
Structure

Article
EM-Fold: De Novo Atomic-Detail Protein Structure
Determination fromMedium-Resolution Density Maps
Steffen Lindert,1 Nathan Alexander,1 Nils Wötzel,1 Mert Karakasx,1 Phoebe L. Stewart,2 and Jens Meiler1,*
1Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37212, USA
2Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University,

Cleveland, OH 44106, USA
*Correspondence: jens.meiler@vanderbilt.edu

DOI 10.1016/j.str.2012.01.023
SUMMARY

Electron densitymaps of membrane proteins or large
macromolecular complexes are frequently only
determined at medium resolution between 4 Å and
10 Å, either by cryo-electron microscopy or X-ray
crystallography. In these density maps, the general
arrangement of secondary structure elements (SSEs)
is revealed, whereas their directionality and con-
nectivity remain elusive. We demonstrate that the
topology of proteins with up to 250 amino acids can
be determined from such density maps when com-
bined with a computational protein folding protocol.
Furthermore, we accurately reconstruct atomic detail
in loop regions and amino acid side chains not visible
in the experimental data. The EM-Fold algorithm
assembles the SSEs de novo before atomic detail is
added using Rosetta. In a benchmark of 27 proteins,
the protocol consistently and reproducibly achieves
models with root mean square deviation values <3 Å.

INTRODUCTION

In the field of protein structure determination cryo-electron

microscopy (cryoEM) has been established as a viable approach

for studying the structure and dynamics of macromolecular

structure of large protein complexes at near native conditions.

CryoEM is invaluable in cases where alternative approaches

such as X-ray crystallography and nuclear magnetic resonance

(NMR) fail. In recent years, cryoEM density maps have reached

high enough resolutions to provide sufficient detail to trace the

protein backbone (Liu et al., 2010a; Ludtke et al., 2008; Zhang

et al., 2011; Zhou, 2008). More routinely, resolutions <10 Å are

reached that reveal the location of a helices (Cong et al., 2010;

Liu et al., 2010b; Ludtke et al., 2008, 2004; Min et al., 2006;

Saban et al., 2006; Serysheva et al., 2008; Villa et al., 2009). Addi-

tionally, b strands become visible at resolutions around 6 Å.

However, connectivity and directionality of these secondary

structure elements (SSEs) and their alignment with the primary

protein sequence remains ambiguous in these medium-

resolution density maps (5–10 Å resolution)—that is, it remains

unknown which part of the protein’s primary sequence forms

which a helix or which b strand and where the N and C termini

of the helices and strands reside. Computational methods are
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needed to help resolve this ambiguity. Several algorithms that

help identify SSEs in a density map have been published.

a Helices and b strand regions can be identified automatically

by methods using segmentation and feature extraction (Baker

et al., 2007; Dal Palù et al., 2006; Jiang et al., 2001; Kong

et al., 2004). Furthermore, even high-quality medium-resolution

cryoEM maps typically lack information at atomic detail, such

as the conformation of loops and side chains. We explore the

potential of computational methods to aid in the interpretation

of maps by reconstructing structural information that is not

readily visible at the respective resolution.

In the past, numerous experimental techniques have been

successfully combined with computational methods. A combi-

nation of computational algorithms with sparse structural infor-

mation from NMR spectroscopy (Bowers et al., 2000; Meiler

and Baker, 2003b, 2005; Rohl and Baker, 2002) and electron

paramagnetic resonance spectroscopy (Alexander et al., 2008;

Hanson et al., 2008; Hirst et al., 2011) experiments has led to

the construction of protein models that are accurate at atomic

detail. Final models include atomic detail that is beyond the reso-

lution of the experiment because of judicious use of complemen-

tary computational algorithms. A prerequisite for success in this

regard is that the experimental data restrain the conformational

space sufficiently to allow sampling of protein backbone confor-

mations at a distance of about 1–2 Å around the global energy

minimum. As a result, some protein models will have root

mean square deviations (RMSDs) from the correct structure of

<3.0 Å when normalized to a 100 residue protein (RMSD100)

(Carugo and Pongor, 2001). This level of accuracy is sufficient

to construct side chain coordinates in the protein core and

allows discrimination of incorrect protein models on the basis

of inferior energy values (Bradley et al., 2005). Several methods,

such as Rosetta, Modeler, and EM-IMO, can be applied to the

refinement of comparative or hand-traced models guided by

cryoEM density maps (DiMaio et al., 2009; Topf et al., 2006;

Zhu et al., 2010).

Here we demonstrate de novo protein structure determination

to a level with accurate atomic detail using medium-resolution

density maps to restrain the simulation. Our protocol consists

of two steps: (1) determination of protein topology with an

improved version of EM-Fold (Lindert et al., 2009) and (2) refine-

ment to atomic detail accuracy using Rosetta (DiMaio et al.,

2009). These two methods are highly complementary. EM-Fold

differs from Rosetta in that it is tailored toward efficient sampling

of the conformational search space at the cost of somewhat

lower precision in its scoring functions. Its ability to move entire
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SSEs as one element makes it well suited for folding into

medium-resolution density maps. EM-Fold also differs from

other cryoEM map-based model building algorithms such as

SSEhunter (Baker et al., 2007) in that it is essentially a de novo

protein folding tool that uses the cryoEM map as a restraint.

EM-Fold builds topological models for a protein of interest that

agree with the density map and fulfill basic requirements of

protein structure. These models contain only SSEs, no coordi-

nates for loop regions, and no side chains. It was originally

developed to build models of a-helical proteins into medium-

resolution density maps. Here, we present an updated version

of the program that can place both types of SSEs (a helices

and b strands) into the density map. Additional improvements

to the algorithm include better handling of incorrect secondary

structure prediction as well as a more advanced refinement

protocol. EM-Fold models provide a good starting point for the

Rosetta electron density refinement that also constructs loops

and side chains guided by the cryoEM density map. The

performance of the new folding and refinement protocol was

tested on a benchmark set of 20 a-helical and seven b sheet

proteins, 13 of which could be refined to atomic resolution detail.

If SSEs are visible in the maps, this protocol could also be

applied to low-resolution X-ray crystallography maps such as

those obtained recently for several important membrane

proteins (Ward et al., 2007) and macromolecular assemblies

(Sibanda et al., 2010).

RESULTS AND DISCUSSION

EM-Fold determines the topology of a protein through place-

ment of predicted SSEs into a cryoEM density map (Lindert

et al., 2009). It uses a Monte Carlo Metropolis algorithm with

a knowledge-based energy function that builds and refines

physically realistic models that agree with the density map.

The models are constructed from a pool of predicted SSEs.

