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Hybrid approaches: applying computational methods in
cryo-electron microscopy
Steffen Lindert1,3, Phoebe L Stewart2,3 and Jens Meiler1,3
Recent advances in cryo-electron microscopy have led to an

increasing number of high (3–5 Å) to medium (5–10 Å)

resolution cryoEM density maps. These density maps contain

valuable information about the protein structure but frequently

require computational algorithms to aid their structural

interpretation. It is these hybrid approaches between

cryoEM and computational protein structure prediction

algorithms that will shape protein structure elucidation from

density maps.
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Introduction
Cryo-electron microscopy (cryoEM) can provide import-

ant structural information about proteins of unknown fold

and relative arrangement of proteins of known folds

within large macromolecular assemblies such as viruses

[1,2�,3]. Medium resolution (5–10 Å) cryoEM density

maps reveal positions of a-helices [2�], while near atomic

resolution (3.8–4.5 Å) resolution maps can reveal b-sheets

and large, aromatic side chains in space [3]. In addition,

near atomic resolution cryoEM density maps can allow

tracing of the protein backbone chain and provide

restraints for computational atomic detail refinement

techniques [3,4��]. Here we review computational

methods that have been applied to interpret cryoEM

density maps and seek to organize newly emerging meth-

odologies with respect to the specific research tasks they

address. In the context of cryoEM guided computational

protein structure prediction, there are three main com-

putational components: residue-based secondary struc-

ture prediction and identification of secondary structure
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elements, determination of the protein fold, and atomic

detail structure refinement.

Secondary structure prediction algorithms use machine-

learning techniques like artificial neural networks

(ANNs) or hidden Markov models (HMMs) to predict

secondary structure, usually as three-state probability

(helix, strand, and coil) for every residue in the primary

sequence of the protein. State-of-the art techniques like

jufo [5,6], psipred [7], and sam [8,9] have been demon-

strated to achieve accuracies of up to 80%. Determination

of secondary structure elements (SSEs: a-helices and b-

strands) from the residue-based predictions is an import-

ant aspect in interpreting cryoEM density; however, it

receives only modest attention in the computational

structure prediction field. In order to compensate for

prediction inaccuracies from any one method, we have

developed a consensus prediction protocol in which resi-

due-based predictions are combined and averaged over a

sequence window (S Lindert et al., unpublished).

Protein fold or topology prediction algorithms determine

the three dimensional arrangement of the amino acids

from the sequence of the protein. Two major approaches

have to be considered: comparative modeling of a tem-

plate structure and de novo protein structure prediction in

the absence of a template. Since 1994, a community-wide

blindfold experiment CASP has been carried out bi-

yearly to allow these algorithms to be tested on proteins

whose structure was already solved but not yet published

[10]. Over the course of the last experiments the program

ROSETTA has been identified as one of the most successful

de novo protein structure prediction algorithms [11]. How-

ever, even if the correct topology is identified, the pre-

diction will still be off by about 5 Å RMSD to the native

structure. De novo computational structure prediction

methods can be applied to soluble proteins smaller than

about 180 amino acids in size with success rates of about

50% [11,12]. Successful comparative modeling programs

include ROSETTA [13,14] and MODELLER [15–17] among

others and achieve models of 2–5 Å RMSD depending on

the similarity between template and target structure.

Atomic detail refinement techniques are used to add side-

chain coordinates (e.g. using SQWRL [18]) and improve

the medium resolution structures produced by compara-

tive modeling or de novo prediction to less than 2 Å RMSD

to native in favorable cases. These algorithms use higher

resolution energy functions and finer grained sampling

techniques. For these algorithms to be successful, the
www.sciencedirect.com
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Figure 1

Overview of current hybrid approaches between cryoEM and computational protein structure prediction algorithms. Computational algorithms that

work on cryoEM density maps can be divided into three main classes: (I) The first class of algorithms fits structures into cryoEM density maps. These

may be (A) high resolution experimental structures (X-ray crystallography, NMR) or (B) computationally built models (de novo models from, for

example, ROSETTA or comparative models created with, for example, MODELLER). (II) Algorithms that analyze the density map itself. (C) SSEHUNTER and

