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ABSTRACT: Covalent labeling mass spectrometry experiments are
growing in popularity and provide important information regarding
protein structure. Information obtained from these experiments
correlates with residue solvent exposure within the protein in solution.
However, it is impossible to determine protein structure from covalent
labeling data alone. Incorporation of sparse covalent labeling data into
the protein structure prediction software Rosetta has been shown to
improve protein tertiary structure prediction. Here, covalent labeling
techniques were analyzed computationally to provide insight into what
labeling data is needed to optimize tertiary protein structure prediction
in Rosetta. We have successfully implemented a new scoring
functionality that provides improved predictions. We developed two
new covalent labeling based score terms that use a “cone”-based
neighbor count to quantify the relative solvent exposure of each amino acid. To test our method, we used a set of 20 proteins
with structures deposited in the Protein Data Bank. Decoy model sets were generated for each of these 20 proteins, and the
normalized covalent labeling score versus RMSD distributions were evaluated. On the basis of these distributions, we have
determined an optimal subset of residues to use when performing covalent labeling experiments in order to maximize the
structure prediction capabilities of the covalent labeling data. We also investigated how much false negative and false positive
data can be tolerated without meaningfully impacting protein structure prediction. Using these new covalent labeling score
terms, protein models were rescored and the resulting models improved by 3.9 Å RMSD on average. New models were also
generated using Rosetta’s AbinitioRelax program under the guidance of covalent labeling information, and improvement in
model quality was observed.

■ INTRODUCTION

Full understanding of protein function requires knowledge of
protein tertiary structure. In cases when high-resolution
experimental structure determination techniques (such as X-
ray crystallography, NMR, and cryo-EM) fail to comprehen-
sively characterize protein structure, a plethora of more sparse
techniques can yield important structural information. One
such set of tools are covalent labeling (CL) experiments
coupled with mass spectrometry (MS), a growing set of
methods that yield valuable information on the three-
dimensional structure of proteins.1 Experiments using covalent
labeling techniques involve either amino acid specific or
nonspecific probe molecules (labeling reagents) that are
exposed to the protein in solution and covalently bind to the
side chains that are solvent accessible and not involved in any
other inter- or intramolecular interactions. Structural informa-
tion is derived from the assumption that a residue that is
exposed to the solvent will be accessible to the reagent and
hence labeled, whereas a residue that is buried within the
protein (or occluded by a bound ligand or protein subunit)
would be inaccessible and hence unlabeled. For structural
interpretation, the labeled protein is routinely mass analyzed
using a combination of proteolysis and mass spectrometry and

information regarding the relative location of some of the
residues can be elucidated.2−4

Many different labeling reagents exist, each with their own
advantages and disadvantages. For nonspecific amino acid
labeling, one of the most commonly used methods is oxidative
labeling (also known as hydroxyl radical footprinting or HRF).
This method utilizes hydroxyl radicals to label the solvated
protein.5−7 Theoretically, 19 of the 20 amino acid types can be
labeled, but only a few types provide useful information for
structure determination.8−10 Another reagent used to non-
specifically label amino acids is diethylpyrocarbonate
(DEPC).11 DEPC primarily reacts with histidine but is also
capable of labeling lysine, tyrosine, cysteine, threonine, and
serine. Reagents that only modify specific amino acid types
comprise the other major class of covalent labels.1,12,13 In
practice, only eight different amino acid types have been
predominantly used in conjunction with mass spectrometry
techniques to study structure. These residues are arginine,
aspartic acid, glutamic acid, cysteine, histidine, lysine,
tryptophan, and tyrosine. A large variety of different reagents
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have been successfully used to label and probe the tertiary
structure for each of those eight commonly labeled amino acid
types. A few examples include the following: biotin N-
hydroxysuccinimide derivatives for labeling lysine;14 iodoace-
tamide and its derivatives along with iodacetic acid N-
alkylmaleimides have been used for cysteines;15,16 methyl-
glyoxal and 1,2-cyclohexandione for arginines.4,17,18 A more
extensive overview of all the amino acid specific labeling
techniques and their applications is provided in a review by
Mendoza and Vachet.1

Despite the relative success of structure elucidation using
covalent labeling techniques, many challenges still exist. It can
be difficult to find labeling reagents that successfully modify a
protein but do not cause conformational changes. In addition,
reagents that are capable of labeling amino acid types different
from those listed above are crucial to successfully analyze
tertiary structure. However, most notably, the information
obtained from covalent labeling experiments cannot directly
provide tertiary structure without interpretation utilizing
computational protein structure algorithms (or further
experimentation). Two recent examples of hybrid computa-
tion-CL methods include our previous study on HRF-guided
modeling and the work of Xie and co-workers.8,10 In our study,
we showed that hydroxyl radical footprinting MS data can be
successfully used to predict tertiary structure when combined
with the computational macromolecular modeling tool
Rosetta. We developed a new score term for the Rosetta
energy function that was used to rescore ab initio models for
four benchmark proteins and improve the accuracy of the
predicted models. The work by Xie and co-workers
successfully demonstrated a correlation between experimental
HRF data and the absolute average solvent exposure. Using
this exposure measure, it was possible to differentiate between
low and high RMSD models for two benchmark proteins:
lysozyme and myoglobin. Over the years, Rosetta has also
proven to be an excellent tool for the incorporation of other
sparse experimental data for use in structure prediction.19−28

So far, however, the computational methods have predom-
inantly been used to interpret the covalent labeling data, not to
direct the experiments with the intention of improving their
structure predictive capabilities. Here we show that CL-guided
protein structure prediction algorithms such as Rosetta have
the potential to inform on yet unanswered questions like the
following: Which amino acid types provide the most useful
structural information? How many labeled residues are needed
to accurately discriminate between different models? How
much error can be tolerated? We argue that answering these
questions has the potential to design better covalent labeling
experiments that yield optimal information for protein
structure prediction using covalent labeling techniques. Crecca
and Roitberg performed a similar analysis regarding the utility
of inter-residue distances for protein structure prediction.29,30

Additionally, we are also exploring whether a covalent labeling
score term is more effective when used to bias the generation
of models, rather than when used to simply rescore prebuilt
models as demonstrated in our previous HRF modeling work.8

In this study, we developed the methodology to incorporate
information from covalent labeling experiments into Rosetta’s
protein structure prediction protocol. To accomplish this, we
have analyzed 6165 proteins obtained from the Protein Data
Bank with solvent exposure metrics with the goal of identifying
a measure of solvent exposure that accurately characterizes the
relative solvent accessibility of each residue. Two new score

terms for Rosetta were derived from this information and used
to identify the ideal subset of residue types to be used for
model discrimination based upon a benchmark set of 20
proteins. The tolerance of our prediction algorithm toward
false negative and false positive data points was also explored.
Protein models were rescored with the new scoring framework,
and the resulting distributions were analyzed. Finally, new sets
of models were generated under the guidance of covalent
labeling data.

