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ABSTRACT: Knowing atomistic details of proteins is
essential not only for the understanding of protein function
but also for the development of drugs. Experimental methods
such as X-ray crystallography, NMR, and cryo-electron
microscopy (cryo-EM) are the preferred forms of protein
structure determination and have achieved great success over
the most recent decades. Computational methods may be an
alternative when experimental techniques fail. However,
computational methods are severely limited when it comes
to predicting larger macromolecule structures with little
sequence similarity to known structures. The incorporation
of experimental restraints in computational methods is
becoming increasingly important to more reliably predict protein structure. One such experimental input used in structure
prediction and refinement is cryo-EM densities. Recent advances in cryo-EM have arguably revolutionized the field of structural
biology. Our previously developed cryo-EM-guided Rosetta−MD protocol has shown great promise in the refinement of soluble
protein structures. In this study, we extended cryo-EM density-guided iterative Rosetta−MD to membrane proteins. We also
improved the methodology in general by picking models based on a combination of their score and fit-to-density during the
Rosetta model selection. By doing so, we have been able to pick models superior to those with the previous selection based on
Rosetta score only and we have been able to further improve our previously refined models of soluble proteins. The method was
tested with five membrane spanning protein structures. By applying density-guided Rosetta-MD iteratively we were able to refine
the predicted structures of these membrane proteins to atomic resolutions. We also showed that the resolution of the density
maps determines the improvement and quality of the refined models. By incorporating high-resolution density maps (∼4 Å), we
were able to more significantly improve the quality of the models than when medium-resolution maps (6.9 Å) were used.
Beginning from an average starting structure root mean square deviation (RMSD) to native of 4.66 Å, our protocol was able to
refine the structures to bring the average refined structure RMSD to 1.66 Å when 4 Å density maps were used. The protocol also
successfully refined the HIV-1 CTD guided by an experimental 5 Å density map.

■ INTRODUCTION

The atomic details of protein structures are important for
understanding molecular interactions that give rise to their
biological functions.1,2 For example, membrane proteins in the
plasma membrane can be anchoring proteins, proteins that
transport molecules from one side of the membrane to the
other, or receptors that can receive signals from outside the cell
and activate an intracellular process, or they can simply act as
enzymes.3 Detailed atomic structures of proteins can help us
understand how they perform each of these roles. A recently
determined near-atomic detail structure of TRPV1 has helped
broaden our understanding of the structural mechanism of how
capsaicin, an active ingredient in hot peppers, can trigger a heat
sensation.4,5 Atomic details of protein structures are also
important for computer aided drug discovery. Structure-based
drug discovery relies on the knowledge of potential disease-
associated protein targets in the development of small molecule
drugs.6−8 Additionally, detailed structural information on
binding site residues may give information about possible

mutations which could lead to drug resistance.9 Knowing
atomic details of protein structures allows for optimization of
candidate drug molecules to achieve higher affinity. To
meaningfully use protein structure in studying either biological
function or drug discovery, atomic-resolution structures with
accurate side chain coordinates are necessary.10

For decades, the preferred choices in high-resolution protein
structure determination have been two well-established
structural biology techniques: X-ray crystallography and nuclear
magnetic resonance (NMR) spectroscopy.11 X-ray and NMR
have helped to determine over 115,000 high-resolution protein
structures over the past 4 decades.12−16 Despite their
phenomenal success, there are technical difficulties associated
with these techniques as well.17 X-ray crystallography, relies on
the formation of protein crystals, which frequently is a
challenge.18 Additionally, there is no guarantee that the
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crystallized form of the structure captures its natural state. One
of the pitfalls of structure determination using NMR is that the
technique is system dependent and is generally not suitable for
large biological systems. As the size of the molecule increases,
the NMR signal decreases which causes the experiments to
fail.19 Due to the technical difficulties and bottlenecks
associated with these traditional experiments, there has been
a rise of another technique used to determine protein structure.
In the past few years cryo-electron microscopy (cryo-EM)

has revolutionized the field of structural biology.20,21 In single
particle cryo-EM, a purified sample of a protein solution is
distributed over a grid and frozen quickly.22 Then, 2D electron
micrographs are collected and merged to construct a 3D
density map of the protein. If the resolution of the map allows,
the protein sequence is mapped into the density to construct
the 3D structure of the protein.22 With cryo-EM it is now
possible to obtain high-resolution protein structures that are
not possible to obtain by either NMR or X-ray crystallography.
Cryo-EM has been used to determine structures of large
macromolecular complexes and even membrane proteins.23,24

Due to recent improvements in cryo-EM methodology, such as
direct electron detectors,25 corrections for beam-induced
movements26 and maximum likelihood image processing
routines,27 the determination of medium and near-atomic-
resolution density maps of membrane proteins determined by
cryo-EM has flourished.28−32 Recently the large human γ-
secretase enzyme complex, which is found to have implications
in Alzheimer’s disease, was obtained by cryo-EM at 4.5 Å
resolution.33 Other recent examples of single particle cryo-EM
structure reconstruction include the TRPV1 ion channel32 and
the ribosome−Ski2-Ski3-Ski8 helicase complex.34 These density
maps show an unprecedented amount of detail, making it
possible to identify secondary structure elements and often to
even trace the backbone or identify bulky side chains. With the
advent of the recent resolution revolution in cryo-EM, protein
structures can now be determined that were deemed impossible
to determine a decade ago. Despite the impressive advances in
cryo-EM, there are still limitations. From crystallography it is
known that a resolution better than ∼2.5 Å is required to
correctly identify the protein backbone and most of the side
chain rotamers.35 Currently, cryo-EM rarely achieves sub-3 Å
resolutions, even though there are notable exceptions.36