HELIXTRACER both attempt to identify regions of the cryoEM density map that correspond to secondary structure elements. (D) The skeletonization

algorithm described in [42] builds skeletons of the density map and can be used to trace the backbone of high resolution density maps. (III)

The third class of software uses cryoEM density maps as experimental restraints in de novo protein structure (E) prediction (EM-Fold) and (F)

refinement (ICM).
starting structure has to be sufficiently close to the native

conformation. Typically side-chain and backbone degrees

of freedom need to be optimized in an iterative cycle of

rapid side-chain repacking, larger scale backbone pertur-

bations, and gradient minimization [19]. It has been

demonstrated that in a few favorable cases computational

algorithms can refine de novo models of small proteins (size

40–90 amino acids) to atomic detail (<2 Å RMSD) [20��].
Atomic detail comparative models can be built for much

larger proteins if a suitable template structure exists.

Figure 1 gives an overview of the most notable hybrid

approaches between these computational protein struc-

ture prediction methods and cryoEM.

Fitting of crystal structures and computational
models into cryoEM density maps
In the presence of a crystal structure or a complete model

of the target protein a direct fit into cryoEM density maps

is possible. The most frequently used fitting methods

employ a six dimensional search (three translational and

three rotational degrees of freedom) of the rigid-body

model in the density map [21]. Use of a Fast Fourier

Transformation (FFT) accelerated translational search is

implemented in state-of-the-art algorithms such as COL-

ORES [22�]. Recently (N Wötzel et al., unpublished)

reported a fitting method based on a geometric hashing

algorithm that proved to be faster than traditional fitting

methods. In addition even with shorter computational

times, the hashing procedure identified more symmetry

related positions and independent repeating units within

an experimental cryoEM density map. Agreement of

positioned model and density map is determined by a
www.sciencedirect.com
cross correlation coefficient [23]. Frequently flexible fit-

ting algorithms are used to fit and adjust high-resolution

structures to optimally fit into EM density maps. Pro-

grams such as S-FLEXFIT [24,25] are suited for medium

resolution density maps, while algorithms using normal

mode analysis (NMA) [26] are tailored toward low resol-

ution density maps. Even though the structures them-

selves are perturbed during the fitting, the main focus of

these algorithms is the optimal fit with the density map.

An example of using fold recognition in cryoEM is SPI-

EM [27] that identifies the superfamily that a protein

belongs to from its density map using CATH. Topf et al.
demonstrated that comparative models may be ranked in

terms of their accuracy by fitting them into a cryoEM

density map [28]. The authors then went on to develop an

iterative protocol that improves comparative models by

optimizing their agreement with the cryoEM density

maps [29�]. These methods require the presence of a

comparative model but have the advantage that no SSEs

or even backbone trace have to be identified from the

density map.

The authors in [30�] compared ROSETTA de novo predicted

structures with the 8.5 Å resolution cryoEM density map

of the herpes simplex type 1 capsid. They were able to

rank the agreement of the model with the map by using a

two-way distance measure. The model for the virus

structural protein VP26 that agreed best with the density

exhibited a new fold (see Figure 2a–c). This approach

eliminates the need for a comparative model, which in

many cases is not readily available. One drawback is,

however, that the density map is only used as a filter of de
Current Opinion in Structural Biology 2009, 19:218–225
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Figure 2

Two different approaches of using cryoEM density maps in conjunction with computational algorithms. Panels (a) through (c) show how a

computational model of VP26 is superimposed with the segmented experimental density [30�]. Here the cryoEM density map is used as a filter

for de novo protein models. (d) Example from [41��] of segmented cryoEM density (gray) and the skeleton that SSEHUNTER built for the density

(red). (e) In certain cases the skeleton can approximate the backbone trace of a protein. Panels (d) and (e) are reprinted from [41��], with

permission from Elsevier.
novo models and the density does not guide the folding

step. Therefore, this method relies on ROSETTA to fold the

protein correctly de novo, which works in favorable cases

for proteins with up to 180 amino acids [31].

