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ABSTRACT: In recent years mass spectrometry-based
covalent labeling techniques such as hydroxyl radical foot-
printing (HRF) have emerged as valuable structural biology
techniques, yielding information on protein tertiary structure.
These data, however, are not sufficient to predict protein
structure unambiguously, as they provide information only on
the relative solvent exposure of certain residues. Despite some
recent advances, no software currently exists that can utilize
covalent labeling mass spectrometry data to predict protein
tertiary structure. We have developed the first such tool, which
incorporates mass spectrometry derived protection factors
from HRF labeling as a new centroid score term for the Rosetta scoring function to improve the prediction of protein tertiary
structures. We tested our method on a set of four soluble benchmark proteins with known crystal structures and either published
HRF experimental results or internally acquired data. Using the HRF labeling data, we rescored large decoy sets of structures
predicted with Rosetta for each of the four benchmark proteins. As a result, the model quality improved for all benchmark
proteins as compared to when scored with Rosetta alone. For two of the four proteins we were even able to identify atomic
resolution models with the addition of HRF data.

Historically, mass spectrometry has been used as a tool to
quantify the mass and oligomeric distribution of proteins

and protein assemblies.1,2 More recently, advances have been
made that allow mass spectrometry experiments to yield three-
dimensional structural information on proteins and their
complexes. By itself, there is no one mass spectrometry
technique that can unambiguously elucidate the atomic-
resolution tertiary structure of a protein or protein complex.
Hence, a combination of multiple different techniques is
generally required.3−5 Several techniques have been particularly
successful in probing the tertiary structure of proteins and their
complexes. Hydrogen−deuterium exchange (HD/X) is based
upon measuring the extent of isotopic exchange of backbone
amide hydrogens.6,7 Chemical cross-linking involves studying
the structurally defined distances by covalently pairing
functional groups within a protein.8,9 Noncovalent interactions
between lysine residues and 18-crown-6 ether (a cyclic organic
compound) can provide lysine solvent accessibility within
proteins.10 Finally, covalent labeling (sometimes referred to as
“protein footprinting”) involves exposing a protein in solution
to a small labeling reagent that will covalently bond to select
amino acid side chains that are exposed to solvent, whereas side
chains buried within the core of the protein or occluded by
interacting protein subunits will not get labeled.11−13 This
provides information about the relative location of certain
amino acids with respect to the solvent (either on the surface
and solvent exposed or buried within the protein or protein

complex structure). A variety of different labeling reagents exist;
some are highly specific as to which amino acid(s) can react
with the reagent, and others have a much broader range of
potential target residues. These techniques have been
successfully employed with mass spectrometry to analyze
protein structures.14−22

One covalent labeling method which has been increasingly
widely used recently is hydroxyl radical footprinting
(HRF).23,24 This method involves exposing a solvated protein
of interest to hydroxyl radicals generated from one of a variety
of sources. Initially, oxidative labeling was performed using a
synchrotron that ionized water to form the hydroxyl radicals.25

With recent advancements, a new method of hydroxyl radical
labeling, fast photochemical oxidation of proteins (FPOP), has
been developed.26,27 With FPOP, a pulsed laser is used to
photolyze hydrogen peroxide on a microsecond time scale,
which is faster than the unfolding of a protein. This ensures that
the labeling process does not disrupt the native state of the
protein. In conjunction with mass spectrometry, FPOP
provides important insight into the structure of proteins. This
labeling method is quite broad in that it can label 19 of the 20
different amino acids, yielding extensive structural information.
Despite the wealth of information provided by FPOP, the data
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itself is sparse, meaning that the solvent exposure information
on a set of protein residues cannot provide an unambiguous
determination of the protein structure. There remains a critical
need for computational methods that can facilitate and
compliment the structural interpretation of mass spectrometry
FPOP labeling data.
Over the years, numerous experimental techniques have been