Model changes applied during the folding simulation include

addition and deletion of SSEs together with swaps and rotations

of these elements. To achieve higher accuracy in the initial

models and aid atomic detail refinement, EM-Fold was extended

to allow bending, translation, and dynamic length resizing of

SSEs. For the models to accurately reflect such detail, the

scoring function was adapted for direct comparison of the

models with the density map. Furthermore, the present protocol

employed a recently added feature in Rosetta that allows

construction of loops and side chains guided by a density map

(DiMaio et al., 2009). This is critical as we have found that accu-

rate construction of the protein backbone in loop regions that

connect SSEs is crucial for successful atomic-level refinement.

Rosetta systematically rebuilds regions of the protein backbone

that agree the least with the density map.

Benchmark Database of 20 a-Helical and Seven b Sheet
Proteins with 150–250 Residues
A benchmark set of 20 a-helical and seven b sheet proteins with

150–250 amino acids was chosen to test the algorithm. The

benchmark was limited to proteins up to 250 residues, as this

provided the desired range of successes/failures demonstrating

the capabilities and limitations of the method. As algorithms

advance and computers become faster, the benchmark should
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be expanded to contain larger proteins. The benchmark set is

primarily composed of a-helical proteins, since these represent

the majority of application cases, as a helices are observed

more readily than b strands at medium resolution. However,

the performance was also tested on seven proteins with

b sheets to demonstrate general applicability. Density maps at

7 Å resolution were simulated for the 20 a-helical proteins.

Density maps at 5 Å resolution were simulated for the seven

b sheet containing proteins. At these resolutions, a helices

and b strands can be unambiguously identified through visual

inspection. Since the maps were simulated at 5 Å (b sheet con-

taining proteins) and 7 Å (a-helical proteins) resolution, respec-

tively, these are considered the resolution limits of the EM-Fold

method. Maps at higher resolution will likely perform at least as

well with EM-Fold, as more features tend to be present in these

density maps. For higher-resolution maps, however, it might be

advantageous to use methods designed to trace the protein

backbone if the resolution of the density map allows (Baker

et al., 2011).

Results of EM-Fold Assembly Step with Perfect
and Realistic Secondary Structure Prediction
A schematic representation of the stages of the benchmark is

shown in Figure 1. The algorithm adds, deletes, swaps, and flips

as well as dynamically grows and shrinks SSEs to account for

inaccurate secondary structure prediction. To avoid formation

of unlikely SSEs, this new move is accompanied by scoring the

agreement of the model’s secondary structure with predicted

secondary structure. To assess the impact of inaccurate sec-

ondary structure prediction on the algorithm, the benchmark

was performed in two stages: using perfect and realistic sec-

ondary structure prediction, respectively. Realistic secondary

structure prediction was generated as a consensus prediction

of the methods used without any manual adjustment. Assuming

perfect secondary structure prediction, the true topology was

found among the top 20 scoring topologies for all but one of

the 27 proteins. The exception was 1WBA, for which the correct

topology rank was 287 (see Table S1 available online). Correct

topology was defined as having placed all SSEs into the density

rods that correspond to the location and orientation of that SSE

in the experimental structure. Table 1 displays the results of the

assembly runs for all 27 proteins with realistic secondary struc-

ture prediction, where RMSD100 values were calculated over

all backbone atoms. In the case of realistic secondary prediction,

the true topology was constructed in 23 out of the 27 proteins in

the benchmark. For 15 of the 20 a-helical proteins and four of the

seven b sheet proteins, the correct topology also ranked among

the top 150 scoring topologies. For four additional proteins

(1Z3Y, 2FQ4, 2IU1, 2NR7), the correct topology was con-

structed, but it was not identified among the best 150 topologies.

These results indicate that it is more difficult to predict the

correct topology of b-sheet-containing proteins. This may be

because of a higher curvature of b strands in b sheets compared

to a helices or the generally higher contact order of b proteins. A

total of 19 out of 27 protein topologies (70%) were identified

within the best 150 scoring topologies after the assembly step.

While a higher success rate was definitely desirable, a 70%

success rate is very competitive compared to other de novo

folding benchmarks.
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Figure 1. Schematic Representation of the Folding Protocol Used

in the Benchmark

The scheme represents a three-density rod density map.

(A) Using a consensus of three secondary structure prediction methods,

likely positions of long stretches of secondary structure in the primary

sequence of the protein are identified. These positions are collected in a pool

of idealized SSEs.

(B) The EM-Fold assembly step builds 50,000 models by assembling pre-

dicted, idealized SSEs into the identified density rods. The models contain no

residues in the loop regions and no side chains. The top-scoring 150 topolo-

gies are carried over to the next step.

(C) The EM-Fold refinement step builds 500 refined models for each of the

150 topologies. The models generated in the assembly step are refined to

better fit the density map. In particular, bending of idealized SSEs is per-

formed. The top-scoring 50 topologies are carried over to the next step.

(D) Rosetta (round 1) builds loop models for each of the 50 topologies. Loops

are built and the overall structure is relaxed. The top-scoring 15 topologies are

carried over to the next step.

(E) Rosetta (round 2 and 3) identifies regions in the proteins that agree least

with the density map and selectively rebuilds these identified regions and

relaxes the entire structure. The top-scoring five topologies after round 2 are

carried over into round 3.

Structure
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EM-Fold Refinement Protocol Improves RMSD100s
of Models
The top 150 scoring models selected after the assembly step

were refined in EM-Fold with perturbations, including bending

in addition to rotations and translations of the individual SSEs

as described in Lindert et al. (2009). The agreement of the model
466 Structure 20, 464–478, March 7, 2012 ª2012 Elsevier Ltd All righ
with the density map was scored using a cross-correlation coef-

ficient. Table 1 shows the improvement in RMSD100 from the

assembly step to the refinement step. RMSD100s were calcu-

lated over all backbone atoms. For all but one of the 19 success-

ful proteins, the refinement step generated models that were

lower in RMSD100 than the assembly step model. The maximal

improvement was 2.4 Å for 1DVO (a model with RMSD100 of

1.32 Å was built but did not score best), and the average

improvement was 1.0 Å. When only considering the best-scoring

true topology models after refinement, the average improvement

in RMSD100 was 0.2 Å, while the best improvement was 2.0 Å

(for 1X91). For all but one protein, the correct topologies were

among the top 50 scoring topologies after the refinement step.

The exception was 1CHD, where the best-scoring topology

rank was 87 after the refinement step. In particular, proteins

where the true topology rankedworse than 25 after the assembly

step were considerably improved in ranking by refinement. The

top-scoringmodel for each of the 50 top-scoring topologies after

the refinement step was used in the first round of the Rosetta

refinement protocol.