Computational algorithms to identify
secondary structure elements in medium
resolution density maps
Density maps begin to reveal a-helices at about 10 Å

resolution, b-sheets at about 5–7 Å resolution, and large

side chains at about 3.0–4.5 Å resolution [3,32]. Several

programs provide an alternative to manual identification

of these SSEs. The HELIXHUNTER program was initially

developed in 2001 and uses segmentation and feature

extraction to identify a-helix positions, orientations, and

lengths [33]. HELIXHUNTER has been successfully applied
Current Opinion in Structural Biology 2009, 19:218–225
to identify nine a-helices in the 6.8 Å resolution density

map of rice dwarf virus outer capsid shell protein P8

[34,35]. In order to identify a-helices, EMATCH [36,37]

employs a method very similar to HELIXHUNTER exploit-

ing the fact that a-helices generally are observed as

continuous, long, thin, and highly dense cylindrical

regions. A third available algorithm that focuses on the

reliable identification of a-helices in medium resolution

density maps is called HELIXTRACER and utilizes gradient

analysis to recognize and classify volumes in density maps

[38]. Dal Palu et al. noted significant improvements in

recognition and precision over the HELIXHUNTER

software.

Tools such as SHEETMINER [39] and SHEETTRACER [40]

have been developed for detecting b-sheets in density
www.sciencedirect.com
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Figure 3

Computational de novo protein structure prediction with the cryoEM

density map as a folding restraint. EM-Fold was used to build

computational models into an experimental cryoEM density map of

human adenovirus protein IIIa at �6 Å resolution (S Lindert et al.,

unpublished). (a) A preliminary reduced model of protein IIIa where only

helices that have been placed with at least 60% confidence are colored

in rainbow. (b) Same as in (a), but shown in density. (c) Side view of

preliminary reduced model of protein IIIa (rainbow) in contact with

penton base (yellow) and two peripentonal hexons (light blue).
maps. The desire to have a single tool capable of identify-

ing both a-helical and b-sheet regions led to the devel-

opment of the program SSEHUNTER [41��]. This algorithm

uses density skeletonization (see Figure 2d,e), local geo-

metry calculations and a template-based search to identify

SSEs in medium resolution density maps.

Skeletonization algorithms help to trace the
backbone in higher resolution cryoEM density
maps
Density maps at medium resolution (5–10 Å) do not

contain sufficient information to unambiguously trace

the backbone of the protein from the map. On the

contrary, high resolution density maps (<3 Å) can contain

enough detail to trace the backbone, as is routinely done

in X-ray crystallography. In the intermediate resolution

range (4–7 Å) a density map may contain valuable infor-

mation in the loop regions that can guide model building.

The connections between identified SSEs may be clear in

some areas of the density map and not evident in other

areas. The skeletonization algorithm in SSEHUNTER

[41��] computes skeletons of volumetric data by alterna-

tion between a thinning and a skeleton pruning routine

[42]. The authors in [43�] used a combination of SSE-

HUNTER and this skeletonization algorithm to trace the

backbone of a �4 Å resolution density map of GroEL.

Using a-helix positions in the density map to
build models of proteins promises best results
Membrane proteins are frequently only resolved to med-

ium resolution. On the basis of the surface charge and

evolutional variability of their lipid-exposed faces,

Fleishman et al. developed an algorithm [44] that can

correctly orient transmembrane helices within the

density rod.

We have developed an approach called EM-Fold that

uses a Monte Carlo sampling strategy to build and refine

protein topologies into intermediate resolution cryoEM

density maps (of soluble proteins) where a-helices are

resolved as density rods (S Lindert et al., unpublished).

The first step is to identify density rods that are likely to

be a-helices in a medium resolution density map (5–
10 Å). Then a pool of predicted a-helices is used as

input to a de novo folding algorithm. A novel feature of

EM-Fold is that a-helices are only placed in positions

where density rods were identified, thus constraining

and guiding the de novo model building process. The

density map is used as a restraint during the initial

assembly stage and not just as a post-sampling filter

as in other approaches. This decreases the confor-

mational space that has to be sampled considerably

and ensures that the final models agree with the density

map. Missing loop regions are added and final models

are refined using ROSETTA. In a benchmark with 10

proteins of size 250–350 amino acids the algorithm

identified the correct topology in 70% of the cases
www.sciencedirect.com
and showed that the limiting factor was incorrect sec-

ondary structure prediction. A partial model of human

adenovirus protein IIIa was built by assembling pre-

dicted helices into the experimental density rods (see

Figure 3).