successfully combined with computational methods to predict
protein structures. Some examples of this are sparse
experimental data from site-directed spin labeling electron
paramagnetic resonance (SDSL-EPR) in conjunction with
Rosetta to improve protein structure predictions,28,29 nuclear
magnetic resonance spectroscopy (NMR),30,31 small-angle X-
ray scattering (SAXS),32−35 and cyro-electron microscopy
(cryo-EM).36−43 Mass spectrometry techniques have also
been utilized in conjunction with computational methods.
Malmström and co-workers have made significant contributions
by incorporating data from MS chemical cross-linking experi-
ments as inputs into computational methods for protein
structure prediction.15,44−47 The work of Sali and co-workers
has contributed greatly to the field with the development of the
Integrative Modeling Platform (IMP), an open source platform
that integrates experimental data into computational meth-
ods.19,35,48−52 IMP is designed as a set of self-contained
modules that can be mixed and matched based on a user’s
preference. Models are generated and scored based on spatial
restraints that are derived from multiple sources of
experimental data. Currently IMP supports the use of
experimental data gathered from sources such as SAXS profiles,
EM images and density maps, NMR, chemical cross-linking,
HD/X, and chromosome conformation capture. With IMP,
both monomeric and multiunit protein structures can be
studied. Finally, Yang and co-workers have developed an
integrative method, iSPOT, to determine protein−protein
complexes that combines SAXS, hydroxyl radical footprinting,
and computational docking of either rigid-body or molecular
dynamics models.32

Computational modeling using FPOP data is still in its early
stages. Recently, an integrated workflow was developed by Xie
and co-workers that successfully demonstrated correlation
between experimental high-resolution hydroxyl radical foot-
printing data and residue solvent exposure (as measured by
absolute average solvent accessible surface area) as well as
differentiated between low and high RMSD models for the
soluble proteins myoglobin and lysozyme.53 This elegant work
demonstrated that there is a strong potential for successfully
incorporating HRF or FPOP experimental data into computa-
tional methods in order to improve the prediction of a protein
structure. Despite the many advances and successes with using
sparse data from various experimental methods for structure
prediction, the use of covalent labeling mass spectrometry as
the data source had yet to be accomplished.
In this work, we incorporated mass spectrometry derived

protection factors from FPOP and synchrotron-based HRF
labeling as a new score term for the Rosetta scoring function to
improve the prediction of protein tertiary structure. Rosetta is
one of the primary computational tools used for protein
structure prediction.54 To accomplish our goal, we compiled a
set of four soluble benchmark proteins with known crystal
structures and either published HRF/FPOP experimental
results or internally acquired data. We developed an efficient
metric to quantify residue-specific burial that correlated linearly
to the natural logarithm of experimental protection factors

derived from the labeling rates. A new Rosetta centroid score
term, which utilizes residue-resolved protection factors as
inputs, was developed. This score term was used in conjunction
with the standard Rosetta scoring function to rescore large
decoy sets of predicted structures for each of the four
benchmark proteins. In this process of rescoring the quality
of all models improved such that after rescoring the structures
with the best score correlated more closely to the native
structures. For two of the four proteins, we were even able to
identify atomic resolution models using the HRF/FPOP data.

■ MATERIALS AND METHODS

Benchmark Data Set and Experimental Protection
Factors. For this work, we used the protection factor (PF)
which was first described by Chance and co-workers and is
derived from a labeling rate constant as a metric for residue
labeling.55 PF is defined as the relative intrinsic reactivity of a
given residue to hydroxyl radicals divided by the rate constant.
The intrinsic reactivities of each amino acid type are well-
defined in the literature.24 The PF, as expressed on a natural
logarithmic scale, has been shown to correlate with the solvent
exposure of a given residue.16,55,56 Within the literature, the PF
has been defined multiple ways, but for our purposes we have
defined the protection factor for residue i, where Ri is the
intrinsic reactivity for residue i and ki is the experimentally
determined labeling rate constant, as defined by eq 1:

=PF
R
ki

i

i (1)

As a benchmark set, four different proteins with available
FPOP or HRF labeling data were utilized. These proteins were
calmodulin (PDB: 1PWR), myoglobin (PDB: 1DWR),
lysozyme (PDB: 1DPX), and cytochrome c (PDB: 2B4Z).
The experimentally determined PFs for calmodulin were
extracted from the published work of Kaur and co-workers,
who generated radicals via a millisecond time scale synchrotron
radiation method.16 For myoglobin, the PFs were calculated
from the reported labeling rate constants by Xie and co-
workers53 using the reactivities reported in the literature.24 For
this study, radicals were generated using submicrosecond FPOP
with a dosimeter to provide varying doses of radicals. Finally,
the experimental PFs for both lysozyme and cytochrome c were
oxidatively modified by FPOP at a single radical dose as
described in the Supporting Information.
For incorporation of the data into the newly developed score

term, input files were created for each protein consisting of a
heading line followed by two columns comprising the residue
number and the natural logarithm of the protection factor, with
each labeled residue on a new line. FPOP/HRF can label 19 of
the 20 amino acids; however, data from the following residue
types were omitted due to having either too low/high reactivity
or unclear products: M, C, D, N, Q, T, S, A, G, R, K, and V. Of
this list of omitted residues, it has been previously suggested by
Xie and co-workers that the sequence context plays a role in
whether or not these amino acid types are labeled. This is a
complex issue and has not been examined in this current work.
As a result, only eight of the 20 amino acids were considered in
the analysis: I, L, P, F, W, Y, E, and H. These residues have
intermediate reactivities and correspond with the residue types
utilized in similar studies.16,53