However, the vast majority of current cryo-EM models do
not quite have the accuracy desirable for use in structure-based
mechanistic and drug discovery studies. Thus, for most 4−10 Å
resolution cryo-EM density maps, it is still not possible to
determine atomic-resolution structures based solely on the
density map. However, computational tools can be used to add
some of the atomic detail that is not unambiguously present in
most of the medium- and near-atomic-resolution cryo-EM
density maps and thus help generate atomic-resolution
structures.
Computational determination of macromolecular structures

has become an important tool to narrow the increasing
sequence−structures gap.37 When template structures are not
available to match the sequence of unknown structure, ab initio
prediction where protein structures are modeled solely based
on sequence is used.38,39 However, these ab initio structure
prediction methods are not reliable for proteins of larger
sizes.37 Rosetta is perhaps the most well-known and widely
used method in ab initio protein structure prediction.40 It has
shown great promise in predicting and refining structures at
high resolution.40,41 MODELLER42 and I-TASSER43 are two

other structure prediction approaches that have been
successfully applied to determine protein structure.44,45 High-
resolution structure prediction and refinement tools which aim
to further improve protein structures to experimental accuracy
have also been developed.41,46 Rosetta includes such tools
which can improve ab initio structures.47,48

Due to limitations of pure ab initio protein structure
prediction and the need to further improve predicted protein
structures, a lot of development has focused on integrative
approaches.49 These approaches combine low- to medium-
resolution experimental data from heterogeneous experimental
techniques with computational modeling methods.50,51 Exper-
imental data has been used from a broad range of sources
including NMR spectroscopy,52−54 fluorescence resonance
energy transfer microscopy (FRET),55 electron paramagnetic
resonance (EPR),56,57 cryo-EM,58−60 small-angle X-ray scatter-
ing (SAXS),61,62 small-angle neutron scattering (SANS),63 and
mass spectroscopy.64−66 These sparse experimental restraints
used in combination with computational methods have shown
to considerably improve macromolecular structure prediction
and refinement.53,60,67 Rosetta allows the use of many types of
experimental restraints in its structure prediction and refine-
ment protocols.52,58,68

Additionally, all-atom molecular dynamics (MD) simulations
have been used along with experimental restraints as an
integrative approach to refine protein structures.69 As opposed
to Rosetta, MD simulations use a purely physics-based
approach, based on integrating the equations of motion in
molecular mechanics force fields.70 The molecular dynamics
flexible fitting method (MDFF) uses MD simulations to refine
protein structure guided by experimental cryo-EM density
maps.69,71 MDFF has been successfully applied to various
biological systems, including membrane proteins.71−73 The
success of MDFF structure refinement depends on the
resolutions of the available cryo-EM density maps. In addition
to cryo-EM densities, NMR chemical shifts are also used as
experimental structural restraints with MD simulations in
refining protein structures.74 This method also allows one to
combine other NMR restraints such as NOE data with chemical
shifts.
In previous work, we introduced a protocol iteratively

combining Rosetta with MD simulations that was successful for
cryo-EM-guided refinement of soluble protein.75,76 Three
iterations of Rosetta−MD were used, where short MDFF
simulations were followed by cryo-EM-guided Rosetta protein
structure refinement. We were able to successfully refine four
soluble proteins 1X91, 1DVO, 1ICX, and 2FD5 with starting
RMSDs of 1.82, 2.50, 2.65, and 2.16 Å respectively to 1.29,
2.14, 1.80, and 2.01 Å. By using Rosetta and MD iteratively, the
protocol was able to avoid conformational traps and generate
well-refined structures. Recently, Schweitzer et al. successfully
applied such an iterative Rosetta−MD protocol for structural
refinement of a 3.9 Å cryo-EM structure of the human 26S
proteasome.77 While the iterative Rosetta−MD refinement
protocol was successful, there were restrictions remaining, most
notably its limitation to soluble proteins.
In this work, we extended the iterative Rosetta−MD protein

structure refinement protocol to membrane proteins. Addi-
tionally, using a new model selection criterion based on a
combination of Rosetta score and the fit-to-density of models,
we were able to further refine our previous set of soluble
proteins.76 This Rosetta−MD protocol was able to refine a set
of benchmark membrane protein structures with initial RMSDs
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of ∼3−5 Å from the native conformation to atomistic
resolutions (<∼2 Å) when high-resolution cryo-EM density
maps (4 Å) were used. MolProbity scores and clash scores
showed that the refined membrane protein models obtained
with our iterative Rosetta−MD protocol were not only higher
quality structures than the starting models but also had atomic
details accurately added that were not present in the starting
structures.78,79

■ METHODS
Ab Initio Membrane Protein Model Building. Since the

presented iterative Rosetta−MD protocol focuses on protein
structure refinement and relies on the presence of a starting
model, starting models were obtained using Rosetta ab initio
modeling (without the cryo-EM density present). Initial
membrane protein models were generated with RMSDs to
native ranging from ∼3 to 5 Å. The idea was to generate
starting models that have the correct overall topology, have
some backbone conformations correct, and generally have
incorrect side chain conformations. This procedure mimicked
the resolutions of structures that are now routinely built from
tracing near-atomic-resolution cryo-EM density maps.32,34,77

