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1 |  INTRODUCTION

While some drugs can be proteins or peptides, most phar-
maceuticals are small molecules. These small molecules 
generally interact with a protein target, or receptor, and 
modulate its function. While in most drug discovery work-
flows the identity of the drug target is known and even re-
quired (Comess et al., 2018; Schenone, Dancik, Wagner, & 
Clemons, 2013), this is not always the case. Small molecule 
protein target identification is important in a drug discovery 

process and for understanding molecular function. Being 
able to identify protein targets of small molecules has im-
portant implications for the detection of potential drug 
side- effects (Chen & Ung, 2001; Chen et al., 2013; Ivanov, 
Lagunin, Rudik, Filimonov, & Poroikov, 2018; Mizutani, 
Pauwels, Stoven, Goto, & Yamanishi, 2012) and in the re-
purposing of FDA- approved drugs (Hernandez et al., 2017; 
Zheng, Sun, & Simeonov, 2018). Additionally, protein tar-
get identification can be important to follow up on experi-
mental cell- based screens or to confirm the binding target 
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Abstract
The utilization of inverse docking methods for target identification has been driven 
by an increasing demand for efficient tools for detecting potential drug side- effects. 
Despite impressive achievements in the field of inverse docking, identifying true 
positives from a pool of potential targets still remains challenging. Notably, most of 
the developed techniques have low accuracies, limit the pool of possible targets that 
can be investigated or are not easy to use for non- experts due to a lack of available 
scripts or webserver. Guided by our finding that the absolute docking score was a 
poor indication of a ligand’s protein target, we developed a novel “combined Z- 
score” method that used a weighted fraction of ligand and receptor- based Z- scores to 
identify the most likely binding target of a ligand. With our combined Z- score 
method, an additional 14%, 3.6%, and 6.3% of all ligand–protein pairs of the Astex, 
DUD, and DUD- E databases, respectively, were correctly predicted compared to a 
docking score- based selection. The combined Z- score had the highest area under the 
curve in a ROC curve analysis of all three datasets and the enrichment factor for the 
top 1% predictions using the combined Z- score analysis was the highest for the Astex 
and DUD- E datasets. Additionally, we developed a user- friendly python script (com-
patible with both Python2 and Python3) that enables users to employ the combined 
Z- score analysis for target identification using a user- defined list of ligands and tar-
gets. We are providing this python script and a user tutorial as part of the supplemen-
tal information.
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of a compound identified by either structure- based drug 
discovery or high- throughput screening in cases where the 
experimental assay contained multiple proteins. Protein 
target identification has certainly benefited from the dra-
matic increase in available high- resolution protein struc-
tures in the protein databank (Berman et al., 2002, 2013). 
In combination with these experimentally determined 
high- resolution protein structures, computational methods 
have the potential to play an important role in the process 
of protein target identification.

Molecular protein docking methods are used widely in the 
field of drug discovery as part of structure- based drug dis-
covery (Leelananda & Lindert, 2016). The docking process 
involves the prediction of ligand conformation and orienta-
tion within a specific targeted protein binding site (Kitchen, 
Decornez, Furr, & Bajorath, 2004) by modeling the interac-
tion between a small molecule and a protein at the atomic 
level using a docking score (Meng, Zhang, Mezei, & Cui, 
2011). Since the implementation of the first docking algo-
rithm in the early 1980s (Kuntz, Blaney, Oatley, Langridge, & 
Ferrin, 1982), there have been countless docking algorithms 
developed since, including glide (Friesner et al., 2004), Fred 
(McGann, 2011), autodock vina (Trott & Olson, 2010), gold 
(Verdonk, Cole, Hartshorn, Murray, & Taylor, 2003), flexx 
(Kramer, Rarey, & Lengauer, 1999), and rosettaligand 
(Meiler & Baker, 2006). Application of these algorithms 
has played a significant role in obtaining FDA approval for 
several pharmaceutical drugs (Clark, 2006; Kitchen et al., 
2004; Talele, Khedkar, & Rigby, 2010). Additionally, virtual 
screening, sometimes in combination with algorithms ac-
counting for receptor flexibility (Feixas, Lindert, Sinko, & 
McCammon, 2014; Sinko, Lindert, & McCammon, 2013), 
has identified thousands of hit compounds for a variety of 
disease targets (Alberts, Todorov, & Dean, 2005; Aprahamian 
et al., 2017; Chan et al., 2013; Durrant et al., 2011; Kim et al., 
2015; Lindert et al., 2013; Liu et al., 2014). Application of 
molecular docking methods in protein target identification 
(frequently also referred to as inverse virtual screening; Chen 
& Zhi, 2001) seems straightforward but is plagued by short-
comings. Most notably, molecular docking methods have 
been developed to identify a number of potential ligands for 
a given target by screening thousands to millions of ligands 
against a single protein (Huang et al., 2018; Xu, Huang, & 
Zou, 2018). It has become apparent, however, that molecular 
docking methods are not particularly well equipped to iden-
tify a small number of potential targets (from a large set of 
possible targets) for a given ligand. Due to the binding envi-
ronment’s significant contribution toward the docking score, 
selecting targets based on the raw docking scores has been 
shown to negatively impact the selection accuracy of inverse 
docking methods (Luo et al., 2017; Schomburg et al., 2014; 
Wang, Zhou, et al., 2012). Numerous protocols have been de-
veloped over the last 10–15 years to address this challenge.