■ METHODS
Generation of a Protein Set from the Protein Data

Bank. The proteins used for the various aspects of this work
consisted of protein structures extracted from the Protein Data
Bank (PDB). All monomer, single chain proteins with at most
50% sequence identity were downloaded (15,000 total). The
goal was to create a set of protein structures that served as a
nonredundant representation of single chain monomers in the
PDB. From this initial set, structures with missing residues that
were not part of either the C- or N-terminus were filtered out,
due to potential problems when calculating per residue solvent
exposure. Not only would the solvent exposure of the missing
residues be impossible to determine, but also the exposure of
neighboring residues would be calculated incorrectly. After
filtering, the protein set contained 6185 protein structures.
From this set, a benchmark set of 20 structures was created.
The 20 structures in the benchmark set were randomly
selected from the total decoy set and were between 50 and 200
amino acids in length. To confirm that the benchmark set was
truly a representative subset of the protein set, distributions of
the total number of residues, secondary structure content, and
contact order (both absolute and relative) were analyzed. The
distributions can be found in Figure S1. The proteins that
comprise the benchmark set are summarized in Table S1.
From the original set of 6185 structures, a set of 6165
structures were used to determine the correlation between
various solvent exposure metrics.

Solvent Exposure Metrics. The goal of this work is to
provide insight into how the results of covalent labeling
experiments can improve protein tertiary structure prediction.
For this purpose, a procedure of correlating relative solvent
exposure for a given residue to the data provided from
experiment is necessary. Studies have previously shown that
residue solvent exposure correlates with experimentally derived
protection factors.8−10,31,32 The general trend observed has
been that a more solvent exposed residue is more likely to be
labeled whereas a more buried residue is less likely to be
labeled. Several different approaches for assessing solvent
exposure from the tertiary structure have been reported.
The most accurate method of determining solvent exposure

is through the calculation of the solvent accessible surface area
(SASA). Despite its popularity, calculating the SASA for every
residue in a protein is computationally expensive.33,34 The
amount of solvent exposure determinations needed for tertiary
structure prediction renders SASA impractical for these
purposes. An alternative, and computationally less expensive,
method for solvent exposure determination comes in the form
of a per residue neighbor count. By counting the number of
neighboring residues that are present surrounding a target
residue, an inference into the solvent exposure can be made.
The more neighbors a residue has, the less solvent exposed it
is. Using this idea, we developed a neighbor count measure
that is composed of both a distance criterion and an angle
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criterion. A graphical schematic of this is shown in Figure 1.
This is a more sophisticated version of the neighbor count
used in our previous work.8 In this version, the directional
approach of the label through the solvent is taken into account,
as opposed to accounting for neighbors in all directions equally
in the old neighbor count version. Two different versions of
this neighbor count were developed: one that utilizes a low-
resolution centroid representation of the protein in Rosetta (all
of the backbone atoms are explicitly present, but the entire side
chain is represented as a single point referred to as a centroid)
and a full-atom representation (all atoms explicitly defined).
To calculate the neighbor count for residue i (Neighbor Coun-
ti) in the centroid representation, both the distance in
angstroms (rij) between the Cα of residue i and the CEN of
residue j with j ≠ i and the angle in radians (θij) enclosed by
the CENj-Cαi-CENi vectors were assessed. The full atom
version, depicted in Figure 1A, is similar to the centroid
version in that the CEN coordinates were replaced with the
respective residue Cβ coordinates (or Hα in the case of
glycine). The respective distance and angle were then used as
functional inputs to a product of two sigmoidal functions,
defined as D(rij) and A(θij), respectively, to determine each
neighboring residue’s overall contribution to the total neighbor
count, Neighbor Counti (ranging from 0 to 1). Details
regarding the definitions of D(rij) and A(θij) can be found in
parts B and C of Figure 1, respectively. Each product was then
summed over all of the residues in the protein to yield a total
neighbor count for residue i. Functionally, this is represented
in eq 1, where N is the total number of residues in the protein:

D r A

r

Neighbor Count ( ) ( )

1
1 exp( 9)

1
1 exp(2 ( ))

i
j i

N

ij ij

j i

N

ij ij

∑

∑

θ

π θ π

=

=
+ − + −

≠

≠

(1)

In order to calculate the neighbor counts, we developed the
per_residue_solvent_exposure Rosetta applica-

tion. This application takes a PDB as input and calculates
the neighbor count using eq 1. To examine the distribution of
solvent exposure as a function of residue type, both the per-
residue SASA and neighbor counts were calculated for each of
the 6165 proteins downloaded from the Protein Data Bank.
The SASA calculations were performed using NACCESS.35

Decoy Model Generation from the Benchmark Set. In
order to test the effectiveness of covalent labeling in improving
Rosetta tertiary structure prediction, decoy sets containing
both low and high RMSD protein models were necessary. A
total of 9700 models were generated for each of the 20
benchmark set proteins using the following three methods:
full-atom relaxation of the PDB (5 models), ab initio structure
prediction (5000 models), and threading (4695 models).
Five models were generated by relaxing the PDB structures

for each of the 20 proteins. The relaxation was performed with
Rosetta using the Ref2015 score function.36 The relax
application within Rosetta provided a simple full-atom
refinement that did not dramatically alter the backbone
conformation of the protein.37,38

The 5000 ab initio models per protein were generated using
the standard Rosetta AbinitioRelax protocol.39−44 The frag-
ment files were generated using the Robetta Web server.45 The
fragment assembly stage is broken down into four separate
stages that vary in the centroid-based score functions and the
fragment size applied. The final full-atom refinement stage
used the Ref2015 score function.36

The 4695 threaded models per protein were generated using
RosettaCM.46 Each of the 20 target protein sequences were
threaded onto the tertiary structure of 4695 template
structures from the set of 6165 proteins (only the proteins
with a length greater than or equal to 90 residues were used for
the threading). EMBOSS Needle, which uses the Needleman−
Wunsch alignment algorithm, was used to generate the
sequence alignments between the target protein sequence
and each of the templates.47 A gap open penalty of 10.0 and an
end gap penalty of 10.0 were applied to the alignment in order
to minimize the gaps in the sequence alignments. Following

Figure 1. (A) Diagram of the “cone” neighbor count method using the full-atom definition. The neighbor count of residue i is defined as the
product of the distance contribution (D(rij)) and the angle contribution (A(θij)) summed over all residues j ≠ i. The distance rij is defined as the
length of the vector between the Cα of residue i and the Cβ of residue j, and the angle θij is defined as the angle between the vector between the Cα
of residue i and the Cβ of residue j and the vector between the Cα and Cβ of residue i. (B) Functional form of the distance contribution, D(rij).
(C) Functional form of the angle contribution, A(θij).
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the standard RosettaCM protocol, each of the target sequences
were threaded onto each of the template structures using the
alignments and then the gaps were constructed using the
Rosetta Hybridize Mover following a full-atom relaxation.
covalent_labeling_cen and covalent_la-

beling_fa Score Terms. Two new Rosetta score terms,
covalent_labeling_cen and covalent_labe-
ling_fa, were developed to calculate the agreement
between a model’s solvent exposure (evaluated as a neighbor
count) and the corresponding native structure’s solvent
exposure. The native structure was defined as the experimental
structure of the protein as deposited in the PDB. The neighbor
counts were evaluated using eq 1, and calculations were
performed in both a centroid and full atom representation of
the structure. The need for two separate forms of the score
term arose from Rosetta’s AbinitioRelax protocol. The
protocol is divided into two primary stages: a low-resolution
centroid fragment assembly stage and a high-resolution full
atom refinement/relaxation. In order to use the score term in
both stages, two separate forms were necessary. The centroid
version of the score term was evaluated as shown in eq 2