Alternatively, such structures could be generated by combining
techniques such as EM-Fold, Gorgon, SSEHunter, and
Rosetta.59,60,80,81 The EM-Fold method has been tested
successfully in modeling challenges.82 A set of small membrane
spanning proteins for which high-resolution structures are
known were obtained from the PDB. Thirteen membrane
proteins (containing four to seven transmembrane helices)
were selected in the initial search. The sequences used in the ab
initio model generation were first stripped of any terminal
residues which were not present in the native PDB structures.
This was done to avoid issues that could arise when the ab
initio model is refined with simulated density maps which were
based on the native protein structures. Having additional
densities not present in the ab initio models can interfere with
the density-guided refinement of the models. Ab initio models
for the list of membrane proteins were generated following the
Rosetta ab initio membrane modeling protocol starting from
the sequences.83

Transmembrane regions of the sequences were predicted
using Octopus.84 Octopus uses both artificial neural networks
as well as hidden Markov models (HMM) to predict the
transmembrane regions using sequence information. Lip-
ophilicity prediction files were generated using the output
files generated by Octopus. This was done by first doing a Blast
search on the sequences with the NCBI nonredundant
database.85 Multiple sequence alignments were subsequently
generated which were used to create the lipid exposed data
profiles for the sequences. Largest lips scores indicated high
lipid exposure regions on the helical surfaces, whereas small lips
scores indicated regions that were buried from the membrane
environment. Rosetta fragment files (three-residue and nine-
residue) for the ab initio model generation were obtained from
the Robetta web server.86 The Rosetta ab initio membrane
modeling protocol was then used to generate 5000 models for
each membrane sequence. The magnitude of the membrane
normal search angle was set to 5°, and the magnitude of
membrane center search was set to 1 Å.
RMSDs over the backbone atoms of the generated models

were calculated using the BCL::Quality algorithm.87 Since we
were not interested in starting structures that significantly
deviated from the native, we only picked proteins for which we
were able to generate ab initio models with RMSDs of less than
∼5 Å to the native. This limited the study to five protein
structures (1PY6, 2LLY, 2MAW, 4G80, and 4RYM) which
included three X-ray crystal structures and two NMR structures
(Table 1 and Figure 1). The best ab initio model RMSD of
2MAW was 4.98 Å. However, after manual adjustment of this
structure to fit the density, it was possible to improve the
RMSD of this structure to 4.57 Å. The manual adjustment was
performed in Chimera.88 The accuracy of the starting models
mimicked that of models which are now routinely built from
tracing near-atomic-resolution cryo-EM density maps as well
other ab initio model building tools such as EM-Fold or
SSEHunter.

Alignment of Structures with OPM Coordinates. It was
important to make sure that the ab initio starting structures
have the correct orientation in the membrane before explicit
membrane simulations were performed. Most of the time,

Table 1. List of Benchmark Transmembrane Proteins

name PDB ID method no. of TM helices tilt angle (deg) starting model RMSD (Å)

bacteriorhodopsin 1PY6 X-ray 7 24 ± 8 4.27
nAChR a4 subunit 2LLY NMR 4 8 ± 1 5.32
alpha7 nAChR transmembrane domain 2MAW NMR 4 14 ± 1 4.57
voltage sensing domain of Ci-VSP 4G80 X-ray 4 14 ± 1 4.12
BcTSPO lodo type1 monomer 4RYM X-ray 5 3 ± 0 5.04

Figure 1. Native structures of the proteins used in this study embedded in membrane (a) 1PY6, (b) 2LLY, (3) 2MAW, (4) 4G80, and (5) 4RYM.
Water molecules are shown in purple, membrane is in green, and protein structures are shown in blue.
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membrane spanning proteins are not 100% parallel to the
bilayer normal and are tilted in the membrane (Table 1). The
Orientations of Proteins in Membranes (OPM) database
includes the correct orientation of membrane proteins.89 The
coordinates of the proteins from this database were used to
align each of the starting structures with the corresponding
OPM coordinates using Chimera.88 The new coordinates of the
aligned starting structures were saved. The starting models
must also be properly aligned with the generated density maps.
Thus, the native structures were aligned with the OPM
coordinates before the simulation of the density maps. This
process ensured that the starting structures were aligned with
the simulated density maps while simultaneously having the
correct orientation in a membrane environment.
Simulation of Density Maps. The density maps were

generated for the OPM-aligned native protein structures of
each membrane protein using the pdb2vol program in the Situs
package.90 pdb2vol can create a volumetric map of the input
structure. One third of the target resolution was used as the
voxel spacing. A Gaussian smoothing kernel was used with an
amplitude of 1. For NMR structures the representative models
were used to generate the density maps. Maps with 6.9 and 4 Å
resolutions were simulated for each native structure (Figure 2).

These maps had voxel spacings of 2.3 and 1.3 Å, respectively.
Higher resolution maps (4 Å) captured not only the backbone
details but also some side chain details of the structures.
Medium-resolution (6.9 Å) maps showed transmembrane
helices as density rods. These density maps were representative
of medium- (6.9 Å) and near-atomic-resolution (4 Å)
membrane protein cryo-EM density maps.
We also introduced Gaussian noise into the simulated

density maps to mimic some of the error that is inherent in
experimental density maps. This was done using the
BCL::density::FromPDB algorithm.91 Noise was randomly
added to the maps to obtain a cross-correlation coefficient of
0.8 between the noise-free and noise-containing maps. It has
been established that in order to realistically mimic
experimental density maps a cross-correlation coefficient of
0.8 is suitable.91 Details of simulations of the density maps can
be found in the Supporting Information.
Density-Guided Iterative Rosetta−MD. The starting

protein structures were first embedded in the membrane or
solution, and the systems were minimized and equilibrated.
Each equilibrated structure was then refined via a density-
guided MD simulation step (MDFF1).69,71 The last frame of
this trajectory was used as the input model for Rosetta density-
guided local building and refinement (Rosetta1).58 An
ensemble of 5000 models was generated, and the best scoring
model (for 4 Å membrane refinement and soluble proteins) or
the five best scoring models (for 6.9 Å membrane refinement)
were picked for the second iteration of the MDFF run

(MDFF2). This Rosetta−MD refinement was repeated three
times, and the final refined model was selected after the third
Rosetta model generation stage (Figure 3). This protocol was

performed on the five benchmark membrane proteins and was
also applied to the four soluble proteins from our previous
publication (1X91, 1DVO, 1ICX, and 2FD5).76 The iterative
Rosetta−MD protocol was repeated for soluble and membrane
protein structures using noise-added density maps as well.