The challenge of identifying true positives from a pool 
of potential targets has encouraged the development of var-
ious analysis methods and webserver, predominantly with a 
focus on drug side- effects detection. Among those protocols, 
invdock (Li et al., 2006), tarfisdock (Yang, Luo, Chen, Xing, 
& He, 2009), sepresa (Wang, Chu, Chen, & Lin, 2012), and 
idtarget (Gao et al., 2008) are widely known molecular dock-
ing target identification servers (Huang et al., 2018; Xu et al., 
2018), where each server selects potential interactive targets 
of the users’ query compound from its own protein library. 
invdock is the earliest version of a target identification server, 
and currently, the database contains 9,000 proteins and nu-
cleic acids for screening. The selection method of invdock 
is based on the energy threshold of interactive proteins, by 
which it compares the scoring of the query compound with 
the absolute energy threshold of the overall interactive energy 
of known ligand–protein complexes, including the competi-
tor compounds. The performance of invdock was evaluated 
with two test cases, Vitamin E and 4H- tamoxifen, which 
successfully identified 50% of the experimentally verified 
targets. The tarfisdock server was developed in 2006, with 
a target library containing 698 proteins from the PDTD da-
tabase (Zhang et al., 2007). tarfisdock selects the targets by 
comparing the docking scores of the query compound within 
the proteins of the target library and selecting the top 2, 5, 
or 10% ligand- target pairs as the potential interactive pro-
teins. tarfisdock has also been benchmarked with Vitamin 
E and 4H- tamoxifen and successfully identified 4 out of 12 
experimentally verified binding proteins of Vitamin E, and 
3 out of 10 known binding proteins of 4H- tamoxifen from 
the top 2% candidates. The SePreSA server was developed in 
2009, and currently, the server allows users to screen nearly 
all the well- known SADR (serious adverse drug reactions) 
targets (Ji et al., 2003; Wang, Lin, Chen, Perryman, & Olson, 
2011). Unlike the aforementioned servers, which compared 
the interactive energy and the docking scores of the query 
compound–protein complexes, SePreSA introduced a new 
algorithm, the 2- directional Z- transformation (2DIZ). The 
authors demonstrated that SePreSA’s Z- transformation ma-
trix (defined as the Z- score matrix normalized to a mean and 
a standard deviation of 0 and 1, respectively) enhanced the 
selection of true positives compared to the matrix of docking 
score and the Z- score matrix. The SePreSA algorithm was 
evaluated using a ROC curve and indeed resulted in the high-
est area under the curve (AUC), 0.82, among the three inves-
tigated matrices. Finally, the idTarget server is a more recent 
target identification tool which covers 2,091 proteins in its 
library. The server virtually screens the target library with 
the query compound using autodock4 (Zahler et al., 2007) 
and ranks the target by the predicted binding affinity, which 
then filters out targets with positive Z- scores. The idTarget 
server also demonstrated its performance with three different 
test cases, and one of them was tested on an experimentally 
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verified kinase inhibitor 6- bromo- indirubin- 3′ oxime (6BIO). 
It was reported that after screening 5,821 PDB entries of the 
protein kinases, the server successfully identified protein ki-
nase targets that were known to interact with inhibitor 6BIO, 
resulting in an enrichment factor of 6.54 for the top 1% of 
compounds (Abagyan, Totrov, & Kuznetsov, 1994; Gao 
et al., 2008; Kosmopoulou et al., 2004).

Besides the four target identification servers, other compu-
tational protocols that focus on drug side- effect detection have 
been developed as well. Those protocols allow for a screening 
of a custom set of receptors. One study reported that apply-
ing a consensus scoring method (combining ICM (Li, An, & 
Jones, 2011) docking scores with the probability of the drug–
protein interaction) resulted in the highest accuracy, 48.8%, 
after screening 252 human protein drug targets with 4,621 
experimentally approved small molecules from the DrugBank 
(Hartshorn et al., 2007). Another study proposed adding a cus-
tom score term to the glide SP scoring function and improved 
the selection rate by 27% after cross docking (i.e., docking li-
gands into non- target proteins) a pre- filtered subset of 58 pro-
teins from the Astex dataset (Wang, Zhou, et al., 2012).