where |diff|i is the absolute difference of the neighbor count for
residue i (calculated using a centroid representation) of the
model and the corresponding input average centroid and full-
atom native neighbor counts. Each labeled residue contributes
a score ranging from −1 (perfect agreement between the
model and experiment) and 0 (complete disagreement). The
score as shown in eq 2 is represented as the sum of the score
contributions calculated as a sigmoidal function for the labeled
residues. A tolerance neighbor count of ±2 was included to
allow for experimental error. In other words, for values of 0 ≤ |
diff|i ≤ 2, a full per residue score value of −1 was assigned. The
other score term, covalent_labeling_fa, was defined
functionally identically to eq 2 with the only difference being
that |diff|i was evaluated using the full atom representation.
Summary of Validation Methods. In order to validate

the ability of our new score terms to discriminate between low
and high RMSD models, three different methods were used.
The first was an evaluation of the performance (defined by the
shape, discriminatory power, and funnel-like quality) of the
score term (covalent_labeling_cen) itself, in the
absence of any other Rosetta score terms. This involved
calculating the size normalized covalent labeling score for all
9700 benchmark decoy models. We refer to this method as the
analysis of the “covalent labeling score distribution” through-
out the remainder of this work. The second validation method
was a rescoring of decoy models generated with Rosetta using
covalent_labeling_fa. Unlike the previous method,
this “rescoring” method results in a score that is a linear
combination of the Rosetta Ref15 score and our newly
developed covalent labeling score. Finally, the third validation
method we employed was using the score term in conjunction
with Rosetta to generate new models, which is referred to as
“folding in the presence of covalent labeling”.
As part of the analysis of the covalent labeling score

distribution, several different metrics were used to evaluate the
performance of our new score terms, covalent_labe-
ling_cen and covalent_labeling_fa. The sim-
plest metric used was the RMSD of the best scoring model. If
the score terms were able to accurately predict the native

model, the best scoring model should have a low RMSD
relative to the native structure. This metric corresponded to
what is typically done when evaluating distributions generated
using Rosetta. In practice, the native structure is unknown, so
one way to differentiate between models is to compare their
Rosetta score.
The second evaluation metric utilized was a goodness-of-

energy-funnel metric, developed by Bhardwaj and co-workers,
dubbed PNear.

48 The value of PNear is a single value that
represents the overall “funnel-ness” of a Rosetta score vs
RMSD distribution. PNear ranges from 0 (no funnel-like
character) to 1 (perfect funnel). It is defined as shown in eq 3

( ) ( )
( )
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2

2
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B

=
∑ − −

∑ −

λ=

= (3)

where N is the total number of models in the distribution and
Em and RMSDm are the score and RMSD of model m,
respectively. The two remaining parameters, λ and kBT,
represent how similar the RMSD of a model has to be to
the native to be considered native-like and the depth of the
funnel, respectively. The values used for these parameters
follow the conventions set forth by Bhardwaj and co-workers
in their work developing this metric.48 For all evaluations of
PNear, a value of 2.0 Å was used for λ. The value used for kBT
depended on the type of distribution being analyzed. For total
Rosetta score vs RMSD distributions (as seen in the rescoring
and refolding validation tests), kBT was assigned a value of 1.0.
As part of the analysis of the covalent labeling score
distributions, the normalized covalent_labeling_cen
score (dividing the score by the total number of labeled
residues) vs RMSD distributions for the set of models were
evaluated and kBT was assigned an empirically determined
value of 0.001, to account for the change in relative scale of the
scores.

Residue Type Sets. To answer the question of which
residue type exposures provided the most structural
information for protein structure prediction, we broke down
the set of 20 amino acid types into several subsets. The subsets
are summarized in Figure 2. A total of six subsets were used for

this study. The first consisted of all 20 amino acid types. This
set represents the ideal scenario where information regarding
the solvent exposure of every amino acid type could be utilized.
The next two subsets consisted of the amino acid types that are
typically labeled and analyzed with hydroxyl radical foot-
printing and DEPC, respectively.8−11 The hydroxyl radical
(HRF) set contained the following amino acids: I, L, P, F, W,
Y, E, and H. The DEPC set contained Y, H, K, S, T, and C.
The fourth subset was made up of the amino acid types that
are most commonly targeted in covalent labeling experiments.1

This subset, which we denote the “common” subset, contained

Figure 2. Amino acid types that comprise the different residue type
sets.
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W, Y, D, E, R, H, K, and C. In order to experimentally label all
of these amino acids, several different labeling reagents would
have to be used. We generated the final two subsets ourselves.
The “most varied” subset consisted of the eight amino acid
types (A, L, V, F, W, Y, C, and M) that were identified during
the neighbor count calculations of the 6165 PDB structures.
These amino acids exhibited the greatest variation (i.e., had
wide neighbor count distributions; at least 50% of those
residues had neighbor counts ranging from 15 to approx-
imately 30 neighbors). The final subset was identified as being
the most optimal subset of residue types based on their ability
to discriminate between low and high RMSD models in our
covalent labeling score distribution analysis. This “optimal”
subset was composed of G, L, V, F, D, R, H, S, and T.
To determine the subset of amino acids for the “optimal”

type set, the size normalized version of covalent_labe-
ling_cen was calculated for the 194,000 decoy models
((5000 ab initio models + 4695 threaded models + 5 relaxed
native models) × 20 proteins) along with the RMSD for each
model to its respective native. The normalized version was
used so that the scores could be compared across the 20
proteins, regardless of their size. The residue types used to
evaluate the scores were systematically varied, and the value of
PNear was calculated for the resulting distributions. Starting
with all of the combinations of pairs of amino acids as different
subsets (190 total combinations), the covalent labeling score vs
RMSD distributions were generated and evaluated using PNear.
The top five, based upon PNear, combinations (GS, GY, GV,
ER, and GR) were used as seeds for the various combinations
of three amino acids. The top five combinations of three were
used as seeds for combinations of four, and so on. This process
was continued until a subset of amino acids yielded a size-
normalized covalent labeling score vs RMSD distribution and
PNear that was comparable to the distribution of the set
containing all 20 amino acids.
Incorporation of Experimental Noise. From a modeling

standpoint, one of the main issues with data obtained from
covalent labeling experiments is that it contains noise, as does
all experimental data. In an ideal situation, every solvent
exposed residue that could be labeled (i.e., that is not
participating in any noncovalent interactions and that is of the
type that can be labeled with the given reagent) would be
labeled and provide structural information. In practice, this
rarely occurs, and thus, solvent-exposed residues sometimes
appear to be unlabeled. This can be thought of as an
incomplete experimental sampling or false negative data points.
The other type of experimental noise exists in the form of false
positive data where buried residues appear to be labeled.
False Negative Data. In order to simulate false negative

data (the noise due to incomplete sampling) and also to
determine how many labeled data points are needed to
differentiate between low and high RMSD models, different
percentages of the total number of potential data points were
removed from the total set of data points. For each of the 20
proteins, percentages ranging from 0 to 50% of the total
number of residues that could be labeled were removed from
the total set of residues. To determine which residues to
remove from the data set, we utilized inverse transform
sampling of the native neighbor count solvent exposed residue
(centroid based neighbor count <15) distribution. By doing
this, we effectively simulated what occurs experimentally when
residues that are solvent exposed provide ambiguous data or
are not labeled and are thus not used for any further analysis.