Molecular Dynamics Flexible Fitting. MDFF simulations
were run on the starting models in the presence of membrane
and in solution depending on the type of protein used.69 Each
membrane starting structure, aligned with OPM coordinates,
was embedded in a POPC bilayer using the VMD membrane
builder plugin. The lipid molecules within 3 Å of the proteins
were eliminated. The system was solvated using the VMD
solvate plugin with TIP3P water molecules, and the water
molecules within 1.5 Å from the protein and POPC bilayer
were removed. Soluble proteins were immersed in a TIP3P
water box with a 14 Å padding. NAMD 2.10 with the
CHARMM22 force field was used for the systems. Restraints
were applied to enforce the secondary structure during the
MDFF simulation using the package ssrestraints. An additional
potential that was derived from each cryo-EM density map was
applied in addition to the standard force field during each
simulation. The density map was converted into an MDFF
potential using mdf f griddx. Particle mesh Ewald (PME) was
used with periodic boundary conditions. A local interaction
distance cutoff of 12 Å was used for electrostatic and van der
Waals calculations. The values of nonbondedFreq and the
pairlistdist were set to 1 and 13.5 Å, respectively. We tested the
performance of the protocol using three different density
scaling factors; 0.2, 0.5, and 1.0. We used the default density
scaling factor of 0.2 for both soluble and membrane protein
refinement results presented in the manuscript.
Simulations were run on each of the membrane systems to

create appropriate disorder in the bilayer. Protein, water, lipid
head groups, and ions were kept fixed, and only the tail groups
of POPC were allowed to move freely for 500,000 1 fs steps
(0.5 ns). Then the system was both minimized and equilibrated
keeping the protein fixed. This allowed the lipids to be well-
packed around the protein. This was done for 500,000 1 fs
steps (0.5 ns), heating up the system to a 300 K temperature.
Production MDFF simulations were then performed for 0.5 ns
on the equilibrated membrane systems. The final MDFF
trajectory frames were split into individual PDB structures and
the RMSD of each frame along the trajectory was calculated
using the BCL::Quality algorithm as before. Both the all

Figure 2. Simulated density maps for 1PY6 at (a) 6 and (b) 4 Å
resolution.

Figure 3. Schematic diagram of the Rosetta−MD protocol for
membrane proteins.
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backbone atom RMSD and the all backbone atom RMSD over
the secondary structure elements were calculated. The soluble
proteins were first embedded in solution, and MDFF was
carried out on the solvated systems. All simulations were run at
300 K. For comparison, the MDFF runs were also performed
with 1 ns simulation times.
Density-Guided Rosetta Local Building and Refinement.

Rosetta allows for the refinement of protein structures to
generate structures with high accuracy by using the native
density as an additional restraint to refine into the density
maps.58,92,93 The use of Rosetta is complementary to MDFF in
structure refinement since the applied force fields are
significantly different.
The last frame of the MDFF trajectory was used as the

starting structure for Rosetta. The regions that were identified
to have poor fit-to-density were rebuilt during this step. The
starting model fit-to-density was measured and was used to find
parts in the structure that least agree with the density. Each
residue was scored to assess the agreement to data, and the
residues below a cutoff of a Z-score worse than −0.5 were
selected for fragment-based local rebuilding.92 The local
sequence around a randomly selected residue from this list
was matched to 25 protein backbone conformations that have
similar local sequence and secondary structure arrangement
from known high-resolution structures. Each of these backbone
conformations was refined into density data, and the fragment
that best agreed with the density data was selected.93 Once a
fragment was selected and inserted in the structure, the whole
structure was minimized following a Monte Carlo procedure.
A total of 5000 independent models were generated for each

Rosetta step of the iterative Rosetta−MD protocol. The full
atom solvation score term was set to zero to implicitly account
for the membrane environment. RMSD of each model was
calculated using the BCL::Quality algorithm.87 The fit-to-
density score of each model was also calculated using Rosetta
density tools which provided the model−map agreement.94

The Rosetta scores and the fit-to-density scores of all models
were both normalized such that the best scoring model out of
the 5000 models had a normalized score of 1 and the best fit-to-
density model had a normalized fit of 1. These two normalized
parameters were combined to get a consensus score, a
combination of both the score and the fit-to-density equally
weighted. For the 6.9 Å medium-resolution maps the five best
consensus score models from each Rosetta round were picked
and five independent MDFF simulations were run in rounds 2
and 3. The five last frames of these simulations were then taken
as input for generating the next Rosetta models. Thus, in
Rosetta 2 and Rosetta 3, 1000 models were generated for each
of the five last frames from MDFF 2 and MDFF 3, totaling
5000 total structures for each Rosetta round. For the 4 Å
density maps, the model that gave the highest consensus score
was picked as the best model to go into the next MDFF round.
For the high-resolution 4 Å maps only the top consensus score
model was selected from Rosetta1 and Rosetta2 because the
high-resolution density maps did not necessitate the use of
multiple structures in the refinement. At the end of Rosetta3,
the model with the highest consensus score was picked as the
final refined structure. The calculations were also repeated for
the soluble proteins in our previous publication,76 using the
novel consensus score method to select the best model after
each Rosetta iteration. The medium-resolution starting models
for these proteins had been generated using the EM-Fold and
Rosetta methods.59