High resolution refinement guided by EM
density maps
High resolution refinement techniques can also be guided

by EM density maps. This was impressively shown in

[4��], where the prediction of atomic detail structures of

helical proteins was aided by simulated EM maps (see

Figure 4). The authors assume that a medium resolution

density map of a transmembrane helical bundle is avail-

able and that helical segments are known (see Figure 4).

By a three stage process that included (1) flexible fitting of

helices into density rods, (2) optimization of side chains,

and (3) further refinement of lowest-scoring confor-

mations, Kovacs et al. were able to achieve RMSD values

between 0.9 and 1.9 Å for their test cases GpA, KcsA, and

McsL.

Other notable examples for high-resolution refinement in

EM density maps are real space refinement algorithms
Current Opinion in Structural Biology 2009, 19:218–225
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Figure 4

High resolution de novo protein structure refinement guided by EM density maps. Benchmark of the high resolution refinement protocol in ICM [4��]. (a)

A density map was simulated from the NMR structure of Glycophorin A (GpA). (b) A tethering map was derived from the EM map and serves to restrain

the a-helices. (c) A solvent-accessibility map is also calculated. (d and e) Side and top views of the NMR structure (blue) and predicted structure (red).

(f) Closeup view showing the good agreement of the predicted and experimental structures in a helix packing region. (g) Closeup view of a region that

faces the lipid where packing constraints are not present and some of the side chain conformations are not recovered. This figure is reprinted from

[4��], with permission from the Biophysical Society.

Current Opinion in Structural Biology 2009, 19:218–225 www.sciencedirect.com
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such as RSREF [45], FLEX-EM [46], and MDFF [47].

These methods use molecular dynamics to refine the

models and use the density map to guide this refinement.

Conclusion
Future improvements in both cryoEM and computational

protein structure prediction methods are expected. Better

microscopes, higher voltages, more coherent electron

beams and possibly the development of phase plates to

improve image contrast will enhance cryoEM structure

determination. Methods for automated data collection

will be employed more widely, allowing for a substantial

increase in data collection capacity. Advanced image

processing software in combination with computers that

have larger RAM will allow researchers to process data for

larger complexes and with a smaller pixel size, and this

may help to improve resolution. Judging from the recent

determination of near-atomic resolution structures by

cryoEM [43�,48�–50�], we expect that there will be a

number of cryoEM structures determined in the <5 Å

range during the next few years. We also expect the

number of medium resolution structures (5–10 Å) to grow

considerably.

Equally, computational protein structure prediction will

undoubtedly witness many improvements in the near

future. One major external factor that will positively

influence the field will be the elucidation of more

(novel) folds by X-ray crystallography and NMR spec-

troscopy, leading to the availability of better and novel

templates for comparative modeling and the develop-

ment of more accurate knowledge-based energy func-

tions for de novo structure prediction. This will be

particularly true for membrane proteins where only

50 distinct folds have been reported so far [51]. An

increase in computing power will allow for increased

sampling capacity.

Beyond these external developments there will also be

advances in method development in all three fields of

computational protein structure prediction discussed

here. Secondary structure prediction algorithms will prob-

ably be extended to predict transmembrane regions and

secondary structure simultaneously. Also consensus

methods like the one presented in (S Lindert et al.,
unpublished) will improve prediction accuracy and allow

for reliable identification of SSEs. De novo structure

prediction will be extended to larger protein folds by

enhanced sampling approaches and both prediction and

refinement techniques will greatly benefit from the

incorporation of sparse experimental data such as cryoEM

density maps.

Given the current developments, we can confidently

predict that hybrid approaches utilizing both cryoEM

and computational methods will continue to grow in their

power and scope. We expect the biggest impact of hybrid
www.sciencedirect.com
methods in de novo protein structure prediction or refine-

ment algorithms (class III in Figure 1), depending on the

resolution of the cryoEM map.
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