The resulting set of residues were used as simulated
experimental inputs for the covalent labeling score distribution
validation method. covalent_labeling_cen vs RMSD
distributions were generated and analyzed using the metrics
described in the Summary of Validation Methods section. This
was done for all of the residue type sets defined in the previous
section. The maximum percentage of removed data points that
demonstrated model discrimination that was comparable to
the case of no removed points was identified.

False Positive Data. The other type of experimental noise
examined was that of false positive or incorrect data points.
These are residues that should not have been labeled due to
low solvent exposure but were experimentally labeled. To
determine the percentage of false positive data points that
could be tolerated, a similar approach to the incorporation of
false negative data was taken. Various percentages ranging from
0 to 25% of the total number of buried residues (neighbor
count >15) were selected using inverse transform sampling
from the native neighbor count distribution for each protein.
These residues were then assigned a new neighbor count
obtained by performing inverse transform sampling on the
neighbor count distribution ranging from a neighbor count of 0
to 15. This procedure simulated a buried residue providing
incorrect labeling information, suggesting that it should be
solvent exposed. Along with the set of labeled data points
determined after incorporating false negative data points, these
false positive data points were used as covalent labeling inputs
to validate the covalent labeling score distributions.

Rescoring of Rosetta ab initio Models. As the second
test for evaluating the effectiveness of the covalent labeling
based score term, the method of “rescoring” was used. Two
separate sets of proteins were used for this validation: six of the
proteins whose ab initio distribution contained sub-5 Å RMSD
models and nine of the proteins whose threaded distributions
contained sub-5 Å models. The rationale behind our decision
to truncate the 20-protein set and only focus on six and nine
proteins, respectively, with high quality models was that the
covalent labeling score term should be able to distinguish
between high quality models (RMSD ≤ 5 Å) and low-quality
models (RMSD ≥ 10 Å). The covalent labeling score term was
not designed to distinguish between two low quality models.
For rescoring to be able to theoretically select a high-quality
model, at least one of those had to be present in the set of
models that were rescored. The six proteins selected from the
ab initio set were PDB ID 1tpm, 2klx, 2nc2, 2y4q, 3iql, and
4omo. The nine proteins selected from the threaded set were
the six from the ab initio with the addition of 1fgy, 2kr9, and
4k47.
For each model (5000 total for the six ab initio proteins and

4695 total for the nine threaded proteins), the covalen-
t_labeling_fa score was evaluated using a simulated
experimental input file containing the average neighbor counts
(average of the centroid and full atom versions of the neighbor
count as defined in eq 1) for 65% of the solvent exposed
residues (randomly selected). Additionally, 10% of the buried
residues (randomly selected) were included as false data
points. Input files were created in triplicate for each of the
residue type sets defined in the Residue Type Sets section. The
resulting input files were used to calculate the covalen-
t_labeling_fa score for each model, and the score was
added to the overall Rosetta Ref15 score with a weight of 6.0.

Generating Rosetta ab initio Models with covalen-
t_labeling_cen and covalent_labeling_fa. In
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addition to rescoring existing models, a new set of models for
each of the 20 proteins were generated using the standard
Rosetta AbinitioRelax protocol with the addition of the two
new score terms: covalent_labeling_cen and co-
valent_labeling_fa. The Rosetta AbinitioRelax pro-
tocol is divided into two main stages: a low-resolution
fragment assembly stage where all backbone atoms are
expressed explicitly with the side chains represented as single
spheres and a high-resolution full-atom refinement where the
side-chain coordinates are explicitly accounted for. The
centroid version of the score term was used in the fragment
assembly stages of the protocol. A weight of 0.3 was assigned
to covalent_labeling_cen in all five centroid scoring
phases. The full-atom version was used only in the refinement/
relaxation stage with a weight of 6.0. Input files were generated
using the average neighbor counts (average between centroid
and full atom neighbor counts per residue) including 65% of
the solvent exposed residues (or 35% false negatives) and 10%
of the buried residues (with false positive neighbor counts).
Input files were generated in triplicate for the following residue
type sets: all, common, and optimal. A total of 5000 models
were generated and scored with the Rosetta Ref15 score
function plus covalent_labeling_fa for each protein
using each of the triplicate input files. This resulted in a total
ensemble of 15,000 models for each of the residue type sets. In
addition, 15,000 models were generated using the standard
Rosetta protocol as a control. In addition to using RMSD to
quantify the accuracy of the predicted models, the fraction of
correctly predicted contacts was calculated using a Python
script with a distance threshold between Cβ atoms (Cα for
glycine) of 8 Å.

■ RESULTS AND DISCUSSION

Cone-Based Neighbor Count Provided a More
Consistent, Computationally Inexpensive Measure of
Solvent Exposure than SASA. In order to use the
information from CL-based experiments to aid protein
structure prediction, it is necessary to efficiently and accurately
determine the per residue solvent exposure for a given protein
model. The most common method for calculating residue

solvent exposure is evaluating the residue SASA. However, we
found in our previous work with HRF experimental data that
the neighbor count provided a stronger correlation to
experimentally derived protection factors and was less
computationally expensive.8 Using the 6165-protein set as a
representative set of nonredundant protein subunit structures,
we evaluated the solvent exposure for all residues in each
protein using both SASA and a cone-based neighbor count, as
defined in eq 1. The distributions of the SASA and a cone-
based neighbor count for each amino acid type are shown in
Figure S2. Larger neighbor counts or lower SASA values
indicate a higher solvent exposure, as shown by the correlation
in Figure S2, panel C. The overall solvent exposure trends per
residue match expectations. The charged residues (D, E, R, K),
which most commonly appear on the protein surface, do have
among the highest solvent exposure. This trend is most
pronounced in the SASA distribution and can also be seen with
the neighbor count metric. The percentage of charged residues
(D, E, R, and K) that have a neighbor count less than 15 were
79.6, 82.1, 75.2, and 82.6%, respectively, indicating a relatively
high solvent exposure. Indeed, the charged residues constituted
four of the six most solvent exposed residue types, with the
remaining two being N and Q. Upon the basis of the overall
distribution of the neighbor counts, a threshold of 15 was
determined as a cutoff for differentiating between a residue
being solvent exposed (neighbor count less than 15) or buried
(neighbor count greater than 15).
Ultimately, we decided to use the neighbor count as the

metric to define solvent exposure. The computational cost of
calculating SASA would be too expensive to calculate for every
residue at each step of the Rosetta AbinitioRelax protocol.33,34

Using the neighbor count distributions as a guide, a set of
residue types were selected that had the most even distribution
of residues that were considered solvent exposed and buried.
The residues selected were A, L, V, F, W, Y, C, and M. In the
following, we are referring to this residue type set as the “most
varied” type set. Our hypothesis was that labeling information
on residues that had an equal likelihood of being solvent
exposed and buried should provide the most guidance with
regard to tertiary structure prediction.