Rosetta ab Initio Folding. In the absence of any
experimental labeling data, decoy sets of 20000 structures
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were generated for each of the four benchmark proteins using
the AbinitioRelax application within Rosetta.57−59 The
AbinitioRelax protocol consists of two main steps: (1) a
coarse-grained fragment-based search of conformational space
that uses a low-resolution “centroid”-based (treating each
residue with backbone atoms defined explicitly and the side-
chain represented as a single sphere) scoring function and (2) a
high-resolution refinement using the full-atom Rosetta score
function.
The generated decoy sets act as benchmarks to compare the

structure prediction capabilities of Rosetta in the absence of
FPOP/HRF labeling data. Specifics of the protocol have been
detailed extensively in the literature.60 The fragment libraries
for this work were generated using the Robetta online server.61

The required FASTA formatted sequences and native protein
structures were extracted from each protein’s respective PDB
file. The fragment libraries, FASTA sequences, and native PDB
structures (used solely for determining the deviation of the
generated models from the native) were used as inputs for
Rosetta’s AbinitioRelax application. For lysozyme, disulfide
bonds were present between the following residues: 6 and 127,
30 and 115, 64 and 80, and 76 and 94. An additional input file
was provided to specify the residues that are a part of the
disulfide bonds. The generated structures were scored using the
Rosetta energy function (Ref15), where the score is an
approximation of the energy of the protein or complex.62

The scores and respective root-mean-square deviation (RMSD)
to the native crystal structure were extracted from the output
score file. Structures were ranked based on their scores, with
lower scores anticipated to correspond to models closer in
structure to the native structure. Rosetta scores versus RMSD
to the native protein were generated to demonstrate this
correlation.
For each of the benchmark proteins, two small sets of

representative structures were generated. The first set
represented ten native-like conformations of each protein
which were obtained by relaxing each crystal PDB in the
Rosetta force field using the relax application.63,64 We will refer
to these structures as the ten native-like models or the native-
like model set. The second set contained models that scored
well with the Rosetta energy function but had high RMSDs
compared to the crystal native structures. These were obtained
by extracting the top ten scoring models with RMSD > 10 Å for
each protein from the initial ab initio calculations. We will refer
to these structures as the good scoring/high RMSD model set.
Together, these sets represented the two extremes of potential
models that we desired to efficiently differentiate between using
our new score term.
Residue Exposure Metric. To compare the protection

factors extracted from the FPOP/HRF labeling data to the
residue exposure in the protein models, a corresponding
residue exposure measure was developed which enabled
calculation of the level of exposure of every labeled residue in
a protein model. The PF has been shown to correlate to a
residue-level solvent accessible surface area (SASA).16,53,56

Because residue-level SASAs are expensive to calculate,65,66 we
explored other metrics, aside from SASA, that were less
computationally expensive and provided even stronger
correlation to the natural logarithm of the experimental
FPOP/HRF PFs. Assuming solvent exposed residues are
preferentially labeled, we sought to find a residue burial/
exposure metric that showed correlation to the natural
logarithm of the PFs. Several methods, such as weighted

neighbor count and SASA,65,67 were investigated. For reference,
the correlation between SASA and the natural logarithm of the
PFs can be found in Figure S-1. However, the burial measure
found to give the strongest correlation to the experimental data
was a neighbor count determined for each labeled residue. A
residue with a high neighbor count can be thought of as buried,
whereas a residue with a low neighbor count can be considered
solvent exposed. For this analysis, a low-resolution model of the
protein was used where all of the backbone atoms were
represented explicitly and the side-chain was represented as a
single sphere called a centroid. To calculate a residue’s neighbor
count, the distances between the labeled residue’s centroid
(residue i) and all of the other residues’ centroids (residues j ≠
i) were measured. The distance, rij, was then used in a sigmoid
function that defined a value between 0 and 0.7, as shown in
Figure S-2, representing the amount of contribution of a
neighboring residue j to the total neighbor count of the target
residue i. The closer a residue j’s centroid is to labeled residue
i’s centroid, the more it contributed to the overall neighbor
count; conversely, the further away it is, the less it contributed.
The total neighbor count for each labeled residue i was then
defined as the sum of every residue’s contribution to the
neighbor count:

∑=
+ −

#

≠ r
neighbor count

1.0
1.0 exp(0.1( 9.0))i

j i j

total of residues

(2)

We developed a new Rosetta application, burial_measur-
e_centroid, which calculated the neighbor counts (as defined in
eq 2) for arbitrary protein structures. For each of the 80 models
comprising the native-like and good score/high RMSD model
sets, the neighbor counts were calculated using the
burial_measure_centroid Rosetta application. The neighbor
counts for the ten native-like structures of calmodulin
(1PRW) were used to perform a linear regression with the
corresponding experimental ln PF values. The linear fit
obtained was then used as a prediction function to predict
the neighbor count for all 80 representative models with their
respective experimental ln PF values as inputs.

hrf_ms_labeling Score Term. A new score term,
hrf_ms_labeling, was developed to be incorporated into Rosetta
to assess the agreement of Rosetta models with experimental
FPOP/HRF labeling data. This score term is defined as a
centroid score term that rewards protein conformations that
show agreement with the experimental labeling data. By
treating the score term in a Bayesian fashion, the total Rosetta
score was derived (as shown explicitly in the Supporting
Information) to be the sum of the weighed score term and the
current Rosetta score:

= _ _ +w hrf m labelintotal score ( )( s g) Rosetta scorehrf
(3)

The score term hrf_ms_labeling was implemented using the
linear prediction function obtained by correlating the observed
neighbor counts and experimental ln PF for the benchmark
protein calmodulin (see the previous section, Residue Exposure
Metric). A value for hrf_ms_labeling was calculated by summing
the per-residue neighbor scores over the set of labeled residues
and was defined as
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∑_ _ = −
+ | | −

#

hrf ms labeling
1.0

1.0 exp(2.0( diff 7.5 ))i i

of labeled residues

(4)

where |diff|i is the absolute value of the difference between the
observed neighbor count (calculated using eq 2 for the
modeled protein) and the predicted neighbor count (calculated
using the linear prediction function) for labeled residue i. Using
the definition in eq 4, each labeled residue contributed a per-
residue score ranging from −1 to 0, with a value of −1 in the
case of strong agreement with the experiment and a value of 0
in the case of complete disagreement. If the value of |diff|i fell
between 5 and 10 (which corresponded to the same cutoffs as
the delta lines used in analyzing the prediction function), the
residue received a logistically increasing value ranging from −1
to 0. The per-residue score (function found within the
summation in eq 4) is depicted in Figure 1 with all relevant
points highlighted.

Rescoring of Rosetta Structures. To test the capability of
our new score term to improve Rosetta model quality, the
20000 Rosetta models initially generated as part of the ab initio
folding for each benchmark protein were rescored with the
hrf_ms_labeling score term. The calculated hrf_ms_labeling
score was weighted by a value of 6.0 and added to the Rosetta
score calculated using Rosetta’s Ref15 energy function:

= + _ _hrf ms labeling
total Rosetta score

Ref15 Rosetta score 6.0( ) (5)

A weight of 6.0 was the lowest possible value that showed the
greatest improvement. We iterated through all integer values
from 1 to 36 and determined the top scoring models’ RMSDs
at each weight. The results of this analysis are shown in Figure
S-3. To calculate the hrf_ms_labeling contribution for each
model, the score Rosetta application was run on each of the
80000 models using the output structures from the initial ab
initio model generation as the input. For each of the 80000
rescored models, the total Rosetta scores, the RMSD to the
native structure, and the hrf_ms_labeling scores were extracted.