Despite the listed achievements in the field of inverse 
docking, the challenge of reliable protein target identification 
is far from solved and many shortcomings remain. Notably, 
most of the developed techniques have low accuracies and 
are not easy to use for non- experts due to a lack of available 
scripts or webserver. Additionally, many of the available drug 
side- effect detection servers (Chen & Zhi, 2001; Gao et al., 
2008; Wang, Chu, et al., 2012; Yang et al., 2009) have a pre-
set list of protein targets that are screened, making them inad-
equate for screening specific assay proteins or if a custom list 
of protein is desired to be screened.

In this work, we aimed to address these above limitations. 
Guided by our finding that the absolute docking score was 
a poor indication of a ligand’s protein target, we developed 
a novel “combined Z- score” method that used a weighted 
fraction of ligand and receptor- based Z- scores to identify the 
correct target for each ligand. We benchmarked our protocol 
using the Astex, DUD, and DUD- E databases. With our com-
bined Z- score method, an additional 14%, 3.6%, and 6.3% li-
gand–protein pairs of the Astex, DUD, and DUD- E datasets, 
respectively, were correctly predicted compared to a docking 
score- based selection as shown in Table 1. The combined 
Z- score had the highest areas under the curve (AUCs) in a 
ROC curve analysis among the score based, receptor- average 
Z- score, and ligand- average Z- score selection protocols for 
all three datasets: Astex (AUC = 0.82), DUD (AUC = 0.76), 
and DUD- E (AUC = 0.74). Furthermore, the enrichment fac-
tor for the top 1% of compounds using the combined Z- score 
analysis was the highest in Astex (EF = 36.5), and DUD- E 
(EF = 18.0). Additionally, we developed a user- friendly 
python script (compatible with both Python2 and Python3) 
that enables users who are familiar with python to analyse 

docking results for target identification. Unlike other web-
server, our python script allows users to screen a custom list 
of query ligands to a custom list of proteins. We are providing 
this python script and a user tutorial as part of the supplemen-
tal information.

2 |  METHODS AND MATERIALS

2.1 | Datasets
Three datasets of protein targets with known binding ligands 
were used to investigate our combined Z- score method for 
the enhanced selection of true positives from inverse virtual 
screening. We used the Astex, DUD, and DUD- E databases 
for our study and detailed their properties below. Two of the 
three datasets (DUD and DUD- E) had multiple active ligands 
for each target protein, whereas the remaining dataset (Astex) 
only contained a single active ligand for each protein.

2.1.1 | Astex
The Astex Diverse Set (Huang, Shoichet, & Irwin, 2006) 
contained a total of 85 proteins and a single unique corre-
sponding active ligand for each target (totaling 85 active 
compounds), as shown in Supporting Information Figure S1. 
About 99.9% of ligand pairs had Tanimoto indices below 
0.6, suggesting that all 85 ligands have a significantly unique 
structure. Therefore, each target has a unique active ligand 
and 84 decoys. The Astex Diverse Set provided the 3D struc-
ture of the target protein in mol2 format and its 3D active 
ligand in mol format. No separate box file with binding site 
coordinates of the target protein was provided. Since the 3D 
ligands of the Astex Diverse Set were directly extracted from 
the original PDB file, the midpoint of the given active ligand 
coordinates was used as the center for the docking box.

T A B L E  1  Prediction accuracy. The number of correctly selected 
ligand–protein pairs and the prediction accuracy of the four different 
selection methods are shown. The first column lists the results of the 
Astex dataset, in which 85 ligands were docked to every 85 proteins. 
The second column lists the results for the DUD dataset, in which 279 
ligands were docked to 8 proteins, and the third lists the results for the 
DUD- E, in which 2,040 ligands were docked to 102 proteins

Number of hits

85 × 85 279 × 8 2,040 × 102

Astex (%) DUD (%) DUD- E (%)

Score 23 (27.1) 121 (43.4) 248 (12.2)

Receptor- average 
Z- score

34 (40.0) 111 (39.8) 368 (18.1)

Ligand- average 
Z- score

23 (27.1) 121 (43.4) 248 (12.2)

Combined Z- score 35 (41.2) 131 (47.0) 376 (18.5)
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2.1.2 | DUD
The DUD (A Database of Useful Decoys) database assem-
bled 40 different targets with 2,950 active compounds and 
over 100,000 decoys (Mysinger, Carchia, Irwin, & Shoichet, 
2012). DUD provided individual downloadable packages for 
each target, which contained a 3D structure of the target in 
PDB format with a box file that listed the binding site coor-
dinates. Each target package also included two separate sets 
of 3D compounds in mol2 format, actives and decoys. To en-
sure computational tractability, 8 targets were randomly se-
lected from the 40 targets, along with their respective active 
compound sets: ACE (49 actives and 230 decoys), ADA (23 
actives and 256 decoys), ALR2 (26 actives and 253 decoys), 
AmpC (21 actives and 258 decoys), AR (74 actives and 205 
decoys), CDK2 (50 actives and 229 decoys), COMT (11 ac-
tives and 268 decoys), and COX1 (25 actives and 254 de-
coys). We randomly selected at least 2–3 proteins from three 
different protein size categories: Protein size ranging from 
100 to 300 residues (Group 1: small proteins), size rang-
ing from 300 to 500 residues (Group 2: medium proteins), 
and size ranging from 500 to 700 residues (Group 3: large 
proteins). The targets AR, CDK2, and COMT were selected 
from Group 1, ADA, ALR2, and AmpC from Group 2, and 
ACE and COX1 from Group 3.