Rosetta Refinement Improves Models and Reaches
Atomic Detail Accuracy for Favorable Cases
An iterative refinement protocol was applied using Rosetta. The

first round built loops and side chains for the 50 top scoring

topologies from the EM-Fold refinement step. The resulting

models underwent relaxation in the Rosetta force field. Regions

that agreed least with the density map in the best-scoring 15

topologies were identified using Rosetta’s loops_from_density.

linuxgccrelease executable. These regions were rebuilt in a

second round of the Rosetta refinement, followed by another

relaxation of the models. Finally, the regions with the largest

discrepancies to the density map in the top five scoring topolo-

gies after round 2 were rebuilt in round 3. Table 1 summarizes

the results after each of the three rounds of Rosetta refinement.

Fourteen of the 19 final best-scoring models corresponded to

the correct topology. In the remaining cases, the true topology

was ranked second in three cases and fourth in the two worst

cases (Table S2 lists the RMSD100 values of the top-scoring

models for completeness). Rosetta was thus able to identify

the correct topology by score whenever a model with an

RMSD100 <2.8 Å was built. This was the case for 14 of

19 proteins. The RMSD100s of the correct models after com-

pletion of the iterative refinement protocol ranged from 1.3 to

6.9 Å over the full length of the proteins and from 0.8 to 3.8 Å

over the SSEs. The average RMSD100 was 3.0 Å over the full

length of the protein and 2.2 Å over the SSEs. Thirteen of the

proteins had backbone atom RMSD100s of <3.0 Å over all

residues, indicating correct atomic detail accuracy. Figure 2

shows models for 1X91, 1OZ9, and 1DVO superimposed with

the native structure, where RMSD100s of 1.1 Å, 1.4 Å, and

1.8 Å, respectively, over all residues were achieved. Side chain

conformations in the protein core are shown for both the model

and the native structure. The RMSD100 versus score plots for

all three proteins are displayed next to the models. Figure S1

depicts the model evolution over all the rounds of the protocol

for two of the proteins (1X91 and 1OZ9). It can be seen how

the quality of the models improves from the EM-Fold assembly

step to the third round of Rosetta refinement. Figures 3, 4, and
ts reserved



Table 1. Results of Benchmark on Set of 27 a, a/b, and b Proteins

Protein (PDB ID) Sizea

Rank/RMSD100, Åb Rank/RMSD100 (RMSD100 SSEs), Åc

Rotamer

Recoveryd
EM-Fold

Assembly

EM-Fold

Refinement Rosetta Round 1 Rosetta Round 2 Rosetta Round 3

a-Proteins

1DVO 152, 4, 0 3/3.73 19/2.25 1/2.49 (1.30) 1/2.23 (1.33) 1/2.07 (1.36) 0.64

1GS9 165, 4, 0 31/3.83 15/4.01 3/3.76 (3.59) 5/3.87 (3.69) 4/3.96 (3.70) 0.43

1IAP 211, 7, 0 2/2.57 8/2.03 1/2.51 (1.31) 1/2.12 (1.27) 1/2.43 (1.28) 0.49

1ILK 151, 5, 0 73/3.08 23/3.17 1/2.78 (2.60) 1/2.75 (2.60) 1/2.64 (2.53) 1.00

1NIG 152, 4, 0 66/5.97 22/6.42 4/6.04 (4.44) 3/5.98 (4.47) 2/5.92 (4.37) 0.50

1OXJ 173, 4, 0 71/3.20 39/2.62 1/5.89 (1.50) 1/4.34 (1.60) 1/4.14 (1.68) 0.54

1X91 153, 5, 0 1/3.30 1/1.33 1/1.37 (0.87) 1/1.32 (0.92) 1/1.29 (0.78) 0.86

1Z3Y 238, 7, 0 621/– –/– –/– –/– –/– –

2A6B 234, 6, 0 131/2.83 24/2.55 1/3.90 (1.76) 1/3.12 (1.74) 1/2.22 (1.80) 0.60

2FD5 180, 6, 0 1/2.88 37/2.09 1/1.76 (1.17) 1/1.68 (1.11) 1/2.19 (1.64) 0.54

2FM9 215, 9, 0 126/3.09 1/2.38 1/2.63 (2.29) 1/2.29 (2.11) 1/2.29 (2.02) 0.61

2FQ4 192, 7, 0 260/– –/– –/– –/– –/– –

2G7S 194, 6, 0 1/2.47 29/2.52 1/2.04 (1.67) 1/2.00 (1.70) 1/2.01 (1.74) 0.58

2GEN 197, 7, 0 2/2.70 18/2.76 4/2.67 (2.25) 1/2.27 (2.05) 1/2.35 (2.08) 0.56

2IGC 164, 4, 0 23/4.51 41/6.23 1/7.10 (4.19) 5/6.91 (3.81) 2/6.93 (3.78) 0.53

2IOS 150, 6, 0 60/4.13 14/2.68 1/3.87 (3.03) 1/3.48 (3.18) 1/3.31 (3.04) 0.49

2IU1 208, 5, 0 849/– –/– –/– –/– –/– –

2NR7 195, 5, 0 386/– –/– –/– –/– –/– –

2O8P 227, 9, 0 15/2.82 18/2.77 2/2.35 (2.25) 2/2.05 (2.01) 1/2.18 (2.13) 0.48

2QK1 249, 9, 0 –/– –/– –/– –/– –/– –

a/b Proteins

1BJ7 156, 1, 8 –/– –/– –/– –/– –/– –

1CHD 203, 1, 8 24/1.68 87/1.65 2/15.76 (1.5) 4/15.44 (1.49) 4/15.42 (1.5) 0.53

1ICX 155, 1, 7 131/2.40 47/3.84 1/2.51 (2.08) 1/2.35 (1.89) 1/2.17 (1.76) 0.57

1JL1 155, 3, 5 32/3.10 13/3.56 1/3.38 (2.85) 1/2.84 (2.03) 2/2.91 (2.30) 0.71

1OZ9 150, 5, 4 1/2.27 9/1.67 1/1.88 (1.21) 1/1.89 (1.41) 1/2.19 (1.85) 0.55

b Proteins

1WBA 175, 0, 10 –/– –/– –/– –/– –/– –

2QVK 192, 0, 7 –/– –/– –/– –/– –/– –

Average RMSD100s 3.19 2.98 3.27 (2.20) 2.97 (2.13) 2.96 (2.18)

All RMSD100 values are determined over the backbone atomsN, Ca, C andO. The proteins from the benchmark set that are considered a success after

the EM-Fold assembly and refinement steps as well as after the third round of Rosetta refinement are shown in bold. The criteria for the individual

success assignments were: correct topology within the top 150 scoring models after the EM-Fold assembly step, correct topology within the top

50 scoring models after the EM-Fold refinement step, and correct topology being the top-scoring models with an RMSD100 of <3 Å after the third

round of Rosetta refinement.