Application of the Protocol to HIV-1 Capsid Protein
CTD. We generated 5000 ab initio models for HIV-1 capsid
protein C-terminal domain (CTD) using Rosetta ab initio
model building. The starting sequence for the HIV-1 CTD was
obtained from the PDB structure of 2KOD. The 5 Å
experimental density map for HIV-1 capsid hexamer (EMD-
8595) was used.95 The two best scoring starting structures were
each aligned with the experimental density map, and the
density map was segmented to obtain the density that
corresponds to the CTD monomer using Chimera’s zone
feature with the default settings (Figure 13a). Rosetta−MD
protocol was applied to the two selected ab initio start models
of 2KOD. The crystal structure of HIV-1 hexamer (4XFX) was
used as the reference structure, and the monomeric CTD was
extracted in order to assess the extent of refinement.

Model Quality Evaluation. In addition to using RMSD to
the native structure, the final model quality was evaluated using
MolProbity which is used as a standard way of quality
validation.78,79 MolProbity uses various knowledge-based and
physics-based algorithms to evaluate the geometric quality of
protein structures. MolProbity scores and MolProbity clash
scores were calculated for the start models and the refined
membrane protein structures. The MolProbity clash score is an
indicator of unfavorable steric clashes in a structure. These
clashes are a strong indicator of poor model quality. MolProbity
clash scores closer to zero are an indication of a well-ordered
structure. The MolProbity score is a measure that takes into
account not only the atom contact clashes, but also
Ramachandran and rotamer outliers in a structure. The closer
the MolProbity score is to 0, the better the overall quality of the
model is. EMRinger score was also used to validate the high-
resolution refined model and its density map agreement.96 This
score is used to assess the fitting of an atomistic level model to
the density map. Good validation scores can indicate if a model
is fitted to the map precisely and at the same time not overfitted
to the map. EMRinger scores over 1 are generally considered to
be showing good model−map agreement for density maps with
resolutions of 3−4 Å.

■ RESULTS AND DISCUSSION
Soluble Protein Refinement. We refined the four soluble

proteins from our previous publication using the new,
improved model selection protocol. The density-guided
iterative Rosetta−MD was performed on those proteins
(1X91, 1DVO, 1ICX, and 2FD5). This time, instead of picking
models exclusively based on Rosetta score, the models were
picked using the consensus score term (an equally weighed
combination of Rosetta score and the fit-to-density). Before
using the new selection method as part of the membrane
protein refinement protocol, this enabled a comparison of the
performance of the new selection protocol compared to the
previous protocol’s performance. The new refined models for
soluble proteins were compared to the models obtained based
on the previously published work.76 For 1ICX, 1DVO, and
2FD5, the final models obtained with the new protocol
improved dramatically. For 1DVO and 1ICX the final refined
models now had RMSDs around ∼1 Å which was significantly
better than that of models previously obtained. Using the
previous protocol, it was only possible to refine 1DVO and
1ICX to RMSDs worse than 2 Å and 1ICX gave a refined
RMSD of 1.80 Å. The final refined model RMSD for 1X91
(1.35 Å) was comparable to that of the previous protocol (1.29
Å) (Figure 4a). The consensus score method was able to always
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pick the same or better RMSD models in each Rosetta step
compared to models potentially picked using the score-only
method. In 75% of the cases, the consensus score models had
better RMSDs than the models that would have been picked by
the score-only selection method (Figure 4b). A better model
was always picked for all four proteins in the final round of
Rosetta when the generated models were closest to the native.
By introducing the fit-to-density parameter with the Rosetta
score we were able to favor the models that agree well with the
density maps, without simultaneously overfitting the models to
the densities.
Ab Initio Membrane Protein Model Generation. To

test the proposed iterative Rosetta−MD membrane protein
structure refinement protocol, unrefined starting structures with
RMSDs to native ranging from ∼3 to 5 Å were needed. The
Rosetta ab initio membrane protocol (not guided by cryo-EM

density) was used to generate 5000 models of each of 13
membrane protein sequences. RMSDs to native of the
generated models ranged from ∼4 to ∼30 Å. The RMSD of
the best models selected for 1PY6, 2LLY, 2MAW, 4G80, and
4RYM were 4.27, 5.32, 4.98, 4.12, and 5.04 Å, respectively
(Table 1). Manual adjustment of the 2MAW structure to better
fit the simulated density map improved the model RMSD to
4.57 Å. Even though the improvement in RMSD was small, the
manual twisting and rotating of the helices allowed for
improvements during refinement, which were higher than
what was obtained using the model that was not manually
adjusted (Figure S1).

Iterative Rosetta−MD Membrane Protein Refinement.
The iterative Rosetta−MD membrane protein structure
refinement protocol with the new consensus score model
selection method was applied to the five membrane protein

Figure 4. (a) RMSDs of the final refined models using iterative Rosetta−MD protocol where models were picked based on a consensus score which
is a combination of the Rosetta score and the fit-to-density (black) and based on the Rosetta score only (blue). For 1DVO, 1ICX, and 2FD5 the new
method was able to further improve the quality of the final structures. (b) RMSD of the selected models in each Rosetta step for the soluble proteins.
Orange filled circles show the RMSDs of models picked by the best score method, and green filled circles show the RMSDs of models picked based
on the consensus score method. For 75% of the cases, the consensus score method was able to pick a better model than the score-only method.