Model Evaluation. Several different metrics were used to
evaluate the performance of both Rosetta and the score term.
Those metrics were based upon the concept of an energy
funnel, i.e., that within the overall energy landscape, low RMSD
models can be distinguished from high RMSD models due to
their lower energy (Rosetta score).68 The first metric used was
a simple determination of the top scoring model’s RMSD to the
native structure. In practice, the Rosetta model with the lowest
(most favorable) Rosetta score is assumed to be closest in
structure to the native. Because all of the benchmark proteins
chosen for this study had crystal PDB structures available, an
RMSD for that model can be calculated.
The second metric used was the goodness-of-energy-funnel

metric Pnear, as defined by Bhardwaj and co-workers.69 A value
of Pnear was calculated for each Rosetta score versus RMSD
distribution using the following equation:

=
∑ − −

∑ −

λ=

=

( ) ( )
( )

P
exp exp

exp

m
N rmsd E

k T

m
N E

k T

near

1

1

m m

m

2

2
B

B (6)

where N is the total number of models and Em and rmsdm are
the Rosetta score and RMSD of model m, respectively. The
parameter λ was given a value of 2.0 and controlled how similar
a model needed to be to the native to be considered native-like.
The final parameter, kBT, was set to 1.0 and governed how the
shallowness or depth of the funnel affects Pnear. Values of Pnear
can range from 0 (very non-funnel-like) to 1 (funnel-like).
The final metric used was a comparison of the number of top

100 scoring models with RMSD’s below 10.0 Å. By comparing
this metric between different Rosetta scores versus RMSD
distributions, we were able to investigate how well (or poorly)
the addition of hrf_ms_labeling was at improving model quality.

■ RESULTS AND DISCUSSION
Generation of Control ab Initio Model Set for

Benchmark Proteins using Rosetta. To establish the
baseline performance of Rosetta’s Ref15 scoring function at
predicting protein structures without any additional exper-
imental knowledge, decoy sets consisting of 20000 models were
generated for each of the four benchmark proteins. The four
proteins selected for the benchmark were calmodulin (PDB:
1PWR), myoglobin (PDB: 1DWR), lysozyme (PDB: 1DPX),
and cytochrome c (PDB: 2B4Z). Table 1 summarizes the

benchmark proteins. These proteins ranged in size from 104 to
153 amino acids in length. Contact orders (CO) were
calculated for each of the proteins.70 The contact orders for
all four proteins were low, ranging from 10.7 to 13.7. The
secondary structure content for the four proteins were relatively
high, ranging from 41% to 74%. Because these proteins were all
relatively small (approximately fewer than 150 amino acids)
and had high secondary structure content and low contact

Figure 1. Plot of the per-residue neighbor score for labeled residue i as
a function of the absolute difference between its observed and
predicted neighbor counts (|diff|i). The score function fully rewarded
(with a score of −1) residues that have an |diff|i < 5 and gave no
reward (a score of 0) to residues that have an |diff|i > 10.

Table 1. Summary of the Four Benchmark Proteins

protein
PDB
entry

no. of
amino
acids

no. of
labeled
residues

contact
order

secondary
structure

content (%)

calmodulin 1PRW 148 25 10.7 61
cytochrome c 2B4Z 104 9 11.6 41
myoglobin 1DWR 153 25 12.4 74
lysozyme 1DPX 129 6 13.7 51
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orders, we concluded that they were amendable to Rosetta ab
initio protein structure predictions.
Using Rosetta to generate 20000 models for each of the four

proteins resulted in the selection of best-scoring structures with
RMSDs ranging from 5.0 to 15.2 Å, as summarized in Table 2
and indicated on the Rosetta score versus RMSD to native
structure plots in panel A of Figure 2 by stars. The two proteins
with top scoring structures that were closest to their respective
native structures were myoglobin (RMSD = 5.0 Å) and
cytochrome c (RMSD = 5.5 Å). The predictions for the
remaining two proteins, calmodulin and lysozyme, were poor,
yielding top scoring models with RMSDs of 11.8 and 15.2 Å,
respectively. Considering the size of the benchmark proteins,
none of these best-scoring models were high-quality, near-
atomic resolution models. For two of the proteins, even an
incorrect topology was identified. However, as can be seen in
Figure 2A, models with significantly lower RMSDs to the native
structure were built for all four proteins. For calmodulin, the
RMSDs for the generated models ranged from 2.9 to 21.5 Å.