See also Tables S1, S2, and S3.
aNumber of amino acids, number of a helices with at least 12 residues, and number of b strandswith at least five residues. Realistic secondary structure

prediction has been used for the benchmark.
bThe rank of the correct topology model within all scored models as well as the RMSD100 of the correct topology model are given.
cEach column lists the rank of the correct topology model within all scored models, the RMSD100 of the correct topology model, and the RMSD100

of the correct topology model over residues in SSEs (numbers in parentheses).
dRecovery in protein core is defined as the model having the same rotamers for all side chain angles. Core of the protein is defined as at least 22

neighbors.
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S2 display score versus RMSD100 plots and the best models

for all benchmark proteins. A clear funnel shape is visible for

14 out of 19 benchmark cases, with models having low

RMSD100 values scoring better than models with high

RMSD100 values. Occasionally, models with higher RMSD100

had scores that approached the score of the best-scoring
Structure 20,
models with the correct topology (Figure 2C). An overlay of

such a structure with the native model is shown in Figure 2D.

All a helices were placed in the correct density rods, with one

being placed in the wrong orientation. Most of the native helical

interfaces were still present in this model, which explains its

superior energy.
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Figure 2. Rosetta Refinement RMSD100 versus Rosetta Energy Plots and Superimposition of Final Models after Rosetta Refinement with

Medium-Sized Native Structures

(A–C) Energy plots for 1X91 (A), 1OZ9 (B), and 1DVO (C) are shown. Models from round 1 (green), round 2 (blue), and round 3 (black) of the Rosetta refinement are

plotted. The native structure relaxed in Rosetta’s force field is shown in violet for comparison. RMSD100s are calculated over all backbone atoms. For all three

proteins, a model funnel is visible in the plot and the models corresponding to the correct topology score best allowing identification of the correct fold by score.

Superimposition of the final models (rainbow-colored) of 1X91 (A), 1OZ9 (B), and 1DVO (C) with the original PDB structures (gray) are shown next to the energy

funnels. The superimposed models are marked by a red dot in the energy funnels. A close-up view of side chain conformations in interfaces between SSEs is

shown. (A) 1X91 has 153 residues. The model shown has an RMSD100 of 1.07 Å over the full length of the protein and 0.63 Å over the helical residues. (B) 1OZ9

Structure

EM-Fold Predicts Atomic-Detail Protein Structures
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The positive predictive value (PPV or precision) of the method

to predict models with an RMSD100 below 3.0 Å was calculated

after each of the three rounds of refinement. The PPVwas 0.34 in

round 1, 0.51 in round 2, and 0.50 in round 3. This indicates that

there was a significant improvement in model quality and our

ability to select good models by score when going from round

1 to 2. It also shows that the refinement process converged after

round 2, with no further improvement when moving to round 3.

Quality Measure Can Distinguish between Successful
and Unsuccessful Cases
Despite the fact that the majority of the Rosetta-refined correct

topologies actually scored best among all the refined models,

there were still few cases in which some incorrect topologies

scored better (see, for example, 1GS9, 1NIG, 2IGC, or 1JL1). A

quality measure that could independently distinguish successful

from unsuccessful cases would be desirable for situations when

EM-Fold is used to build structures where the correct solution is

not known. We developed a measure that is based on the depth

of converged ensemble energy minimum (DoCEEM) presented

in Raman et al. (2010). Instead of basing the measure on the

mutual RMSD between models, DoCEEM is based on topology

assignment. A topology is defined as a placement of specific

SSEs into particular density rods noting the individual orienta-

tions of SSEs along the density rods’ main axis (parallel or anti-

parallel). Given the way the models are assembled and refined

with EM-Fold, every generated model can be easily classified

according to its topology. The DoCEEM is calculated as

the energy difference between the median energy of the 10

lowest-scoring models with the same topology as the top-

scoring model after the third round of Rosetta refinement and

the median energy of the 10 lowest-scoring models with a

topology different from the topology of the top-scoring model.

Graphically speaking, the DoCEEM measures how deep the

energy funnel is that separates the top-scoring model from all

other models of different topologies. Ideally, the deeper the fun-

nel, the more likely that the top-scoring model is the correct

topology. The DoCEEM values for all 19 proteins refined with

Rosetta are shown in Table 2. Using a cutoff of 0 Rosetta energy

units, where negative values indicate success, the DoCEEMwas

able to correctly identify whether the top-scoring model was the

correct topology for all but one protein (1GS9). These results

suggest that deep energy funnels very likely correspond to

models close to the native structure. This allows the user to

employ the DoCEEM as a measure of how likely the algorithm

found the true topology as the top-scoring topology.

Noise in Simulated Density Maps Causes Slight
Performance Decrease in Loop-Building Steps
The major difference between the benchmark described so far

and a real-world application is that the simulated density maps
has 150 residues. Themodel shown has an RMSD100 of 1.36 Å over the full length

The model shown has an RMSD100 of 1.83 Å over the full length of the protein a

(D) Somemodels score well but exhibit a relatively high RMSD100. One example is

(C). Overall, the agreement of the model with the native structure is good (left imag

the density rod in the wrong orientation (green). This leads to a high overall RMSD1

thus ensuring a relatively good score. The image on the right shows a close-up

dot in C).