Figure 5. RMSDs of the models along the flow of the iterative Rosetta−MD protocol; 1PY6 (orange), 2LLY (red), 2MAW (blue), 4G80 (green),
and 4RYM (black). Refinement into (a) 4 and (b) 6.9 Å density maps. RMSDs of the models for all membrane proteins generally improved
throughout the three rounds of the iterative protocol. More prominent gradual decrease was observed in the case of the high-resolution 4 Å density
map.
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structures. Since experimental density maps were not available
for the five membrane proteins, the density maps had to be
simulated. Density maps at two different resolutions (4 and 6.9
Å) were simulated. The 4 Å resolution was selected to mimic
high-resolution density data. The 6.9 Å resolution mimicked
medium-resolution density data and was the same resolution
used in our previous publication.76 The RMSDs of the models
for all membrane proteins in general improved throughout the
three rounds of the iterative protocol. However, not
surprisingly, the improvement in model quality was more

prominent in the case of the 4 Å resolution maps (Figure 5a).
There was a clear drop in the RMSDs for all membrane
proteins after the first round of Rosetta−MD iteration
regardless of the density map resolution (Figure 5). After the
first iteration, RMSDs further dropped slightly during the next
two iterations for the 4 Å density map refinement. For the 4 Å
density maps, the final RMSDs were 1.90, 2.11, 0.78, 1.87, and
1.66 Å for 1PY6, 2LLY, 2MAW, 4G80, and 4RYM, respectively.
This constitutes a substantial improvement of RMSDs
compared to the starting structures (Figure 6). The improved

Figure 6. Structure alignment of the native structure (orange), the ab initio start model (blue), and the final refined model (red) for the 4 Å density
map refinement for (a) 1PY6 (b) 2LLY (c) 2MAW, (d) 4G80, and (e) 4RYM.

Figure 7. Side chain agreement of refined models with native structures. Structure alignment of the native structure (orange) and the final refined
model (red) for the 4 Å refinement for (a) 1PY6, (b) 2LLY, (c) 2MAW, (d) 4G80, and (e) 4RYM.
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side chain overlaps for these structures are shown in Figure 7.
In all of the cases, except for 2LLY, the final model RMSD was
less than 2 Å. In the case of 2MAW, the final model RMSD
(0.78 Å) showed a significant 83% improvement compared to
its starting RMSD (4.57 Å). The average starting structure
RMSD to native was 4.66 Å, and after three rounds of Rosetta−
MD iterations the final average structure RMSD dropped to
1.66 Å. The final average best model RMSD was 1.41 Å.
Even though there was clear model refinement for the 6.9 Å

medium-resolution density maps, the final RMSDs did not
reach those obtained by the refinement using the 4 Å high-
resolution density maps. For the 6.9 Å density map refinement
there were slight fluctuations in the RMSDs along the stages of
the protocol (Figure 5b). There was also a slight increase in the
RMSDs after the third round of MDFF for all proteins except
for 2MAW. This suggested that the resolution of the map might
not be sufficient to improve the models further and could lead

to overfitting of the models in the final round of the iterative
protocol. Best refinement for the 6.9 Å density maps was
observed for 1PY6 and 4G80 which showed final RMSDs of
2.66 and 2.61 Å, respectively.
With the manual twisting of the starting 2MAW structure, we

were able to create a register shift in helices containing residues
2−26, 33−55 and 103−127 that agreed with the experimental
structure of 2MAW (Figure S1a). When the refinement was
performed starting with the structure that was not adjusted, the
final RMSDs of the models were 3.03 and 3.74 Å for the 4 and
6.9 Å refinements, respectively (Figure S1b,c). It was not
possible to refine the starting structure beyond ∼3 Å RMSD
because neither MDFF nor Rosetta refinement can easily allow
helices to shift to create the register shifts.
Increased simulation time does not change the simulation

results significantly. A simulation time of 0.5 ns was found to be
sufficient to converge the system to the density maps. The

Figure 8. (a) RMSDs of the models that would have been picked for all Rosetta rounds using the score-only method and the consensus score
method for soluble proteins (blue) and membrane protein refinement utilizing 4 Å (red) and 6.9 Å (green) density maps. (b) Histogram of
occurrences that a model with a lower or the same RMSD was picked by the consensus score method compared to the score-only method. For
soluble proteins, 4 Å membrane refinement, and 6.9 Å membrane refinement, the model picked was better or the same for 100%, 73%, and 87% of
the cases, respectively.

Figure 9. RMSD vs Rosetta score plots for the final round Rosetta models of 2MAW. The models are color-coded by their respective (a) normalized
fit-to-density and (b) consensus score (normalized score + normalized fit-to-density). The best score-only model RMSD is 0.87 Å, and the model
RMSD that is picked using the consensus score is 0.78 Å. With the consensus score, the model picked was better than the best score-only model.
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results of refinement when different density map scaling factors
(0.2, 0.5, and 1.0) were used showed that the results of
refinement do not significantly change with the choice of the
MDFF scaling factors (Figures S2 and S3). For example, the
refined structures after the third round of Rosetta have average
RMSDs of 1.66, 1.56, and 1.59 Å for scaling factors 0.2, 0.5, and
1.0, respectively, for the 4 Å density map refinement (Figure
S2). For the 6.9 Å density map refinement, the average RMSDs
for the final refined models were 3.14, 3.07, and 3.15 Å for
scaling factors 0.2, 0.5, and 1.0, respectively (Figure S3). By
using the lower default scaling factors, we minimize the
possibility of overfitting our structures to the density maps.
Consensus Score-Based Selection of Models. Previous