Figure 3. Normalized covalent labeling score distributions for the combined 194,000 decoy models. Panel A shows the distribution using all 20
amino acid types to calculate the normalized covalent_labeling_cen, and panel B shows the “optimal” distribution containing only the
residues G, R, K, L, T, F, S, V, and D.
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In practice, when evaluating covalent labeling experiments,
information is generally only used from the residues that are
labeled. Data on protein residues that are not labeled (but are
of the type of amino acid that can be labeled by the reagent
being used) is generally not used to deduce protein structure.
Either these unlabeled residues could be buried within the
protein and not exposed to solvent, or the residues could be
participating in some type of noncovalent interaction such as a
salt bridge or hydrogen bond. Because it is not obvious how to
interpret the lack of labeling in terms of the protein structure,
we decided to not include information from what could be
considered buried residues based upon their neighbor counts.
This decision was made to better simulate what is actually
obtained from experiment. Any residue whose neighbor count
was above the determined threshold of 15 was excluded from
any further analysis.
Optimal Subset of Nine Amino Acid Types that

Provided the Most Discriminatory Information for
Structure Prediction. One of the primary questions that
arises in conjunction with covalent labeling experiments for
protein structure determination is which amino acid types
should be labeled to obtain structural information. Ideally, all
20 residue types would be labeled. To test this presumption,
we calculated the normalized covalent labeling score for each
of 194,000 decoy models and calculated the resulting score
versus RMSD distributions PNear. The distributions for all of
the investigated residue type sets can be found in Figure S3. An
important observation from these distributions is that,
regardless of the residue type set used, the covalent labeling
score was able to score poorly very high RMSD models
(RMSD > 20 Å). These poor-quality models did not agree
with the residue exposure pattern of even a subset of the
residues and could be easily discarded by the score term. The
ideal case of using all 20 residue types exhibited a PNear value of
0.87 (as shown in both Figure S3 and Figure 3A). However,
there is currently not a single reagent that can reliably label all
protein side chains. Hence, either a single reagent that can
label a limited number of residues can be selected with the
hope that the residues that are labeled provide enough
information or multiple reagents can be used to label a larger
number of amino acid types. The most commonly labeled
residues (W, Y, D, E, R, H, K, and C) that would require
multiple reagents make up the “common” residue type set
whose normalized covalent labeling distribution had a PNear of
0.81. Thus, the discriminatory power of the covalent labeling
score of the “common” residue type set was almost as high as
that of the “all” residue type set. In order to obtain labeling
information for all eight residues in the “common” residue type
set, as few as four different labeling reagents could be used (for
example, phenylglyoxal for arginine; EDC for aspartic and
glutamic acids; DEPC for histidine, lysine, tyrosine, and
cysteine; and Koshland’s reagent for tryptophan).1 Two of the
residue type sets we examined, HRF and DEPC, both utilize a
single reagent to label multiple residue types. HRF and DEPC
gave PNear values of 0.78 and 0.60, respectively. Although these
were lower than those observed for “all” and “common”, the
results are still encouraging given that both only require a
single labeling reagent, which minimizes the experimental
labeling effort. The “common” and HRF residue type sets were
almost as accurate as the ideal case of using all 20 residue
types, but there is still room for improvement. The final
residue type set that we identified as the “most varied” (A, L,
V, F, W, Y, C, and M) provided a PNear value of 0.50. The

“most varied” and DEPC residue sets performed the worst with
the lowest PNear. The results for the “most varied” set were
surprising, since the residues in that set were selected solely on
the basis of their highly variable solvent exposure observed in
trends from the Protein Data Bank. Upon further investigation,
we found that these amino acid types only cover 36.2% of the
average protein sequence.49 This implies that the low sequence
coverage of the “most varied” set outweighed the highly
variable solvent exposure of its constituent residues.
Labeling experiments are costly and time-consuming,

making it desirable to perform experiments with a labeling
strategy optimized to maximize the amount of structural
information obtained. Using computational methods, here we
identified an optimized set of residue types, referred to as the
“optimal” type set, that provided the best discriminatory
behavior in terms of tertiary structure prediction. In order to
identify this “optimal” residue type set, the covalent labeling
score distribution was evaluated for all 20 residue types. This
distribution, as shown in Figure 3A, exhibited a PNear value of
0.87 and was used as the baseline. The goal of our analysis was
to find the combination of the fewest residue types that gave a
PNear value comparable to 0.87. By following the procedure
described in the Methods, an optimal subset of nine residue
types was identified. The amino acid types that comprise this
“optimal” subset were G, R, K, L, T, F, S, V, and D. The
corresponding normalized covalent labeling score vs RMSD
distribution is depicted in Figure 3B and had a PNear value of
0.87, identical to that of the baseline. With just nine amino acid
types, we are able to generate a distribution that was just as
funnel-like as the total set. The “optimal” type set is composed
of charged (R, K, D), hydrophobic (L, F, V), and polar
uncharged (T, S) amino acid types and glycine (G). There are
amino acid types in this set that represent the various different
groups of amino acids. Because of this, we speculate that,
because of the widespread representation of amino acid types,
this subset provided structural information on par with using
all amino acid types. Upon the basis of the average distribution
of amino acid types, these nine amino acid types make up
56.2% of the average protein sequence.49 For the 20-protein
benchmark set used for this work, the respective amino acids
made up 53.9% of the sequences. The fact that they cover over
half of the average protein sequence makes these amino acid
types very attractive for use in covalent labeling experiments.
Out of this set of nine amino acid types, we identified two
subsets of just four residues that provided the most
information: (1) L, S, G, and R and (2) L, S, G, and V.
These two subsets gave distributions with PNear values of 0.70
and 0.64, respectively. The subset of five amino acid types
composed of the union of these two subsets (L, S, G, R, V) had
a distribution with a PNear value of 0.77. In addition to
providing PNear values close to that of the total optimal set,
these five residues account for 35.3% of the average protein
sequence coverage. These five amino acids are also among the
top seven most prevalent amino acid types in the average
proteins (the other two being A and Q). Because of this, we
hypothesize that these core amino acids are the most useful to
label for structure prediction.
In order to demonstrate that not all subsets of nine amino

acids provided equally useful information, the same procedure
was performed again but this time taking the top five worst sets
at each iterative step. The final result was a subset that had a
PNear value of 0.03 and was comprised of the following amino
acid types: C, I, F, M, W, P, V, A, and S. This distribution can
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be found in Figure S4. Clearly, the ability of subsets of nine
amino acids varies widely in their abilities to produce funnel-
like distributions.
Up to 35% of Solvent Exposed Residues Can be