Structure 20,
used in the benchmark did not contain noise. This may not

have had such a profound influence on the EM-Fold assembly

and refinement steps, as the models only contained residues

in SSEs, which are commonly well-defined even in experi-

mental maps. However, noise may have a profound impact on

the loop building and refinement procedure in Rosetta that relies

explicitly on density in loop regions of the proteins. To test the

performance of EM-Fold and Rosetta when confronted with

noisy maps, noise was added randomly to the simulated maps

until a cross-correlation of 0.8 between noise-free and noise-

containing map was achieved. The procedure was described

in Woetzel et al. (2011), and 0.8 had been established as a real-

istic value best mimicking experimental density maps. The influ-

ence of the actual density map on the assembly step is minimal,

so it was not repeated. This way, it was also guaranteed that the

same starting models were used and the comparison between

noise-free and noisy maps was legitimate. All the parameters

used were identical to the benchmark with the noise-free simu-

lated density maps. Table S3 summarizes the results of the

benchmark with the noisy maps in much the same way Table 1

does for the noise-free maps. The top-scoring 150 topologies

from the assembly step were refined in EM-Fold using the noisy

maps. The results of the refinement step confirmed that noise did

not have a profound influence on the model quality during this

step. The average RMSD100s were virtually identical (2.98 Å

versus 2.91 Å). The average rank of the top-scoring correct

topology decreased to 40 (from 24 in the noise-free case). It is

more difficult to correctly rank models based on density cross-

correlation when noise is present. This, however, does not

present a major problem as long as more topologies are carried

over to the Rosetta refinement rounds. The top 75 topologies

after EM-Fold refinement were chosen for three rounds of

Rosetta refinement. As a proof of principle, the proteins 2FD5

and 1CHD were also refined in Rosetta, despite their correct

topologies having ranks worse than 75. The three rounds of

Rosetta refinement ranked all the correct topologies among

the top 10 scoring topologies, with the majority of the correct

topologies scoring best in Rosetta’s force field. Over the course

of the three rounds, the RMSD100 values improved slightly on

average but were about 0.7 Å worse than in the noise-free

benchmark. This was not unexpected, as noise has the highest

impact on loop regions. The overall quality of the models

(10 models had an RMSD100 of <3 Å after the third round of

Rosetta refinement) was still very good, albeit somewhat lower

than in the noise-free benchmark. For illustration purposes,

Figure 5 shows two examples of successful model building

(2G7S and 1OZ9) as well as one protein (1NIG) for which the

overall RMSD100 was well beyond the target of 3 Å. It can be

concluded that the proposed combination of the new version

of EM-Fold with Rosetta can be successfully applied to maps

containing noise.
of the protein and 0.99 Å over the residues in SSEs. (C) 1DVO has 152 residues.

nd 1.18 Å over the residues in SSEs.

the model for 1DVO, which is shown here and is represented by a yellow dot in

e). Closer evaluation (center image) reveals that one helix has been placed into

00 (5.94 Å) but preservesmany of the contacts between correctly placed SSEs,

view of that particular helix in the best-scoring model (represented by a red
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Figure 3. Gallery of Score versus RMSD100 Plots for All 19 Benchmark Proteins
Models from round 1 (green), round 2 (blue), and round 3 (black) of the Rosetta refinement are plotted. The native structure relaxed in Rosetta’s force field is shown

in violet for comparison. RMSD100s are calculated over all backbone atoms. The vast majority of the plots exhibit a clear funnel shape (i.e., models with low

RMSD100 generally have lower scores than models with high RMSD100 values and vice versa). This feature is desirable in computational protein structure

prediction because it makes model identification based on score possible.

See also Figure S1.
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EM-Fold and Rosetta Refinement Results in Models
that Display Atomic Detail beyond that Present
in the Density Map
In 14 out of 19 cases, Rosetta scored the correct topology as the

best topology and resulted in a model with an RMSD100 below

2.8 Å. There was a fifteenth case (2IOS) where Rosetta scored

the correct topology as the best topology, but the RMDS100

was somewhat worse. The correct topology was among the

top four scoring topologies in all 19 proteins refinedwith Rosetta.

The majority of the RMSD100 versus score plots showed a clear

funnel-shape, indicating that Rosetta score correlated with

model quality (see Figure 3). The vastmajority of the best-scoring

models is in excellent agreement with the native structure, as

can be seen in Figures 4 and S2. For 70% of the successful

benchmark cases, the best-scoring model had an RMSD100

below 3.0 Å, indicating that these models are accurate at atomic

detail. EM-Fold identified the correct topology of a protein from
Structure 20,
a medium-resolution density map in 70% of the cases. Refine-

ment with Rosetta yielded models that were accurate at atomic

detail in 70%of cases where the correct topology was identified.

SSEs that were placed in the same density rod in at least 70% of

the top 2,000 scoring models after the third round of Rosetta

refinement were correctly placed with 97% confidence. Statis-

tics over rotamer recovery revealed that after three rounds

of Rosetta refinement, the best-scoring models recovered

between 48% and 100% of the native rotamers in the protein

core. The average rotamer recovery was 59%. In summary,

many of the final refined models had a significant fraction of

their native side chain conformations recovered correctly (see

Table 1). This recovery was not based on information of side

chain conformations in the medium-resolution density maps;

rather, it was based on Rosetta’s ability to correctly place side

chains once the backbone conformation has approached the

native structure. Hence the main achievement of the protocol
464–478, March 7, 2012 ª2012 Elsevier Ltd All rights reserved 471



Figure 4. Gallery of Best-Scoring Models after Three Rounds of Rosetta Refinement for All 19 Benchmark Proteins

Superimposition of themodels (rainbow-colored) with the original PDB structures (gray) and the simulated densitymaps are shown. Density mapswere simulated

at 5 Å resolution (b strand containing proteins) and at 7 Å resolution (a-helical proteins), respectively. The average RMSD100 of the models shown to the native

structure is 2.96 Å, with RMSD100 values ranging from 1.29 to 6.93 Å.

See also Figure S2.
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is that we were able to de novo build backbone models of the

benchmark proteins guided by the density maps that are of

sufficient quality to recover side chain conformations. The

main reason for failure of assembly of the correct topology was

inaccurate prediction of secondary structure. Primary obstacles

for reaching atomic detail accuracy were a systematic sequence

shift in SSEs that resulted in suboptimal starting models for

Rosetta and long loop regions that were difficult to construct at

atomic detail.

Applying the Protocol to Experimental Maps Yields Low
RMSD Structures for SSEModel Parts and Atomic Detail
in Favorable Cases
Due to the still limited number of experimental cryoEM density

maps at resolutions between 5-7 Å of proteins for which high-

resolution crystal structures also exist, the benchmark was

performed on simulated density maps with added noise. To
472 Structure 20, 464–478, March 7, 2012 ª2012 Elsevier Ltd All righ
test performance on experimental density maps, five proteins

for which experimental maps and high-resolution structures

are available were selected. Models were built into the bovine

metarhodopsin cryoEM density map (Electron Microscopy

Data Bank [EMDB] 1079 [Ruprecht et al., 2004], 5.5 Å resolution)

and compared to the crystal structure of bovine rhodopsin

(Protein Data Bank [PDB] ID 1GZM [Li et al., 2004]). Additionally,

a model for proteins PrgH and PrgK was built into the subnan-

ometer resolution structure from Salmonella’s needle complex

(EMDB 1874 [Schraidt and Marlovits, 2011], subnanometer

resolution) and compared to docked crystal structures of these

components (PDB ID 2Y9J [Schraidt and Marlovits, 2011]).