2.1.3 | DUD- E
The DUD- E (A Database of Useful Decoys: Enhanced) data-
base is an enhanced version of the DUD database, containing 
102 diverse targets with 22,886 active compounds and over a 
million decoys.a DUD- E provided different subsets of target 
proteins: subsets categorized by the proteins’ biological func-
tions, a diverse set containing representative targets of the en-
tire database, and a set containing the entirety of the proteins 
available in DUD- E. Similar to the DUD database, DUD- E 
also provided a 3D structure of the target protein (“recep-
tor.pdb”) with a box file listing the binding site coordinates. 
Finally, for each target, DUD- E also provided a list of active 
compounds categorized by their biological functions: actives, 
marginal actives, marginal inactives, and inactives. Among 
those lists of compounds, “actives_combined.ism” was used 
for this study. From the combined actives list, the top 20 com-
pounds with the strongest binding affinity to each target pro-
tein were extracted for our DUD- E ligand library. Therefore, 
each target has 20 active ligands and 2,020 decoys.

2.2 | Preparation for docking
For each database, all ligands were docked to each indi-
vidual protein. For the Astex database, a total of 85 ligands 
were docked to each of the 85 proteins. For the DUD data-
base subset, a total of 279 ligands were docked to each of 

the 8 proteins. And finally, for the DUD- E database, 2,040 
ligands were docked to each of the 102 proteins. Unless the 
database provided 3D compounds, compounds were pre-
pared using Schrödinger’s LigPrep package (Halgren et al., 
2004) prior to virtual screening. The energy minimization 
step was conducted using the OPLS_2005 force field, and 
compounds were ionized at a target pH of 7.0 ± 2.0. An ad-
ditional ligprep step was applied to compounds that failed 
to dock with any of the targets. For this additional ligprep 
step, the OPLS_3 force field was used for the energy mini-
mization step.

2.3 | In silico docking
Each of the active ligands was cross- docked to the receptor 
proteins with glide. For schrodinger’s glide (Friesner et al., 
2004; Ohio Supercomputer Center, 1987), the grid was cen-
tered at the target’s given binding coordinates with an inner 
box size of 20 Å × 20 Å × 20 Å, and an outer box size of 
40 Å × 40Å × 40Å. In glide, compounds were docked to 
the receptor center with the OPLS_2005 forcefield, the van 
der Walls radii of ligand atoms were scaled by 0.8, a charge 
cutoff for polarity was set at 0.15, and we used glidescore 
version SP 5.0.

2.4 | Analysis (Methods)
We evaluated a total of 4 different selection protocols for the 
identification of the small molecule protein targets: (a) score, 
(b) receptor- average Z- score, (c) ligand- average Z- score, and 
(d) the combined Z- score. To calculate these measures, we 
evaluated the docking scores of all the possible ligand–tar-
get pairs. The ligands were ranked by their docking score 
for each target individually. Subsequently, we calculated the 
average docking scores (Equation 1) and score standard de-
viations (Equation 2) for each receptor (receptor- average Z- 
score) and for each ligand (ligand- average Z- score). 

For the receptor- average Z- score, the summation index i 
represents each query ligand, while j represents each target 
receptor, and N represents the total number of ligands of a 
dataset. For the ligand- average Z- score, the representation 
changes, where the summation index i now represents each 
target receptor, while j represents each query ligand, and N 
represents the total number of target proteins of a dataset. 
Based on those target- specific and ligand- specific averages, 

(1)x̄ =

∑N

i=1
xi,j

N

(2)SD =

�

∑N

i=1
(xi− x̄)2

N
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we calculated Z- scores for each ligand docked into each re-
ceptor (Equations 3 and 4). 

In both Equations 3 and 4, the index i represents each 
query ligand for both the receptor- average and ligand- average 
Z- score. However, the average (x̄) and the standard deviation 
(SD) values are different from each other. As mentioned 
above, the receptor- average Z- score was calculated by tak-
ing the target- specific average score and standard deviation, 
whereas the ligand- specific average score and standard de-
viation were used for the calculation of the ligand- average 
Z- score.

In the score analysis, for each ligand, the receptor where 
that ligand had the lowest (i.e., most favorable) docking score 
was selected as the ligand’s potential binding partner. For the 
receptor- average Z- score and the ligand- average Z- score anal-
ysis, the receptor with the lowest Z- score, respectively, was 
selected as the potential target for each of the query ligands.