Similar ranges were sampled for cytochrome c and myoglobin,
with RMSDs ranging from 1.4 to 21.3 Å and 1.5 to 27.3 Å,
respectively. Lysozyme had the poorest sampling, where model
RMSDs ranged from 6.0 to 18.7 Å. This indicated that better,
and in some cases even near-atomic, resolution models were in
fact generated for all proteins, but they were generally not
identified by the lowest score.
The goodness-of-energy-funnel metric, Pnear, was used to

evaluate the funnel quality of each of the distributions. As can
be seen in Table 2, none of the distributions had Pnear values
greater than 0.1, strongly suggesting that none of the ensembles
of the models exhibited funnel-like score distributions. This
lack of a funnel in the Rosetta score versus RMSD to native
structure plots made structure prediction and, particularly,
native structure identification challenging. On the basis of these
ab initio structure prediction results, we concluded that
incorporation of experimental data, such as HRF/FPOP
labeling data, had the potential to improve identification of
low RMSD models by score.

Table 2. Rosetta ab Initio Prediction and Rescoring Results Summary with and without the Addition of hrf_ms_labeling

Rosetta ab initio results Rosetta + hrf_ms_labeling rescore results

protein
top scoring model RMSD to

native (Å) Pnear
top scoring model RMSD to

native (Å) Pnear
confidence measure (Pnear to top

scoring RMSD)

calmodulin
(1PRW)

11.8 2.10 × 10−8 10.2 1.17 × 10−6 4.18 × 10−5

cytochrome c
(2B4Z)

5.5 0.0805 2.2 0.238 0.038

myoglobin
(1DWR)

5.0 0.00208 1.8 0.378 0.0089

lysozyme (1DPX) 15.2 3.04 × 10−7 7.2 1.89 × 10−6 3.079 × 10−9

Figure 2. (A) Rosetta score versus RMSD to the native structure plots for 20000 models generated using Rosetta ab initio for each of the four
benchmark proteins. The top scoring model is represented as a star on each plot. (B) The top scoring models from the Rosetta score versus RMSD
distributions in A (color) superimposed on the respective native model (gray). (C) Rosetta score + hrf_ms_labeling versus RMSD to the native
structure plots for each of the four benchmark proteins after rescoring with the new score term. The top scoring model is represented as a star on
each plot. (D) The top scoring models from the Rosetta score + hrf_ms_labeling rescoring distributions in C (color) superimposed on the respective
native model (gray).
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Rescoring Model Sets using hrf_ms_labeling. The
overall goal of this work was to utilize experimental HRF/
FPOP labeling data in order to improve models predicted by
Rosetta. To accomplish this, a new Rosetta score term,
hrf_ms_labeling, was developed that incorporated experimental
HRF/FPOP protection factors (PFs). After developing
hrf_ms_labeling, we confirmed that incorporation of HRF/
FPOP labeling data did enable discrimination of near-native
and high RMSD models and that combination of this score
with the total Rosetta Ref15 score did improve the quality of
the models selected from the structure ensembles.
The first step in this process was to demonstrate that a

correlation existed between the experimental labeling data (the
PFs) and a residue solvent exposure metric derived within
Rosetta. The metric that demonstrated the best correlation was
the per-residue neighbor count, as defined in the Materials and
Methods. The calculated neighbor count for every labeled
residue within calmodulin (1PRW), one of our benchmark
proteins, was plotted against the natural logarithm of the
respective PF values. The positive correlation, as seen in Figure
3, had an R2 of 0.48 and p value of 1.36 × 10−36. The observed

trend matched our expectation where residues with a low ln PF
also showed a low neighbor count (suggesting a higher solvent
exposure) and residues with a high ln PF showed a high
neighbor count (suggesting a lower solvent exposure). The
derived relationship between PFs and neighbor count was used
to predict neighbor counts for all four benchmark proteins
based on the experimental HRF/FPOP protection factors. For
comparison, observed neighbor counts for two small sets of
representative structures (the native-like model sets and the
good scoring/high RMSD model sets) were calculated from
each PDB structure using burial_measure_centroid. The
predicted neighbor counts have been plotted against the
observed neighbor counts (calculated directly from representa-
tive structures of the four benchmark proteins) in Figure 4. In
order to quantify the accuracy of the prediction, two delta lines
were defined (d1 = 5.0 and d2 = 10.0). These delta lines
represent how close the predicted neighbor counts were to the

actual observed values. Using the native-like model sets for all
four proteins, an average of 81% and 59% of the labeled
residues fell within d2 and d1, respectively, whereas only 67%
and 38% of those belonging to the good scoring/high RMSD
model sets did. This demonstrated that we predicted the
majority of the labeled residues in native-like models within the
delta lines and simultaneously excluded the majority of residues
in the high RMSD models from within the delta lines. This
suggested that agreement between a model’s residue exposure
and the neighbor count metric derived from experimental
FPOP/HRF mass spectrometry data can indeed distinguish
between low and high RMSD models and can thus be used to
rescore protein models built in the absence of experimental
FPOP/HRF labeling data. To be able to rescore protein
models, a hrf_ms_labeling score term was developed for
incorporation into Rosetta.
We next demonstrated that the new score term was effective