Finally, models for the 30S ribosomal proteins S15 and S20

were built into the ribosome cryoEM density map (EMDB 1829

[Bhushan et al., 2011], 5.6 Å resolution) and compared to the

crystal structures of these proteins (PDB IDs 2WWLO and

2WWLT [Seidelt et al., 2009]).
ts reserved



Table 2. DoCEEM Analysis of Folding Results for All 19 Proteins

Refined with Rosetta

Protein (PDB ID) DoCEEM, REUa Rosetta Round 3 Rankb

1DVO �10.581 1

1GS9 5.087 4

1IAP 5.192 1

1ILK �20.213 1

1NIG 1.843 2

1OXJ �18.7 1

1X91 �6.57 1

2A6B �73.26 1

2FD5 �24.344 1

2FM9 �32.335 1

2G7S �11.522 1

2GEN �23.86 1

2IGC 4.405 2

2IOS �28.615 1

2O8P �10.12 1

1CHD 5.764 4

1ICX �52.623 1

1JL1 2.579 2

1OZ9 �49.456 1

1DVO �10.581 1
aDoCEEM values are calculated as the difference between the median

energy of the 10 lowest-scoring models with the same topology as the

top-scoring model after the third round of Rosetta refinement and the

median energy of the 10 lowest-scoring models with a topology different

from the topology of the top-scoring model. Negative values indicate that

the mean energy of the topmodels of the top-scoring topology was lower

than the mean energy of the top models of topologies different from the

top-scoring topology.
bThe DoCEEM values correlate with the Rosetta rank. This is important

because in a nonbenchmark application, only DoCEEM values are

available. REU, Rosetta energy units.
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The same EM-Fold folding protocol applied to the benchmark

proteins with simulated maps was used for the proteins with

experimental density maps. While the ribosome proteins under-

went three rounds of Rosetta refinement, only a single round of

Rosetta refinement was performed for the other proteins in

order to limit the computational resources needed. The results

are summarized in Table 3. Additionally, Figure 6 and Figure S3

show the models after the EM-Fold assembly step, EM-Fold

refinement step, and Rosetta loop building and refinement in

context with the native structures and the experimental density

maps. The correct topology scored within the top 40 topologies

for all five proteins after the EM-Fold assembly step. For two of

the proteins, the ranking of the correct topology improved

slightly after EM-Fold refinement. The average RMSD100 of

the correct topology models after the initial EM-Fold assembly

step was 3.25 Å and improved to 2.86 Å after EM-Fold refine-

ment. These values are in the same range as the RMSD100

values of the benchmark proteins using simulated density

maps. Along with the results of the noisy maps benchmark,

this is confirmation that EM-Fold also works well for experi-

mental density maps. The results for the ribosomal proteins
Structure 20,
S15 and S20 showed improvement over all rounds of model

building. The final models exhibited RMSD100 values below

3 Å, and side chain conformations within the protein core

were recovered especially for 2WWLO (see Figure 6G). The

good results for these proteins are speculated to be mainly

due to their high secondary structure content and the superb

quality of the density map. For rhodopsin and salmonella pro-

teins, the quality of the models after Rosetta loop building and

refinement was lower than the model quality in the benchmarks

with simulated density maps. The average RMSD100 over the

full length of these proteins was 4.92 Å, while the average

RMSD100 over residues in SSEs was 2.79 Å. The average devi-

ation for these proteins was higher mainly because of long,

floppy loop regions that were difficult to predict and because

of a high amount of noise in loop regions in experimental density

maps. While the RMSD100s were slightly higher than in the

previously discussed benchmarks, even for these challenging

cases EM-Fold proved to be a highly valuable tool to determine

the correct topology of a protein based on the density map and

predicted good models for protein structures even for experi-

mental maps.

Conclusions
In summary, the combination of EM-Fold and Rosetta is a

powerful tool for de novo folding of proteins into medium-resolu-

tion density maps. This report demonstrates that computational

methods are capable of extending the information available from

cryoEM density maps. We further demonstrate that the combi-

nation of EM-Fold and Rosetta can build an atomic model

from a medium-resolution density map and the protein se-

quence. This will give researchers the opportunity to utilize

medium-resolution density maps more effectively. This work

also demonstrates that medium-resolution density maps can

contribute valuable information regarding the true atomic resolu-

tion structure.

The results show that EM-Fold is the method of choice in

cases when a medium-resolution density map is determined,

SSEs are identifiable as density rods (either manually or using

automated software), loop connectivity information is elusive,

and no backbone trace or template start model are available.

For higher-resolution maps that contain information on the

SSE connectivity backbone, tracing techniques such as

GORGON may be better suited (Baker et al., 2011). For maps

at lower resolution, where SSEs are not clearly visible, tech-

niques such as fitting of comparative models should be used

(Topf et al., 2005).

It appears that all b strand proteins are more difficult to model

accurately with EM-Fold. We attribute this observation to a

combination of several effects: (1) accuracy of secondary struc-

ture prediction is reduced for b strands compared to a helices;

(2) it is generally more difficult to de novo fold all b strand proteins

due to the increased number of nonlocal contacts that have to be

sampled (Bonneau et al., 2002); (3) all b strand proteins have

a higher number of SSEs per residue, leading to a larger number

of possible topologies that need to be sampled; and (4) all

b strand proteins have a larger fraction of residues in loop

regions. Because loop regions are modeled less accurately in

the EM-Fold protocol, RMSD values for all b strand proteins

are higher. Table 4 summarizes indicators a–d and relates
464–478, March 7, 2012 ª2012 Elsevier Ltd All rights reserved 473



Figure 5. Three Protein Models after the Third Round of Rosetta Refinement in the Noisy Maps Benchmark

(A–C) Superimposition of the final models (rainbow-colored) of 2G7S (A), 1OZ9 (B), and 1NIG (C) with the original PDB structures (gray) as well as the noisy density

maps are shown. Density maps were simulated at 5 Å resolution (b strand containing proteins) and at 7 Å resolution (a-helical proteins), respectively. (A) 2G7S has

194 residues. The model shown has an RMSD100 of 2.23 Å over the full length of the protein and 1.67 Å over the helical residues. (B) 1OZ9 has 150 residues. The

model shown has an RMSD100 of 1.76 Å over the full length of the protein and 1.02 Å over the residues in SSEs. (C) 1NIG has 152 residues. The model shown has

an RMSD100 of 7.31 Å over the full length of the protein and 4.97 Å over the residues in SSEs.
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them to success in the benchmark. Although there is no single

indicator of success, it seems that particularly the contact order

and the fraction of residues in loop regions correlate with

success. The average contact order in the benchmark set was

about 13, while the average contact order for failures was 16.

Similarly, the average fraction of residues in loop regions was

0.33 over the benchmark set and 0.42 for the failures. These

quantities may give researchers using EM-Fold an indication of

what the expected success may be.