The combined Z- score was calculated as a linear combi-
nation of the receptor- average and ligand- average Z- scores: 

As part of the combined Z- score analysis, for each ligand, 
the receptor with the lowest combined Z- score was selected 
as the potential target. For the parameters of the combined Z- 
score, a total of 10 different pairs of parameters were tested. 
Both coefficients of the receptor- averaged Z- score and the 
ligand- averaged Z- score ranged from 0.0 to 1.0 with a step 
size of 0.1, and the summation of each coefficient pair was 
equal to 1.

2.5 | Percent accuracies, ROC curves, AUC 
calculation, and enrichments
The 4 selection methods for the identification of the small 
molecule protein targets were evaluated by the percent ac-
curacy and the AUC (area under the curve) value of the ROC 
(receiver operating characteristic) curves. The percent ac-
curacy of the selection was calculated by counting the total 
number of correctly predicted ligand–receptor pairs and then 
dividing the number of correct hits by the total number of 
ligand–receptor pairs in the dataset. For the generation of the 
ROC curve, the ligand–receptor pairs were sorted by their 
scores and different versions of Z- scores, respectively. All the 
correct pairs were defined as the positives along the y- axis, 

and the rest of the pairs were considered as decoys along the 
x- axis for the ROC curve generation. A total of 6 different 
enrichment factors (for the top 1%, 2%, 5%, 10%, 20%, and 
50% of the respective ligand–receptor lists) for each selection 
method were calculated. We also compared enrichments for 
each receptor by calculating the top 5% enrichment factor of 
the individual receptors. The receptor enrichment factor of 
the ligands ranked by the raw docking score was compared to 
that of when ligands were ranked by the combined Z- score.

2.6 | Baseline calculations for AUC and 
percent accuracies
For the evaluation of the overall performance of the 4 differ-
ent protocols, each selection protocol’s AUC and selection 
accuracies were compared with the respective baseline value 
expected for random predictions. For the baseline calculation, 
we generated matrices with random docking scores for each 
dataset. For the Astex model, we generated an 85 × 85 matrix 
with random docking scores of 85 ligands to 85 target proteins 
of the Astex dataset. Similarly, a 279 × 8 matrix was gener-
ated for the DUD, and a 2,040 × 102 matrix was generated for 
the DUD- E dataset. From the random docking score matrix, 
we then assigned targets to ligands based on their respective 
scores and various versions of the Z- score. The above pro-
cedure was repeated 100,000 times, then the average percent 
accuracy and the AUC of the ROC curves of the 4 different 
selection methods were calculated and used as the baseline.

3 |  RESULTS AND DISCUSSIONS

Historically, the primary goal of molecular docking methods 
was to effectively identify potential ligand binders to a single 
protein. Existing docking algorithm scoring functions have 
been optimized to accomplish its primary purpose: ranking 
the true positive ligands toward the top of the list of sorted 
docking scores within one target receptor. However, limi-
tations of these molecular docking methods emerged when 
they were applied to inverse docking, that is, when the same 
set of ligands was docked into multiple target receptors (Luo 
et al., 2017; Schomburg et al., 2014; Wang, Zhou, et al., 
2012). To investigate optimal ways of selecting true posi-
tive ligand–protein pairs from the inverse docking results, 
we worked with three different databases: Astex, DUD, and 
DUD- E. Our Astex dataset was comprised of 85 unique li-
gand–protein pairs, from the DUD we collected 8 different 
proteins each paired with 11–74 active ligands, and from the 
DUD- E we selected 102 diverse proteins each paired with 
20 unique active ligands. After docking all these ligands into 
each of the database protein targets, we then assigned targets 
to ligands based on their respective scores and various ver-
sions of the Z- score.

(3)ZReceptor =

xi− x̄receptor

SDreceptor

(4)ZLigand =

xi− x̄ligand

SDligand

(5)ZComb = 0.7 ∗ (ZReceptor) + 0.3 ∗ (ZLigand)
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3.1 | Variation in score ranges for different 
binding site environments make score- based 
target selection problematic
We first used the docking scores to assign the target–ligand 
pairs. In the score analysis, for each ligand, the receptor 
where that ligand had the lowest (i.e., most favorable) dock-
ing score was selected as the ligand’s potential binding part-
ner. Figure 1 summarizes the docking results of the Astex, 
DUD, and DUD- E databases. The targets are listed on the 
x- axis, and the scores of the ligands docked into each target 
are shown on the y- axis. True positive ligands are colored 
orange. A major limitation of applying the inverse docking 
methodology became apparent if the potential targets were 
selected by comparing their respective docking scores. The 
scoring function of a docking program keeps track of the 
favorable and non- favorable interactions between the bind-
ing site and the query ligand, consequently resulting in a 
variation in score ranges for different binding site environ-
ments. Figure 1 clearly illustrates such score range variations 
of each protein. For example, Figure 1a shows the docking 
scores of 279 ligands docked into 8 protein targets (DUD 
dataset). All targets exhibited unique score ranges and score 