implementations of the iterative Rosetta−MD protocol used
Rosetta scores to select the best model in each Rosetta round.
Here, an improved consensus score for the Rosetta model
selection was used. The consensus score was the combination
of the normalized Rosetta score and the normalized fit-to-
density score for a model. The RMSDs of models obtained
from the Rosetta score-only and from the consensus score
method were compared. The results for all rounds of Rosetta
showed that, in general, the consensus score was able to pick
better models than the Rosetta score-only method (Figure 8).
For soluble proteins, using the consensus score a better model
or the same model as the one picked by the score-only method
was identified for all proteins in all Rosetta rounds 100% of the

time (Figure 4a and Figure 8a,b). Furthermore, better selection
of models was also observed for 4 and 6.9 Å density map
membrane protein refinement. The percentage of cases for
which a better or a same model was observed for the consensus
score method compared to the score-only method for the 4 and
6.9 Å density map refinement were 73% and 87%, respectively
(Figure 8b). The improvement caused by the consensus score
was more prominent for the 6.9 Å density map refinement
(Figures 8a and 9b). Overall, the consensus score model
selection method was able to outperform the Rosetta score-
only selection method for both soluble proteins as well as
membrane proteins.

Analysis of Fit-to-Density and Consensus Score. The
normalized fit-to-density score for the 5000 models obtained in
the final round of Rosetta model generation for the set of
membrane proteins were analyzed to assess how the fit-to-
density of models varied with RMSDs of the models. High fit-
to-density scores were observed for models with lower RMSDs
to native (Figure 9a). The models that deviate the most from
native showed poor fit-to-density scores indicating that this
measure in general favored the models that were close to the
native structure. The consensus score measure which is the
combination of the normalized Rosetta score and the
normalized fit-to-density showed this general trend as well
(Figure 9b). Highest fit-to-density score models were the ones
that had the lowest RMSDs to the native. By adding the

Figure 10. RMSDs of the models along the flow of the iterative Rosetta−MD protocol for noise-free density maps and noise-containing density
maps: (a) 1DVO, (b) 1ICX, (c) 2MAW, and (d) 4RYM. The addition of noise did not change the extent of refinement of the models.
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normalized score to the normalized fit-to-density, it was
possible to drop the rank of the models that had low RMSDs
but also had poor Rosetta scores which were unfavorable
models. That is, models that were favored by the fit-to-density
alone but had poor Rosetta scores ended up having poor

consensus scores (compare panels a and b of Figure 9). The
consensus score measure favored the models in the tip of the
funnel shape of the energy landscape. For example, the Rosetta
best score model’s RMSD was 0.87 Å and the model RMSD
that was picked using the consensus score was 0.78 Å for

Figure 11. Model evaluation using MolProbity. (a) MolProbity clash score for the models refined by 4 Å resolution density maps (black) and
MolProbity clash score of their starting ab initio models (green). (b) MolProbity score (green) and MolProbity clash score (blue) of final models
obtained by the 4 and 6.9 Å maps.

Figure 12. (a) EMRinger score for the ab initio start models (pink) and the models after three rounds of iterative Rosetta−MD refinement using 4 Å
density maps (black). (b) Ab initio start structure of 2LLY (yellow) overlapped with the 4 Å density map (black mesh). Side chain mismatches and
deviations from the densities can been seen. (c) Final refined 2LLY model (blue) overlapped with the 4 Å density map (black mesh). Three residues
with benzene rings, PHE 87, HIS 99, and TRP 130, were misaligned with the density map in the ab initio start model but were well-converged into
the density map in the final refined model (highlighted in black boxes). (d) Zoomed in side chain residue overlaps: native coordinates (red), ab initio
starting model coordinates (yellow), and final refined model coordinates (blue). Side chains were well-aligned with the density and overlapped with
the native side chain coordinates in the refined model.
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2MAW (Figure 9b). The consensus score measure was able to
pick better models than the Rosetta score-only method even
though those models do not necessarily have the lowest Rosetta
scores.
Refinement of Structures Using Noisy Density Maps.

In order to test the performance of the iterative refinement
protocol on more realistic density maps, noise-containing
density maps were generated. When noisy density maps that
mimic experimental error were used in the refinement protocol
the refinement results agreed overall with that of noise-free
refinement (Figure 10). For 1DVO, the final RMSDs of refined
structures with noise-free and noise-added maps were 1.02 and
0.84 Å, respectively. For 1ICX, refinement using noise-free and
noise-containing maps brought the RMSDs of final structures
to 0.97 and 1.00 Å. For 2MAW a noise-free map refined the
final RMSD to 0.78 Å, and with noise-added map a final RMSD
of 0.9 Å was obtained. For 4RYM structure refinement with a 4
Å noise-added map the final refined structure RMSD was of
1.99 Å. When the noise-free 4 Å map was used for 4RYM, the
final refined structure RMSD was 1.66 Å. Adding noise to the
density maps did not significantly change the final RMSDs
which gives us confidence that our refinement protocol would
work with noisy experimental maps as well.
Model Quality Evaluation. MolProbity scores and clash