In summary, substantial progress has been made since the

initial EM-Fold release (Lindert et al., 2009). Because of its added

features, the new version of EM-Fold can refine protein models

to atomic detail accuracy in favorable cases, it is more tolerant

to errors in secondary structure prediction, and can assemble
Table 3. Results of Benchmark on Experimental Density Maps

from Rhodopsin, Salmonella, and Ribosome

Protein

(PDB ID) Sizea

Rank/RMSD100, Åb

Rank/RMSD100

(RMSD100 SSEs), Åc

EM-Fold

Assembly

EM-Fold

Refinement

1GZM 349, 8, 0 37/2.26 35/2.79 2/4.60 (2.74)

2Y9JO 186, 4, 6 26/2.81 23/2.50 2/5.51 (2.71)

2Y9JZ 170, 4, 6 17/3.11 48/2.86 2/4.64 (2.91)

2WWLO 88, 4, 0 2/3.98 33/3.23 1/2.96 (2.01)

2WWLT 85, 3, 0 1/4.10 8/2.94 8/2.84 (2.41)

All RMSD100 values were determined over the backbone atoms N, Ca, C,

and O.
aNumber of amino acids, number of a helices with at least 12 residues,

and number of b strands with at least five residues.
bThe rank of the correct topology model within all scored models as well

as the RMSD100 of the correct topology model are given.
cResults of Rosetta loop building and refinement using the experimental

maps. The rank of the correct topology model within all scored models,

the RMSD100 of the correct topology model, and the RMSD100 of the

correct topology model over residues in SSEs (numbers in parentheses)

are shown.
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proteins that contain b strands. The consistent ability of predict-

ing protein structure de novo and at atomic detail accuracy

based on medium-resolution density maps is genuine progress

in the field of cryoEM modeling techniques.

EXPERIMENTAL PROCEDURES

Folding Protocol

The folding protocol employed in this work is summarized in Figure 1. This

basic protocol is based on the initial EM-Fold publication (Lindert et al.,

2009). Several improvements have been added to this new version of EM-Fold.

These will be discussed in greater detail here. Starting from the primary

sequence of the protein, a helices and b strands are predicted using jufo

(Meiler and Baker, 2003a; Meiler et al., 2001), PsiPred (Jones, 1999), and

PROFphd (Rost and Sander, 1993a; Rost and Sander, 1993b; Rost and

Sander, 1994). The predictions as well as their consensus are stored in

a pool of SSEs (Figure 1A). The assembly step (Figure 1B) places SSEs from

the pool into the density rods. It is assumed that the density for a helices

and b strands is sufficiently different to exclusively place the correct SSEs

into the individual density rods. In addition to the moves described by Lindert

et al. (2009), growing and shrinking of SSEs is performed, helping alleviate

some of the problems caused by incorrect secondary structure prediction.

Lindert et al. (2009) showed that the secondary structure prediction algorithms

generally underpredict the length of a helices. In the original implementation of

EM-Fold, this was addressed by additional extended copies of a helices to the

pool. Only the predicted SSEs are added to the pool in the new version. Subse-

quently, during the assembly Monte Carlo steps, SSEs are randomly grown or

shrunk by up to two residues per step. The resizing is accompanied by a score

that evaluates the agreement of secondary structure in the model with the

predicted secondary structure. This ensures that SSEs remain in overall agree-

ment with the predicted regions. Growth and shrinkage of SSEs has the poten-

tial to compensate for incorrect secondary structure prediction in a more

dynamic way than the SSE pool used before. Models built in the assembly

step are clustered. The best scoring clusters transition into the refinement

step. The refinement step (Figure 1C) applies small translational and rota-

tional perturbations to the SSEs in the model. When SSEs are placed into

the density rods, they are idealized (i.e., perfectly straight). Some density

rods, however, show at least a slight curvature. A new move that bends

SSEs has been added to the refinement step. The center and amount of

the bending are determined randomly. With bending in place, it is necessary

to evaluate the agreement of the model with the density map. In the new im-

plementation, this is done using a density cross correlation score. Scores
ts reserved



Figure 6. Results of Ribosome Benchmark Proteins with Experimental Density Maps

(A–F) Protein models after EM-Fold assembly step (A and D), after EM-Fold refinement step (B and E) and third round of Rosetta loop building and refinement

(C and F) are shown for the two benchmark proteins. Superimposition of the models (rainbow-colored) of 2WWLO (A–C) and 2WWLT (D–F) with the original PDB

structures (gray) as well as the experimental density maps are shown.

(G) Atomic detail recovered for 2WWLO after the third round of Rosetta refinement is shown.

See also Figure S3.
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that evaluate solvation-free energy and residue-residue pairwise interaction

within the protein are used in addition. A small number of top-scoring topol-

ogies identified in the refinement step will be used for loop building and

refinement within Rosetta. Three rounds of Rosetta refinement (Figures 1D

and 1E) build missing coordinates and refine the model further. The first

round of Rosetta refinement (Figure 1D) builds missing loop coordinates

guided by the density map. The executable used is loopmodel.linuxgccre-

lease. In the following two rounds (Figure 1E), regions of the models that

agree least with the density map are identified (loops_from_density.

linuxgccrelease) and rebuilt (loopmodel.linuxgccrelease). Each round

includes a relaxation of the overall structure. An increasingly smaller number

of topologies enter each of the three rounds of Rosetta refinement. After each

round, the built models are clustered according to their topology and only the

best scoring representative of the top topologies will advance into the next

round of refinement. After the third round of Rosetta refinement, the best

scoring model is identified as the model for the protein structure.

Benchmark

A benchmark set of 20 a-helical and seven b sheet proteins was compiled

from the PDB. The proteins ranged in size from 150 to 249 residues. Other

selection criteria were secondary structure content of least 60% and the

availability of high-resolution crystal structures for model comparison. The

a-helical proteins contained between four and nine a helices, while the b sheet

proteins contained between four and 10 b strands. Density maps at 7 and 5 Å

resolution were simulated for the a-helical and b sheet proteins, respectively,

using PDB2VOL from the SITUS package (Wriggers and Birmanns, 2001). A

voxel spacing of 1.5 Å and Gaussian flattening was used. The rationale for

this was that density maps at these resolutions will exhibit sufficient detail

to identify density rods for a helices and b strands, respectively. Additionally,

density maps at 7 and 5 Å resolution that had noise added were simulated
Structure 20,
using the PDB2DENSITY application of the BCL. Noise was added randomly

until a cross-correlation between noisy and noise-free maps dropped below

0.8. Jufo, PsiPred, and PROFphd were used to predict SSEs for the

consensus pool. A three-state model (helix, strand, coil) was used for the

pool. a Helices with 12 or more predicted residues and b strands with at least

five predicted residues were added to the pool. Shorter secondary elements

were omitted from the initial EM-Fold assembly and added in the later Rosetta

refinement step. In the assembly step, 50,000 models (2,000 rejected Monte

Carlo steps) were built for each of the 27 proteins. Building one model took

approximately 60 s on a single 2.4 GHz Quad-Core AMD Opteron Processor.