distribution widths. A similar trend was also found in the 
Astex (Figure 1b) and DUD- E datasets (Figure 1c), where 
docking score distributions were notably target- dependent. 
This effect renders the challenge of target identification by 
docking score since the targets exhibiting low score distri-
butions would be predominantly favored. For example, in 
Figure 1a, the overall docking scores of AmpC and COMT 
are less favorable compared to the rest of the DUD proteins, 
which would most likely neglect those two proteins from the 
selection. Indeed, when each ligand’s potential binding part-
ner was selected by the docking scores, none of the correct 
active ligands of AmpC and COMT were selected for these 
two proteins, resulting in 0% accuracy for the two receptors. 
However, the score- based selection accuracy for the DUD 
dataset was 43.4% (Table 1). This was not as low as it could 
have been based on the score distribution. The reason for this 
was that the DUD was the only dataset that consisted of un-
equal numbers of active ligands for each protein, which con-
sequently led to an uneven distribution of true positive pairs. 
For example, the score distribution of AR ranged from 0.52 
to −11.4 kcal/mol and had 74 active ligands, which is 27% of 
all 279 DUD subset ligands. Also, CDK2 had a wide range 
of score distribution, ranging from −1.05 to −10.2 kcal/mol, 

F I G U R E  1  glide SP docking results of the Astex, DUD, and DUD- E databases. The proteins of each dataset are shown along the x- axis, 
and the Glide SP scores of the ligands docked into each target are shown on the y- axis. Correct ligands of each target are colored orange. (a) The 8 
targets of the DUD dataset and the glide SP scores of the 279 ligands docked into each target. (b) The 85 targets of the Astex dataset and the Glide 
SP scores of 85 ligands docked into each target. (c) The 102 targets of the DUD- E dataset and the glide SP scores of 2,040 ligands docked into each 
target [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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and contained 50 active ligands, covering 19% of the DUD li-
gands. This virtually diminished the negative effect of dock-
ing score- based selection for the DUD dataset. Even though 
the prediction accuracy for AmpC and COMT was 0% with 
the docking score- based selection, the total number of mi-
spaired active ligands of the two proteins was only 11% of 
the entire DUD subset active ligands. Not surprisingly, how-
ever, when targets were selected based on the ligand docking 
scores for the other two datasets (Figure 1b,c), the selec-
tion prediction accuracy was significantly lower, compared 
to other selection methods. The Astex and DUD- E datasets 
exhibited accuracies of 27.1% and 12.2%, respectively, as 
shown in Table 1. In summary, due to the binding environ-
ment’s significant contribution toward the docking score, 
selecting targets based on the raw docking scores will gener-
ally negatively impact the selection accuracy of the inverse 
docking method. Hence, the idea for enhancing the selection 
accuracy by normalizing the docking scores prior to the se-
lection step initiated this study.

3.2 | Receptor- average Z- score versus Score
The variation in score ranges for different binding site en-
vironments prompted us to use a Z- score metric instead of 
the raw docking score to identify the target of a particular 
ligand. We used the receptor- average Z- score which nor-
malized the raw docking score of a ligand by its devia-
tion from the average ligand docking score of all ligands 
docked into that receptor. Thus, the receptor- average Z- 
score enabled a fairer comparison of different targets for 
a single ligand. As a result, when a receptor with the low-
est receptor- average Z- score was selected as the potential 
binding target of a ligand, the prediction accuracy for suc-
cessfully matching the true target for a ligand increased by 
12.9 and 5.9 percentage points for the Astex and DUD- E 

dataset. However, the receptor- average Z- score did not im-
prove the prediction accuracy of the DUD dataset, in which 
the raw docking score performed 3.6 percentage points 
better than the receptor- average Z- score. A ROC curve 
analysis evaluated how well the receptor- average Z- score 
distinguishes the true positives from the decoys. As shown 
in Figure 2, the AUCs for both Astex (AUC = 0.82) and 
DUD- E (AUC = 0.73) exceeded the respective docking 
score AUCs.

3.3 | Ligand- average Z- score versus Score
Even though applying the receptor- average Z- score, instead 
of the raw docking score, for the selection of ligand–protein 
targets successfully enhanced the prediction accuracy for the 
Astex and DUD- E datasets, it was not the ultimate solution. 
This led us to investigate a different type of Z- score analysis, 
the ligand- average Z- score, which was a method introduced 
in sepresa (Wang, Chu, et al., 2012). For the ligand- average 
Z- score, each ligand’s raw docking score was normalized by 
its deviation from the average ligand docking score of that 
particular ligand docked into each receptor. Subsequently, 
the receptor with the lowest ligand- average Z- score was 
selected as the potential target for that ligand. As such, 
the ligand- average Z- score was closely related to the raw 
docking score, however, it normalized the values by their 
deviation from the respective average values. As a direct 
consequence, the prediction accuracy of the ligand- average 
Z- score was identical to the score- based selection for all 
three datasets. Despite this, the AUCs for the ligand- average 
Z- score were different from the score- based selection. As 
shown in Figure 2, the AUCs for both Astex (AUC = 0.79) 
and DUD- E (AUC = 0.71) performed slightly better than 
the respective docking score AUCs, but not as well as the 
receptor- average Z- score.