Tolerated as False Negatives in Tertiary Structure
Prediction. In an ideal scenario, all 20 amino acid types
could be labeled and data was collected on every residue in the
protein. This would provide the most information regarding
protein tertiary structure. In practice, this rarely occurs and
solvent-exposed residues frequently appear to be unlabeled.
One of the main questions we sought to answer in this work
was the question of how many unlabeled residues can be
tolerated while still accurately differentiating between low and
high RMSD protein models. To do this, a normalized covalent
labeling score was calculated for the 194,000 decoy models.
The normalized neighbor score was defined as the cova-
lent_labeling_cen score divided by the total number
of residues in the given protein. By normalizing the score in
this way, the covalent_labeling_cen scores of the 20
different benchmark proteins could be compared to each other.
Starting with the “all” residue type set (containing all 20

amino acid types) and only using the residues that had a native
neighbor count less than 15, a size normalized covalent
labeling score distribution was generated. This distribution,
shown in Figure S5A, represented the ideal baseline. A PNear
value of 0.87 was calculated for this distribution, indicating a
high-quality funnel. Sets of false negative residues were
determined by identifying fractions of the solvent exposed
residues starting at 0% and continuing until 50% at increments
of 5%. These false negative data points were then removed
from the set of labeled residues, and PNear values for the
resulting distributions were calculated for each of the residue
type sets. This process was repeated in triplicate due to the
random element introduced in the selection of the removed
residues, and the results were averaged (as summarized in
Table 1 and Figure S5B). As was expected, the PNear values
decreased as the number of false negative data points
increased, indicating less funnel-like distributions. The “all”
residue type set provided distributions with the best PNear
values at almost all percentages of residues removed and did
not show a dramatic decrease in funnel-like quality. The other
residue type sets showed more pronounced decreases in
quality as larger percentages of solvent exposed residues were
removed. The HRF and DEPC residue sets decreased in
quality by changes in PNear from 0.78 to 0.36 and 0.60 to 0.15,
respectively, when comparing 0 to 50% of the solvent exposed
residues being treated as false negatives. This indicated that
these residue sets are less tolerable to false negative data points.
On the other hand, the “optimal” type set only decreased by a
PNear value of 0.15 (from 0.87 to 0.73) when increasing false
negative data from 0 to 50%. Unlike HRF and DEPC, this

demonstrated a stronger tolerance to false negatives, which is a
necessary condition for selecting residue types to label. The
“most varied” type set changed in PNear from 0.50 to 0.11 when
increasing the false negative percentage from 0 to 50%. This
type set did not perform well in the absence of any false
negative data and only got worse upon inclusion of the data.
The “common” type set on the other hand only decreased in
PNear from 0.81 to 0.53. While this type set performed well in
the absence of any false negative data, it did exhibit a
noticeable decline in discrimination power upon the addition
of false negative points.
In summary, we identified 35% of the solvent exposed

residues removed and treated as false negatives, to be the
maximum percentage that maintained sufficient funnel-likeness
as seen in the “all”, “common”, and “optimal” residue type sets.
This suggests that protein structure prediction from covalent
labeling data can tolerate up to 35% of false negative data
points if suitable labels are used. This assumed level of false
negative data agrees with the assumptions made by MacCallum
and co-workers as part of their MELD method.50 Additionally,
there are multiple covalent labeling studies that reported false
negative labeling rates below 35%.14,18 Distributions of each of
the residue type sets with 35% of the solvent exposed residues
removed from the normalized covalent labeling score
calculation can be found in Figure S5, panels C−H.

10% of Buried Residues Can be Tolerated as False
Positive Data Points. In addition to identifying the
maximum number of tolerable false negative data points, we
sought to identify how many incorrect data points could be
tolerated. This was done by using 65% of the solvent exposed
residues (assuming a false negative data rate of 35%) and then
adding into this set a percentage (ranging from 0 to 25%) of
“buried” residues with assigned incorrect neighbor counts
smaller than 15. This generated a certain percentage of buried
residues that were incorrectly labeled as exposed. The
introduction of false positive data resulted in an overall
decrease in the funnel-like quality of the distributions for all
residue type sets, as shown in Table 2 and Figure S6A. We
observed more variability in the distributions as additional
incorrect data was added. This was expected, since the ability
to discriminate between different quality models diminishes as
the amount of false positive information is increased.
Because the distributions were generated using only 65% of

the solvent exposed residues (as opposed to the ideal case of all
solvent exposed residues), the best possible distribution was
the “all” residue type set with 0% false positive residues which
had an average PNear value of 0.85. On the basis of the average
PNear values calculated for the “all” residue type set, a major
decrease in the funnel-like quality was observed between 5 and
10% of buried residues added as false positives (PNear decreased
from 0.86 to 0.61). The largest decrease in PNear occurred

Table 1. Average PNear Values for the Normalized Covalent Labeling Score versus RMSD Distributions (in Triplicate) for the
20 Benchmark Proteins at Various Percentages of False Negative Data Points

% false negative data points

residue type set 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

all 0.87 0.88 0.88 0.87 0.87 0.85 0.87 0.85 0.86 0.85 0.81
HRF 0.78 0.78 0.74 0.74 0.70 0.73 0.56 0.55 0.48 0.41 0.36
DEPC 0.60 0.61 0.56 0.53 0.48 0.42 0.41 0.37 0.33 0.18 0.15
common 0.81 0.81 0.78 0.79 0.77 0.72 0.76 0.71 0.69 0.62 0.53
most varied 0.50 0.51 0.38 0.47 0.36 0.30 0.26 0.27 0.16 0.17 0.11
optimal 0.87 0.87 0.87 0.85 0.86 0.84 0.83 0.81 0.80 0.75 0.73
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between 10 and 15% for the “optimal” type set, with the PNear
value dropping from 0.84 to 0.40. The values for PNear when
going from 0 to 10% false positive data points only decreased
from 0.73 to 0.62 for “common”. The final two residue type

sets decreased in PNear from 0.51 to 0.43 for HRF and from
0.34 to 0.28 for DEPC. Although the absolute decrease in PNear
for these two sets is the smallest among all of the sets, the
relative decrease in PNear for HRF and DEPC is significant.
Upon the basis of this, we concluded that an addition of up to
10% of a protein’s buried residues as false positives can be
tolerated while still being able to differentiate between low and
high RMSD models for most of the possible labeled residue
types. The resulting normalized covalent labeling score
distributions with 35% of the solvent exposed residues
removed (false negative data) and 10% of the buried residues
included as false positive data points are shown in Figures
S6B−G.

Rescoring Decoy Set with covalent_labeling_-
fa Significantly Improved RMSD of Best Scoring
Models. In the previous sections, we demonstrated that the
covalent labeling score itself can effectively discriminate
between low and high RMSD protein models, even in the

Table 2. Average PNear Values for the Normalized Covalent
Labeling Score versus RMSD Distributions (in Triplicate)
for the 20 Benchmark Proteins with 35% False Negatives at
Various Percentages of False Positives

% false positive data points

residue type set 0% 5% 10% 15% 20% 25%

all 0.85 0.86 0.61 0.56 0.58 0.57
HRF 0.51 0.40 0.43 0.20 0.25 0.23
DEPC 0.34 0.35 0.28 0.16 0.27 0.26
common 0.73 0.71 0.62 0.62 0.68 0.61
most varied 0.25 0.18 0.06 0.03 0.06 0.09
optimal 0.81 0.83 0.84 0.40 0.57 0.54

Figure 4. Plots of the average RMSD improvement for (A) the six ab initio proteins and (C) the nine threaded proteins with sub 5 Å RMSD
models before and after rescoring with covalent_labeling_fa at various weights for each of the residue type sets. Each data point is shown
as a pie chart representing the fraction of proteins that exhibited either an improved or the same RMSD upon rescoring with
covalent_labeling_fa. Panels B and D show the average RMSD improvement for the six ab initio and nine threaded proteins,
respectively, at a weight of 6. The fraction of proteins that improved or stayed the same is represented as the percentage above each bar.
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presence of false positive and false negative data. In practice,
the covalent labeling score will be used in conjunction with the
entire Rosetta score function (Ref15) to assess protein models.
Here we tested the ability of the covalent_labeling_-
fa score term to improve protein model selection by rescoring
the ab initio and threaded decoy models (5000 and 4695 totals,
respectively, per protein) with the new score term incorporated
into the standard Ref15 Rosetta energy function.
Rescoring existing protein models does not change model