Building 50,000 models took approximately 2-3 hr on a 400 core cluster. The

50,000 models were clustered into topologies according to their placement of

particular stretches of sequence into density rods. The topologies were

ranked by the overall score and the top-scoring models within each of the

top-scoring 150 topologies advance to the refinement step. If the correct

topology was not identified within the top 150 scoring topologies, this protein

counted as a failure in the benchmark. Quality of the models is determined by

calculating the RMSD100 (Carugo and Pongor, 2001) values over the back-

bone atoms N, Ca, C, and O. For each of the top 150 scoring topologies

from the assembly step, 500 refined models were built in the refinement

step. Again, building one model took approximately 60 s on a single 2.4

GHz Quad-Core AMD Opteron Processor. Building 75,000 refined models

took approximately 3-4 hr on a 400 core cluster. These models were ranked

by their refinement score, and the top-scoring 50 (75 in the noisy map bench-

mark) topologies after refinement step were identified. These 50 models

served as input for the first round of Rosetta refinement. Rosetta refinement

was performed on the ACCRE computer cluster (2.4 GHz Quad-Core AMD

Opteron Processors). Timing of Rosetta refinement depended heavily on the

size of the protein, the size of the loop regions, and the size of the density

map. Generally, it can be assumed that a single round of refinement for one
464–478, March 7, 2012 ª2012 Elsevier Ltd All rights reserved 475



Table 4. Summary of Protein Statistics and Benchmark Performance

Protein (PDB ID) Residues SSPred Accuracy Contact Order SSE per Residue Fraction Loop Success

1DVO 152 0.74 9.28 0.03 0.26 Atomic resolution

1GS9 165 0.87 11.67 0.02 0.3 Topology

1IAP 211 0.79 14.86 0.03 0.39 Atomic resolution

1ILK 151 0.81 6.08 0.03 0.26 Atomic resolution

1NIG 152 0.69 12.79 0.03 0.32 Topology

1OXJ 173 0.80 8.47 0.02 0.32 Topology

1X91 153 0.78 11.21 0.03 0.24 Atomic resolution

1Z3Y 238 0.78 12.12 0.03 0.42 Failure

2A6B 234 0.86 24.06 0.03 0.28 Atomic resolution

2FD5 180 0.80 11.18 0.03 0.26 Atomic resolution

2FM9 215 0.82 13 0.04 0.28 Atomic resolution

2FQ4 192 0.83 9.06 0.04 0.34 Failure

2G7S 194 0.76 11.08 0.03 0.22 Atomic resolution

2GEN 197 0.80 10.75 0.04 0.23 Atomic resolution

2IGC 164 0.69 11.29 0.02 0.31 Topology

2IOS 150 0.80 8.52 0.04 0.34 Topology

2IU1 208 0.77 13.03 0.02 0.38 Failure

2NR7 195 0.75 13.91 0.03 0.33 Failure

2O8P 227 0.79 8.53 0.04 0.19 Atomic resolution

2QK1 249 0.81 9.05 0.04 0.32 Failure

1BJ7 156 0.79 20.86 0.06 0.36 Failure

1CHD 203 0.73 19.04 0.04 0.43 Topology

1ICX 155 0.77 18.63 0.05 0.36 Atomic resolution

1JL1 155 0.77 11.35 0.05 0.32 Atomic resolution

1OZ9 150 0.80 7.1 0.06 0.32 Atomic resolution

1WBA 175 0.80 21.541 0.06 0.54 Failure

2QVK 192 0.72 28.262 0.04 0.69 Failure

For each of the proteins used in the benchmark, the number of residues, the accuracy of the consensus secondary structure prediction, the absolute

contact order, the number of SSEs per residue, and the fraction of residues that are in loop regions are shown. Additionally, it is labeled whether the

benchmark protocol managed to predict the protein’s structure to atomic detail, whether atomic detail was not achieved but the protein topology has

been predicted correctly, or whether EM-Fold failed to predict the structure of this protein.
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protein takes about 24 hr on a 400 core cluster. In the first round of refinement,

Rosetta built loop models for these 50 topologies guided by the density map.

The models were clustered according to topology, and the top-scoring

models from the top 15 clusters entered round 2 of Rosetta refinement. Using

the loops_from_density.linuxgccrelease executable, regions within these 15

proteins that agreed least with the density map were identified. These regions

were subsequently rebuilt using the guidance of the density map. The top-

scoring five topologies after the second round of Rosetta refinement were

used as starting models in the third round of refinement. After three rounds

of refinement, the best scoring model was evaluated.
Software Availability

EM-Fold is part of the BCL software library developed in the Meiler laboratory.

It is supported for Linux, Windows, and Mac environments. EM-Fold is freely

available to the scientific community at http://bclcommons.vueinnovations.

com/licensing.
SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures and three tables and can be

found with this article online at doi:10.1016/j.str.2012.01.023.
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Lindert, S., Staritzbichler, R., Wötzel, N., Karakasx, M., Stewart, P.L., and

Meiler, J. (2009). EM-fold: de novo folding of a-helical proteins guided by

intermediate-resolution electron microscopy density maps. Structure 17,

990–1003.

Liu, H., Jin, L., Koh, S.B., Atanasov, I., Schein, S., Wu, L., and Zhou, Z.H.

(2010a). Atomic structure of human adenovirus by cryo-EM reveals interac-

tions among protein networks. Science 329, 1038–1043.

Liu, X., Zhang, Q., Murata, K., Baker, M.L., Sullivan, M.B., Fu, C.,

Dougherty, M.T., Schmid, M.F., Osburne, M.S., Chisholm, S.W., and

Chiu, W. (2010b). Structural changes in a marine podovirus associated

with release of its genome into Prochlorococcus. Nat. Struct. Mol. Biol.

17, 830–836.

Ludtke, S.J., Chen, D.-H., Song, J.-L., Chuang, D.T., and Chiu, W. (2004).

Seeing GroEL at 6 A resolution by single particle electron cryomicroscopy.

Structure 12, 1129–1136.

Ludtke, S.J., Baker, M.L., Chen, D.H., Song, J.L., Chuang, D.T., and Chiu, W.

(2008). De novo backbone trace of GroEL from single particle electron cryomi-

croscopy. Structure 16, 441–448.

Meiler, J., and Baker, D. (2003a). Coupled prediction of protein secondary and

tertiary structure. Proc. Natl. Acad. Sci. USA 100, 12105–12110.

Meiler, J., and Baker, D. (2003b). Rapid protein fold determination using

unassigned NMR data. Proc. Natl. Acad. Sci. USA 100, 15404–15409.
Structure 20,
Meiler, J., and Baker, D. (2005). The fumarate sensor DcuS: progress in rapid

protein fold elucidation by combining protein structure prediction methods

with NMR spectroscopy. J. Magn. Reson. 173, 310–316.

Meiler, J., Müller, M., Zeidler, A., and Schmäschke, F. (2001). Generation and
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