F I G U R E  2  ROC curves. The ROC curves of 4 different selection methods for inverse docking into three datasets (Astex, DUD, and DUD- E) 
are shown: Score- based (blue); Receptor- average Z- score (orange); Ligand average Z- score (green); Combined Z- score (red). The AUC value for 
each selection methods is shown in the legend [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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3.4 | Combined Z- score versus Score
The above results of the receptor- average and ligand- average 
Z- scores inspired the generation of a combined Z- score. The 
combined Z- score was defined as a linear combination of the 
receptor- average and ligand- average Z- score s as defined in 
Equation 5. Subsequently, we selected the receptor with the 
lowest combined Z- score as the potential target for that ligand. 
One of the advantages of the combined Z- score was that it 
did not rely on a single Z- score term, but rather it merged the 
strengths of the two individual Z- scores. As a result, the com-
bined Z- score selection had the highest accuracy compared to 
the three alternative selection methods for all three datasets. 
With the combined Z- score method, an additional 14% of the 
Astex ligand–protein pairs, an additional 3.6% of the ligand–
protein pairs for DUD, and an additional 6.3% of ligand–pro-
tein pairs for DUD- E were correctly identified (see Table 1 
and Supporting Information Figure S2). As shown in Table 2, 
the prediction accuracy enhancement of the combined Z- score 
compared to a random selection was the highest for all three 
cases. The Astex dataset had a prediction accuracy enhance-
ment of 34.9, DUD had a prediction accuracy enhancement 
of 3.8, and DUD- E had a prediction accuracy enhancement 
of 18.9. Additionally, the combined Z- score had the highest 
AUCs for all three datasets. Astex’s AUC was 0.82, DUD’s 
AUC was 0.76, and DUD- E’s AUC was 0.74. As shown in 
Table 3, the enrichment factor within the top 1% scored li-
gand–protein pairs for the combined Z- score was the highest 
in Astex (EF = 36.5), and DUD- E (EF = 18). Even though 
the top 1% enrichment factor of the combined Z- score for 
DUD (EF = 7.2) was not the best among the other selection 

methods, it is important to note that it is seven times more 
likely to find correct ligand–protein pairs in the top 1% with 
the combined Z- score compared to a random selection.

As shown in the above results, when the combined Z- 
score was used as a tool for target identification instead of 
the raw docking score, we achieved the highest prediction 
accuracy among the other methods for all three datasets. We 
next compared the individual receptors’ enrichment of active 
ligands in the top 5% for a score and Z- score- based selection. 
Figure 3 illustrates the difference between the combined Z- 
score’s enrichment factor and the raw docking score’s en-
richment factor for each receptor. As shown in Figure 3, the 
y- axis is the enrichment factor difference (ΔEF) between the 
two methods. A positive ΔEF represents a higher enrich-
ment factor when using the combined Z- score- based rank-
ing, whereas a negative ΔEF represents a higher enrichment 
factor when docking score- based ranking is employed. If, for 
a particular receptor, both the combined Z- score and the raw 
docking score had an identical enrichment factor, ΔEF = 0 
and no bar is shown. According to Figure 3, when ligands 
were ranked by the combined Z- score, 8 proteins of the Astex, 
3 proteins of the DUD, and 47 proteins of the DUD- E dataset 
showed improvement in the enrichment factor, while only 2, 
3, and 12 proteins, respectively, showed improvement when 
the ranking was performed based on the docking score. The 
range of improvement was significantly different between 
the two methods. For the DUD dataset, the improvement of 
the 3 proteins from the combined Z- score ranged from 1.6 
to 6.1, whereas the docking score improvement ranged from 
0.4 to 1. Similarly, for the DUD- E dataset, the combined Z- 
score enrichment factor improvement ranged from 1 to 14 for 

Prediction 
accuracy (%)

Random 
prediction 
accuracy (%)

Prediction 
accuracy 
enhancement

Astex

Score 27.1 1.2 23.0

Receptor- average Z- score 40.0 1.2 33.9

Ligand- average Z- score 27.1 1.2 23.0

Combined Z- score 41.2 1.2 34.9

DUD

Score 43.4 12.5 3.5

Receptor- average Z- score 39.8 12.5 3.2

Ligand- average Z- score 43.4 12.5 3.5

Combined Z- score 47.0 12.5 3.8

DUD- E

Score 12.2 1.0 12.4

Receptor- average Z- score 18.1 1.0 18.5

Ligand- average Z- score 12.2 1.0 12.4

Combined Z- score 18.5 1.0 18.9

T A B L E  2  Prediction accuracy 
enhancement of 4 different selection 
methods. The prediction accuracy of each 
selection methods was divided by the 
expected prediction accuracy of a random 
target selection to calculate the prediction 
accuracy enhancement, which is shown in 
the third column
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the 47 proteins, whereas the docking score enrichment factor 
improvement ranged from 1 to 6 for the 12 proteins.