scores were used to assess the quality of the initial and final
refined models. The closer the MolProbity score and clash
score are to 0, the better the overall quality of the model is. The
model quality evaluation using MolProbity clash scores
indicated improved geometric quality of the refined models
compared to the start models (Figure 11a). With the exception
of 4RYM, refined models showed better MolProbity clash
scores than their starting ab initio models. All final refined
model MolProbity clash scores were less than 4, which is
considered to be indicative of a good quality model. When
MolProbity clash scores and MolProbity scores were compared
for the iteratively refined models using 6.9 and 4 Å density
maps, respectively, lower scores were observed for the models
refined using the 4 Å maps. Interestingly, this comparison
showed that the quality of the refined models obtained by the
high-resolution density maps produce better quality models
than medium-resolution maps (Figure 11b). However, all
refined models showed reasonable MolProbity scores to be
considered physically realistic.
Finally, EMRinger scores were used to assess the model−

map agreement of the final refined models. EMRinger scores
over 1 are generally considered to be showing good model−
map agreement for density maps with resolutions of 3−4 Å.
EMRinger scores for the iteratively refined models using 4 Å
density maps were always over 1 and higher than that of the
start models, indicating improved model−map agreement of
refined models (Figure 12a). This observation further validated
that the iteratively refined models were properly fitted to the
density map without being overfitted and gave increased
confidence in the final refined models. In the starting structures,
clear side chain mismatches and deviations from the density
maps were observed. After refinement, these side chains were
well-converged with the density maps. Closer inspection of the
side chains of these refined structures showed improved
overlaps with the native structure side chains. The convergence
of a few side chains that have benzene rings are shown for
2LLY in Figure 12b,c. Similar well-converged regions were
observed for all benchmark protein structures after three
rounds of iterative Rosetta−MD refinement.

Application of the Protocol to HIV-1 Capsid Protein
CTD. To test the ability of the iterative Rosetta−MD protocol
to refine proteins guided by experimental cryo-EM density
maps, ab initio models for HIV-1 capsid protein C-terminal
domain (CTD) were built using the 2KOD sequence. The two
best scoring ab initio models of HIV-1 CTD exhibited RMSDs
of 3.61 and 5.23 Å, respectively (Figure 13b). We selected both
of these structures for refinement to test the protocol with
good- (<4 Å RMSD) and medium-quality (>5 Å RMSD)
starting models. After application of the iterative Rosetta−MD
protocol on these two starting structures guided by the
experimental HIV-1 density map (5 Å resolution) correspond-
ing to the CTD, the final model RMSDs reached 0.79 and 0.59
Å for the 3.61 and 5.23 Å starting structures, respectively
(Figure 13c). With the score-only selection the final RMSD
obtained for 3.61 and 5.23 Å starting structures were 0.94 and
0.70 Å. The consensus score method performed better than the
score-only method as we saw for the soluble proteins and the
membrane proteins.

■ CONCLUSION
Our goal was to extend the previously introduced cryo-EM-
guided iterative Rosetta−MD protein structure refinement
protocol from soluble to membrane proteins. In this work, five
membrane protein models that had RMSDs of ∼3−5 Å from
the native were refined to near-atomic resolutions with RMSDs
less than ∼2 Å (1.90, 2.11, 0.78, 1.87, and 1.66 Å for 1PY6,
2LLY, 2MAW, 4G80, and 4RYM, respectively) by incorporat-
ing cryo-EM densities as experimental restraints. The protocol
used MD simulations and Rosetta structure refinement, both
guided by cryo-EM density, iteratively to refine membrane
protein structures. Improvements to the model selection
process considerably improved the quality of the refined
protein structures. Instead of purely using Rosetta scores to
select models after the Rosetta refinement stages of the
protocol, a consensus score that took into account the fit-to-
density of models as well as the Rosetta score was used. By
using the consensus score measure in selecting structures in
Rosetta model generation, we were able to pick better models
than just using the Rosetta score which is the standard practice.
This improvement was prominent when medium-resolution
density maps were used. This protocol was able to further
refine our previous set of soluble proteins. The resolution of the
density maps determined the extent of the refinement. High-
resolution maps (4 Å) were able to refine models better than
medium-resolution maps (6.9 Å). Model evaluation methods
showed that final refined models were not only close to native
but also good quality models as well. The refinement of
membrane proteins was more challenging because the
membrane systems need to be prepared and then the
simulations had to account for the different solvation patterns.
Unlike for soluble protein simulations, in membrane protein
simulations the proteins needed to be embedded in the
membranes with the correct orientation of the proteins in
nature. It was also important to have an equilibrated membrane
system with lipids well-packed around the protein before the
unrestrained production runs were performed. Our previous
protocol had to be modified to account for these explicit
membrane simulations. The Rosetta refinement protocol
guided by density that was used in soluble protein simulations
also had to be adjusted for membrane proteins. The Rosetta
solvation energy term was adjusted to account for the
membrane environment implicitly.
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When noisy density maps that mimicked experimental error
were used in the refinement protocol, the refinement results

agreed overall with that of noise-free refinement, indicating that
the protocol can successfully deal with noisy input maps. The
ultimate targets of the iterative Rosetta−MD protocol are
experimental cryo-EM structures. As a proof-of-concept, we
tested this protocol on experimental density data for HIV-1.
The testing of our protocol with the experimental 5 Å density
map of HIV-1 CTD showed that the starting structures can be
refined to RMSDs of less than 1 Å. Success of structure
refinement using both the noisy maps and the experimental
density map shows great promise in structure refinement when
experimental cryo-EM restraints are available. This tool is not
only applicable to membrane proteins but could be used with
any kind of protein structure. Due to today’s growing number
of cryo-EM protein structures determined using medium- and
near-atomic-resolution density maps, our protocol will be
increasingly useful to fine-tune these structures to near-native
resolutions.
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