RMSD values but only reevaluates the relative scores of
models. The desired goal of the covalent labeling score term
was discrimination between low RMSD (sub 5 Å) and high
RMSD (greater than 10 Å) structural models. It was, for
example, not designed to differentiate between a 10 Å RMSD
model and a 20 Å RMSD model. In both cases, the model
should be considered inaccurate. As such, we did not rescore
the decoy sets for all 20 proteins, but only the decoy sets of
proteins that had models with sub-5 Å RMSD. Because of this,
a total of six proteins (1tpm, 2klx, 2nc2, 2y4q, 3iql, and 4omo)
were selected from the ab initio decoy sets and nine proteins
(1fgy, 1tpm, 2klx, 2kr9, 2nc2, 2y4q, 3iql, 4k47, and 4omo)
were selected from the threaded decoy sets to be rescored.
Input files for covalent_labeling_fa included the

average neighbor counts (average between the centroid and
full-atom version defined in eq 1) for 65% of the given
proteins’ solvent exposed residues and 10% of the buried
residues as false positives. The covalent_labeling_fa
score was calculated for each of the decoy models and was
subsequently weighted and added to the Ref15 score. This was
done for weights ranging from 1.0 to 15.0. The resulting
average differences between the RMSD of the top scoring
models scored with Ref15 alone and with Ref15 plus
covalent_labeling_fa are summarized in Figure 4A
and C. At every weight tested, there was on average
improvement, with the greatest improvement seen for the
“all”, “optimal”, and “common” residue type sets. This was in
agreement with our prior analysis on the discrimination power
of the covalent labeling score term itself. We observed that, as
the weight increased, the degree of improvement initially also
increased, eventually stabilizing starting around a weight of 4.0.
From a weight of 4.0 to approximately 12.0, the results were
fairly stable. The average RMSD improvements at each weight
for each residue type set can be found in Table S2. Each data
point in Figure 4A and C is shown as a pie chart representing
the fraction of proteins (out of either six for ab initio or nine
for threaded) that exhibited a top scoring model with either an
improved or the same RMSD upon rescoring with cova-
lent_labeling_fa. All of the fractions were close to
100%, indicating that the average improvement seen in the
RMSDs did not come from a single protein at the expense of
the others getting worse. The majority of the proteins
demonstrated some degree of improvement. A weight of 6.0
was selected as the optimal weight for rescoring. This weight
was the lowest weight that demonstrated a significant

improvement in the top scoring RMSD for all of the residue
type sets in both decoy protein sets. It also corresponded to
the optimal weight we identified in our previous work using
experimental HRF data.8 The average RMSD improvements
for each of the residue type sets at a weight of 6.0 are depicted
in Figure 4B and D. As expected from the analysis leading up
to this point, the “all” and “optimal” type sets had the greatest
RMSD improvement for the six ab initio proteins, with average
improvements of 4.1 and 3.7 Å at the weight of 6.0,
respectively. The average improvements for the threaded
proteins were not as significant, but again, the average
improvements in the “all” and “optimal” sets were the greatest
(1.8 and 1.3 Å, respectively). Overall, rescoring the ab initio
decoy models demonstrated a greater improvement in the top
scoring RMSD than the threaded models (average improve-
ment of 4.1 Å for the “all” type set as compared to 1.8 Å). In
six of the nine threaded model proteins used, the RMSD
difference between the top scoring model and the lowest
RMSD was less than 2 Å prior to rescoring, whereas only one
of the six ab initio model proteins had a difference less than 2
Å. In other words, low RMSD threaded models frequently
already scored well in Ref15 in the absence of covalent labeling
data. Because of this, there was not nearly as much room for
improvement for the threaded models as there was with the ab
initio models. In summary, by rescoring the models with the
incorporation of covalent labeling data, we were successful in
significantly improving the quality of the models selected from
the structure ensemble when combined with Ref15.

Generating Models with Rosetta and Covalent
Labeling Data Resulted in Improvement of Best
Scoring Model RMSDs. Above, we explored the ability of
the covalent labeling score to improve protein model quality by
rescoring existing protein models in conjunction with the
entire Rosetta score function. Here, we tested the ability of a
covalent labeling derived score term to accurately predict
protein tertiary structure by using it to guide ab initio model
generation. Rosetta’s AbinitioRelax protocol is broken into two
major stages: a low-resolution fragment assembly stage and a
high-resolution full-atom refinement/relaxation. Hence, two
versions of the score term were necessary and required
different weights for each stage. An optimized weight of 0.3
was used for covalent_labeling_cen in all five
scoring phases of the fragment assembly stage. Similar to the
weight selection process for the rescoring, the weight of 0.3
was empirically selected from a set of weights ranging from
0.01 to 40.0. The impact of the weight on the prediction results
is shown in Figure S7. For the full-atom relaxation stage, a
weight of 6.0 was used for covalent_labeling_fa.
This weight was chosen on the basis of the rescoring results.
New models were generated for the “all”, “common”, and
“optimal” residue type sets. In addition, sets of 15,000 models
were generated using the standard Rosetta protocol as a
control.

Table 3. Average Minimum RMSD, Top Scoring RMSD, and Average RMSD of the Top 10 Scoring for the 20 Benchmark
Proteins Generated Guided by Covalent Labeling Asc Ompared to Those Generated Without

minimum RMSD (Å) top scoring RMSD (Å) avg. RMSD of top 10 scoring (Å)

residue type set Rosetta Rosetta + CL Rosetta Rosetta + CL Rosetta Rosetta + CL

all 7.0 6.8 13.1 11.5 12.9 12.1
optimal 7.0 7.1 13.1 12.3 12.9 12.5
common 7.0 7.1 13.1 12.2 12.9 12.6
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For each of the residue type sets, triplicate versions of the
input neighbor counts were created. A total of 5000 models
were generated using each input file, resulting in a total
ensemble of 15,000 models per protein per residue type set.
Summarized in Table 3 are the average (across all 20 proteins)
minimum RMSDs of the ensemble of structures, the average
RMSD of the top scoring model, and the average RMSD of the
top 10 scoring models. On average, the “all” residue type set
demonstrated the most improvement in all three categories.
The top scoring RMSD model improved by an average of 1.6
Å, indicating that there is a positive effect of including
information from covalent labeling. The minimum RMSD
improved by 0.2 Å, while the average RMSD of the top 10
scoring models improved by 0.8 Å. Improvements of 0.8 and
0.9 Å in the RMSD of the top scoring model were seen for the
“common” and “optimal” residue type sets, respectively.
Additionally, for these two residue type sets, the average
RMSD of the top 10 scoring models improved by 0.4 and 0.3
Å, respectively.
Furthermore, we investigated the RMSD improvement for

each protein individually. The RMSD of the top scoring model
for each protein was plotted by analyzing the ensemble of
15,000 models (as opposed to averaging the metrics across the