in improving model prediction. The 20000 model decoy sets
generated for each of the four benchmark proteins were
rescored with the hrf_ms_labeling term added to the Ref15
Rosetta score. For each set of models, Rosetta score +
hrf_ms_labeling versus RMSD plots were generated. On the
basis of the rescored structures, new top scoring models were
selected. As shown in Table 2, the RMSDs of the top scoring
models improved for all four proteins, while for two of the
proteins near-atomic resolution models were identified. The
biggest increases in top scoring model quality were observed for
lysozyme. Addition of HRF/FPOP labeling data improved the
RMSD of the top scoring lysozyme model from 15.2 to 7.2 Å, a
significant improvement in the model’s quality. Although a
model with an RMSD of 7.2 Å is not usually considered high
quality, considering that the best lysozyme ab initio model had
an RMSD of 6.0 Å, one of the best existing models was
identified. Both myoglobin and cytochrome c showed decreases
in their RMSDs to near-atomic resolution models (2.2 and 1.8
Å respectively), thus models were identified with RMSDs close
to the best existing models within the 20000 structures.
Calmodulin had the least improvement with a change in RMSD
from only 11.8 to 10.2 Å. When we superimposed the top
scoring models onto their respective native structures, as
depicted in panels B and D of Figure 2, a significant increase in
model quality could be observed as a result of the addition of
hrf_ms_labeling. All top scoring models now identify the
correct protein topology.
In addition to analyzing the RMSD of the top scoring

models, the overall energy landscape of the structures was
analyzed. Values of Pnear were calculated for each score versus
RMSD distribution, identical to what was done without the
addition of hrf_ms_labeling (see Table 2). With the addition of
the hrf_ms_labeling term to the scoring function, there was an
increase in Pnear, i.e., an increase in funnel quality of the score
versus RMSD plots, for all four proteins. As can be seen in
panel C of Figure 2, the distributions appear more funnel-like,
with lower RMSD models receiving lower scores. Interestingly,
the Pnear values of the two proteins for which near-atomic
resolution models were identified (myoglobin and cytochrome
c) were several orders of magnitude higher than those of the
other proteins. We thus speculated that Pnear might be used as a
confidence measure to identify cases for which near-atomic
resolution models were identified. To explore this idea, we
recalculated the score versus RMSD plots with respect to the
lowest scoring structure (to obviate the necessity for knowledge
of the native structure) and measured Pnear values for these

Figure 3. Linear regression between the neighbor count and the
natural logarithm of the experimental protection factor (ln PF) for ten
relaxed native models of calmodulin. The linear fit along with its
coefficient of determination are indicated on the plot.
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distributions as shown in the last column of Table 2. While the
trend was not as pronounced as before, this Pnear value still
served as a confidence measure in that the Pnear values of the
two proteins for myoglobin and cytochrome c were more than
2 orders of magnitude higher than those of the other proteins.
Upon rescoring with hrf_ms_labeling, the overall distribution of
the structures did not shift to a lower RMSD because
hrf_ms_labeling was simply used to rescore previously
generated models. Plots of hrf_ms_labeling versus RMSD are
shown in Figure S-4. For all four proteins, models with poor
(i.e., high, closer to 0) hrf_ms_labeling scores also had a higher
RMSD. Likewise, some of the models with a better
hrf_ms_labeling score tended to have a lower RMSD. There
were a fair number of models, however, that had good
hrf_ms_labeling scores but a high RMSD. This trend is not
concerning because the information obtained from the HRF/
FPOP labeling experiments are not all encompassing of a
protein’s structure. Individual score terms within Rosetta
generally do not exhibit the exact trend of low score/low
RMSD and high score/high RMSD. Combination of this score
term with the Rosetta scoring function, however, generated the
desired trend.
We finally investigated whether a larger set of top scoring