3.5 | Development of a user- friendly 
python script
A Python script, TargetID.py, was created that reads in a 
user- generated input file comprised of a list of the user’s 

docking results (regardless of the software used to per-
form the docking) and outputs the predicted target–ligand 
combination. The script was written with a focus on user- 
friendliness and only requires a single user input. The input 
docking results need to be formatted in a three column, 
whitespace separated list containing the protein receptor 
name, ligand name, and docking score (one set per line). This 
script, along with a tutorial, has been made freely available 

1% 2% 5% 10% 20% 50%

Astex EF

Score 23.5 17.1 8.7 5.2 3.1 1.69

Receptor- average Z- score 32.9 19.4 11.1 6.5 3.6 1.65

Ligand- average Z- score 25.9 17.1 8.0 5.2 3.4 1.65

Combined Z- score 36.5 21.8 10.6 6.1 3.5 1.69

DUD EF

Score 7.2 6.1 4.8 3.8 2.6 1.56

Receptor- average Z- score 6.1 4.5 3.7 3.1 2.4 1.60

Ligand- average Z- score 7.5 7.2 5.8 3.9 2.6 1.54

Combined Z- score 7.2 6.8 4.7 3.7 2.7 1.62

DUD- E EF

Score 12.7 8.5 5.0 3.5 2.4 1.52

Receptor- average Z- score 16.7 12.1 6.9 4.3 2.8 1.56

Ligand- average Z- score 12.8 9.1 5.4 3.7 2.5 1.52

Combined Z- score 18.0 11.9 6.8 4.4 2.8 1.57

T A B L E  3  ROC curve enrichment. A 
total of 6 different enrichment factors (for 
the top 1%, 2%, 5%, 10%, 20%, and 50% of 
the respective ligand–receptor lists) for each 
selection method were calculated

F I G U R E  3  Top 5% enrichment factor enhancement of individual receptors. This figure illustrates the difference between the combined 
Z- score’s top 5% enrichment factor and the raw docking score’s top 5% enrichment factor for each receptor. The y- axis is the enrichment factor 
difference (ΔEF) between the two methods, where the length of the bar is a measurement of relative improvement. A positive ΔEF represents a 
larger improvement of the enrichment factor by the combined Z- score- based ranking. If both the combined Z- score and the docking score had an 
identical enrichment factor, no bar is shown in the figure [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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to whomever wishes to use it and is accessible through the 
supporting information.

4 |  CONCLUSIONS

The development of inverse docking methods and webserver 
for target identification has been driven by an increasing de-
mand for efficient tools for identifying off- target interactions 
to predict potential drug side- effects. By virtually docking a 
single compound to multiple proteins, inverse docking meth-
ods allow facile screening of large protein libraries. However, 
limitations of applying such molecular docking methods for 
target identification became apparent when compound dock-
ing scores were used as the main criterion for target selection. 
Thus, in this study, we investigated optimal ways of correctly 
selecting ligand–protein pairs from inverse docking results 
by working with three different datasets: Astex, DUD, and 
DUD- E.

The variation in score ranges for different binding site en-
vironments prompted the use of a Z- score metric instead of 
the raw docking score to identify the target of a particular li-
gand. We introduced a novel “Combined Z- score” method for 
target identification of a ligand, which significantly enhanced 
the selection of correct ligand–protein pairs. With our com-
bined Z- score method, an additional 14%, 3.6%, and 6.3% of 
ligand–protein pairs of the Astex, DUD, and DUD- E, respec-
tively, were correctly predicted compared to a docking score- 
based selection. Additionally, the combined Z- score had the 
highest AUCs for all three datasets, and the enrichment factor 
at the top 1% for the combined Z- score was the highest in 
Astex and DUD- E. We also developed a user- friendly python 
script that will allow the non- expert users to readily analyze 
their inverse docking results for target identification. Unlike 
other webserver, our python script allows users to screen 
their query ligands to a custom protein library.

As mentioned earlier, being able to identify protein tar-
gets of small molecules has become an important tool for 
detecting potential side- effects of novel and commercial-
ized drugs. Among other known detectors of drug side- 
effects, inverse docking is an efficient tool for screening 
large protein libraries. By applying our combined Z- score 
method to the inverse docking, it will assist in further in-
creasing the accuracy of target identification with molecu-
lar docking methods.
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