5000 models from three trials), as shown in Figure 5. Out of
the 20 proteins, 14 demonstrated an improvement in the top
scoring RMSD for all three residue type sets. The specific
protein RMSD improvements and fractions of correctly
predicted contacts can be found in Table S3. The amount of
improvement varied greatly among the 20 proteins and the
three residue type sets used for the covalent labeling-guided
folding. The magnitude of the improvement for the “all”
residue type set ranged from a maximum improvement of 7.3 Å
to a decrease in RMSD by 3.9 Å. The “common” and “optimal”
residue type sets exhibited maximum improvements of 8.4 and
5.9 Å, respectively. Despite demonstrating improvements
similar to the “all” set, both sets also showed occurrences of
major decreases in RMSD (up to 7.7 Å decrease for “common”
and 8.1 Å decrease for “optimal”). Although not all of the 20
proteins improved, on average, there was a net positive
increase in the quality of the top scoring models. The PNear-
driven optimization scheme employed when developing the
covalent labeling score focused not just on the best scoring
model but on all models, thus implicitly accounting for the
overall ruggedness of the energy landscape. To account for
other measures beyond model RMSD, we analyzed the fraction
of correctly predicted contacts for each of the top scoring

Figure 5. Top scoring RMSD, minimum RMSD, and average RMSD of the top 10 scoring models for each of the 20 proteins calculated using
Rosetta Ref15 alone (x-axis) and with covalent labeling (y-axis) for the (A) “all”, (B) “common”, and (C) “optimal” residue type sets.
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models. We observed the same general trend as observed for
the RMSD. For example, 2n28 showed an improvement in
RMSD for the “all” residue type set (from 17.2 to 12.2 Å) and
it also demonstrated an increased fraction of correct contacts
(from 0.94 to 0.97). In the cases where the RMSD did not
improve, such as in 2kr9, the fraction of correct contacts
remained unchanged, indicating that the quality of the models
did not deteriorate significantly despite decreases in RMSD.

Four of the proteins that showed improvement with the “all”
residue type set are presented in detail in Figure 6. Figure 6
shows the RMSD frequency distributions of the top 1% scoring
models, the Rosetta score versus RMSD plots, and the top
scoring models overlaid with the native structure, with Rosetta
alone in teal and Rosetta plus covalent labeling in indigo. Out
of all 20 proteins, 2n28 exhibited the greatest improvement in
the overall quality of the models generated, as shown in the

Figure 6. Distributions of the top 1% of scoring models (150 total) with (indigo) and without (teal) covalent labeling (“all” residue type set) for
1jfm, 2klx, 2n28, and 4omo. Also plotted are the Rosetta score versus RMSD to native distributions as well as the top scoring models (colored)
compared to the native (gray).
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distributions, although the top scoring model still had a
relatively high RMSD of 12.2 Å. The largest absolute
improvement in the RMSD of the top scoring model was
observed for 1jfm, with an improvement of 7.4 Å. 2klx and
4omo both improved in their top scoring models (improve-
ments of 2.6 and 4.0 Å, respectively). The overall score versus
RMSD plots also presented more funnel-like distributions. The
score versus RMSD plots and RMSD frequency distributions
for all 20 benchmark proteins generated using each of the three
residue type sets (“all”, “common”, and “optimal”) can be
found in Figures S8−S13.
Using covalent labeling information to guide protein

structure prediction was successful. The average RMSD
improvement appeared to be lower than that for the model
rescoring analysis. However, the rescoring results were
obtained by averaging only six or nine proteins (for the ab
initio and threaded proteins, respectively), as opposed to all 20.
These subsets had a predisposition for proteins that worked
well in Rosetta protein structure prediction. Additionally,
rescoring existing models precludes observing improvements in
the RMSD ranges sampled, as was seen for 2n28 (see Figure
6). Rescoring is incapable of improving the best RMSD model
generated. Finally, rescoring models requires increased
computational and user effort. Additional, post processing
steps are necessary, whereas guided model generation only
requires a single preprotocol step of generating the necessary
input file.

■ CONCLUSION
In this work, covalent labeling techniques were analyzed
computationally to provide insight into what labeling data is
needed to optimize tertiary protein structure prediction in
Rosetta. Using the Protein Data Bank (PDB), statistics were
gathered regarding various per residue solvent exposure
metrics. On the basis of these results, a “cone”-based neighbor
count metric was selected as the best predictor of solvent
exposure. A benchmark set of 20 proteins randomly selected
from the PDB was used to generate decoy models that were
then scored with a normalized covalent labeling score derived
from the neighbor counts. Various sets of residue types were
evaluated as potential experimental labeling targets, and an
“optimal” set (composed of G, R, K, L, T, F, S, V, and D) was
identified as being the subset that provided model discrim-
ination as accurate as using all 20 residue types. The
normalized covalent labeling score was then used to determine
the false negative and false positive data point tolerance. Two
new score terms were created, covalent_labeling_-
cen and covalent_labeling_fa, to be used within
Rosetta’s AbinitioRelax protocol. Models generated with
Rosetta were rescored with covalent_labeling_fa,
and a new set of models were generated by using the
AbinitioRelax protocol guided by both new score terms. As a
result, improvements in the model quality and accuracy were
seen upon both rescoring and guiding model generation.
In conclusion, we would like to make several recommenda-

tions to those looking to perform covalent labeling experiments
with the goal of tertiary structure prediction. Ideally, one
would try to label as many residue types as possible, given that
our results using all 20 residue types provided the strongest
predictions. However, in the likely scenario that all 20 residue
types could not be labeled, we would recommend using the set
of eight residues that are most commonly labeled (W, Y, D, E,
R, H, K, and C) or the set we identified as optimal (G, R, K, L,

T, F, S, V, and D). For the most commonly labeled residues, a
combination of the following reagents can be used to perform
labeling experiments: phenylglyoxal , 1-ethyl-3-(3-
(dimethylamino)propyl) carbodiimide hydrochloride (EDC),
diethylpyrocarbonate (DEPC), and 2-hydroxy-5-nitrobenzyl
bromide (Koshland’s regent).1 Seven out of the nine residue
types in the “optimal” residue type set can be labeled using
known labeling reagents: L and F with HRF, D with EDC, R
with phenylglyoxal, and DEPC can be used to label K, S, and
T. Additionally, HRF is theoretically capable of labeling G and
V but those have a relatively low reactivity.1,51 We hypothesize
that the residue types identified as the “optimal” residue type
set were identified on the basis of their above-average sequence
coverage in proteins. This set contains a core set of five amino
acid types (L, G, R, V, and R) that contributed the most to the
covalent labeling score’s ability to discriminate models. These
five amino acid types are among the seven most abundant
residue types. Thus, we believe that maximizing sequence
coverage is a key factor when selecting residue types to label
with the intention of tertiary structure prediction. We have also
determined that, for accurate protein structure prediction,
there is a tolerance of about 35% of the maximum possible
number of labeled residues (i.e., solvent exposed) that can be
excluded as false negatives and 10% of residues inaccessible to
labeling (i.e., buried) can be introduced as false positives.
Encouragingly, these values seem to be in agreement with
common levels of experimental error.
Future work will focus on improving the guidance capability

of covalent labeling within Rosetta. We also plan on extending
this methodology to quaternary structure and protein−ligand
complexes.
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