In the course of this permanent motion, proteins are capable
of adopting multiple conformations generating an ensemble of struc-
tures that may accommodate a wide variety of ligands. In the frame-
work of the conformational selection mechanism, during the process
of biomolecular recognition some of these conformations are selectively
stabilizedwhen the ligand binds to a specific binding site of the receptor
and, thus, such conformations are particularly relevant for structure-
based drug design. Ensemble-based screening methods aim to account
for receptor flexibility, helping to improve the predictive power of
receptor-based drug discovery. However, an extensive set of crystal
structures of different and relevant conformations of the bound and
unbound receptor is only available for a very limited number of pro-
teins. The computational techniques that we have described in this
review offer a way to extensively explore the conformational space of
proteins and can help to identify biologically and pharmacologically rel-
evant states that are difficult to trap with experimental techniques. The
allowance for receptor flexibility improves the accuracy of algorithms
used to estimate binding affinities between a potential therapeutic
drug and its target. Methods that efficiently explore the conformational
space and techniques that provide accurate and fast calculation of bind-
ing affinities are important to improve the predictive power of virtual
screening protocols. In addition, accounting for receptor flexibility also
can aid in the identification of cryptic binding sites thatmay remain hid-
den in the unbound receptor structures. This is of particular interest for
recognizing potential allosteric sites. Allosteric transitions open a new
broad range of possibilities in the field of drug design. Thus, the identi-
fication of allosteric sites is of paramount importance towards the dis-
covery of new drugs that can target such relevant allosteric pathways.
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