models after the rescoring were of increased quality. Histo-
grams were generated showing the RMSD frequency of the top
100 scoring models for the distributions pre- and post-addition
of hrf_ms_labeling. On the basis of these histograms shown in
Figure 5, there was a definite shift in the model quality for
calmodulin and myoglobin, with more models scoring well with
low RMSDs. The percentage of the top 100 scoring models
that had a RMSD < 10 Å increased from 35% to 68% for
calmodulin with the addition of hrf_ms_labeling. This illustrates
that despite not identifying a near-atomic resolution model for
calmodulin, addition of the labeling information significantly
improved the model quality. Myoglobin demonstrated an
increase in the percentage of models in the top scoring 100
with RMSD < 5 Å from 47% to 70%. A shift in model quality of
the top 100 scoring models was also seen with for lysozyme and
cytochrome c, albeit it was much less significant.
The hrf_ms_labeling score term has shown great success in

rescoring structures based on experimental HRF/FPOP
labeling data and has been designed efficiently. A centroid
form of the score term was chosen for two reasons. First, this
implementation showed the highest correlation between the

centroid-based neighbor count and experimental ln PFs.
Second, a centroid-based score function is crucial in predicting
structures within Rosetta’s AbinitioRelax protocol. Within this
protocol, the main sampling of conformational space occurs
during the centroid scoring phase. Thus, hrf_ms_labeling would
have maximal impact on predicting structures ab initio if it was
utilized during the centroid scoring phase. Future work will
focus on developing these ab initio capabilities.

■ CONCLUSION
In this work, a new Rosetta score term, hrf_ms_labeling, was
developed. This score term utilizes residue-resolved protection
factors from hydroxyl radical labeling (HRF/FPOP) mass
spectrometry data and assesses agreement of the protein model
with the experimental data. Four proteins (calmodulin,
cytochrome c, myoglobin, and lysozyme) that had both
available experimental data and known crystal structures were
used to benchmark the performance of the score term. Using
the linear correlation between the natural logarithm of the
experimental protection factors and calculated neighbor counts

Figure 4. (A) Plot of predicted and observed neighbor counts for ten relaxed native models for each of the four benchmark proteins. (B) Plot of
predicted and observed neighbor counts for ten models with good Rosetta scores and high RMSD values (>10 Å) as compared to their respective
natives for each of the four benchmark proteins. For both plots, the dashed black line represents the theoretical perfect fit (the predicted matches the
observed perfectly) and the yellow and cyan lines represent the inner (d1 = 5) and outer (d2 = 10) delta lines, respectively.

Figure 5. Histograms for each of the four benchmark proteins showing
the RMSD frequency of the top 100 scoring models from both the
ensembles generated using Rosetta and the ensembles obtained after
rescoring with hrf_ms_labeling. The histograms are plotted in the
range of 0−20 Å with bin widths of 0.67 Å.
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for one of the benchmark proteins, calmodulin, a prediction
function was generated to predict the neighbor counts for the
other proteins using their respective ln PFs. This prediction
function was used as the basis of the new score term
hrf_ms_labeling. The new score term was used to rescore sets
of 20000 models for each protein generated using Rosetta’s
AbinitioRelax application. As a result, the top scoring model
increased in quality for all four proteins. The method used for
radical generation did not adversely affect the modeling. For
two of the four proteins we were even able to identify atomic
resolution models using the HRF/FPOP data. In addition, the
overall distribution of models moved more toward a funnel-like
energy landscape, indicating that good scoring models were
closer in structure to their respective natives. Finally, we were
able to identify a confidence measure that has the potential to
identify successful models without having to know the native
structure.
To our knowledge, we are reporting the first method to

incorporate experimental HFR/FPOP labeling data in protein
structure prediction. This marks an important first step in fully
utilizing mass spectrometry-based covalent labeling techniques
in quantitative structure predictions, rather than just qualitative
explanations. By demonstrating the potential of covalent
labeling in conjunction with the protein structure prediction
capabilities of Rosetta, these techniques will be elevated to be
comparable in utility to other structural biology techniques
such as EPR or FRET. The scoring term and applications
discussed in this paper are freely available and easily accessible
through Rosetta. We have added a tutorial, including a
summary of necessary files and command lines, to the
Supporting Information.
Future work will focus on extending this methodology to

other labeling techniques. While this particular scoring term is
specific to HRF, we plan to implement the capability to use
labeling data from other mass spectrometry-based covalent
labeling experiments in the future. A second direction of our
future efforts will be to develop covalent labeling-guided ab
initio structure prediction, where the labeling data are used as
part of the actual structure generation as opposed to rescoring
structures generated in the absence of the experimental data.
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