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ABSTRACT: Many proteins contain regions of intrinsic disorder, not folding
into unique, stable conformations. Numerous experimental methods have been
developed to measure the disorder of all or select residues. In the absence of
experimental data, computational methods are often utilized to identify these
disordered regions and thus gain a better understanding of both structure and
function. Many freely available computational methods have been developed to
predict regions of intrinsic disorder from the primary sequence of a protein,
including our recently developed Rosetta ResidueDisorder. While these methods
are very useful, they are only designed to predict intrinsic disorder from the
sequence. However, it would be useful to have a method that could also measure
intrinsic disorder directly from structure. Such a method might also be used to
identify changes in the structure of systems that can transition from folded to
unfolded or vice versa, even systems that are not intrinsically disordered. Here
we extended the capabilities of Rosetta ResidueDisorder to measure the intrinsic disorder from the coordinates of a single
conformation of a protein. As a proof of principle, we show that ResidueDisorder can measure the intrinsic disorder from the
coordinates with a higher accuracy (69.2%) than when predicted from sequence (65.4%) using a benchmark set of 229 proteins,
showing that intrinsic disorder can be measured accurately from single structures over a large range of intrinsic disorder (0−
100%). Additionally, we used ResidueDisorder to analyze unfolding trajectories of 12 fast-folding, nonintrinsically disordered
proteins generated using molecular dynamics (MD), specifically steered MD (SMD), high-temperature MD, and accelerated
MD (aMD) as well as long-time scale folding/unfolding trajectories. Using ResidueDisorder, a clear correlation between RMSD
with respect to the native structure and measured fraction of denatured residues was observed. Finally, we introduced methods
to predict folding/unfolding transitions as well as a native-like structure in the absence of a crystal structure from folding/
unfolding MD trajectories. Rosetta ResidueDisorder is available as an application in the Rosetta software suite with the addition
of new capabilities for directly identifying denatured regions and predicting events.

■ INTRODUCTION

Over the last number of years, intrinsically disordered proteins
(IDP) and intrinsically disordered regions (IDR) within
proteins have become very active fields of study.1−6 Although
proteins are often thought to fold into stable structures
encoded by the primary amino acid sequence, as evidenced by
the hundreds of thousands of crystal structures in the protein
databank, in reality, proteins commonly contain segments of
intrinsic disorder. Disordered segments have relatively flat free
energy surfaces, which causes enhanced flexibility and an
ensemble of tertiary structures to be present at equilibrium.7

These regions are frequently significant to the function of IDPs
and are thus important to characterize but difficult to model
computationally. Nonetheless, some progress has been made in
modeling one of the most regularly studied IDPs, α-synuclein
(involved in Parkinson’s disease), using Monte Carlo
simulations in PyRosetta.6 Because of the importance of
IDRs to biological function, many methods have been
developed to predict the intrinsically disordered regions of
proteins based on the primary sequence. Some commonly used

methods include IUPred,8 PrDOS,9 DISOPRED,10 PONDR,11

Meta-Disorder,12 and MFDp2.13 Although the algorithms
differ, most take advantage of the fact that disordered regions
often contain a higher percentage of charged and hydrophilic
residues and have low sequence complexity. In general, most of
the available methods use some combination of machine
learning, energy function, local secondary structure prediction,
and/or homologous sequences. Recently, we developed
Rosetta ResidueDisorder,14 which uses Rosetta to predict an
ensemble of tertiary structures from the primary sequence and
predicts intrinsic disorder of each residue based on average
scores over those conformations. Using an independent
benchmark set of 229 proteins, Rosetta ResidueDisorder
outperformed all six other tested methods in terms of
prediction accuracy. While all of these prediction methods
can be very powerful, they are only designed to predict
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intrinsic disorder from the primary sequence. With the
exception of our new developments of ResidueDisorder,
available computational tools cannot measure intrinsic disorder
of a protein directly from structure.
Experimentally, disorder can be measured using a variety of

techniques that can be useful depending on the situation.1

Some methods measure the intrinsic disorder of proteins by
identifying residues in IDRs, which would be present in many
different conformations in equilibrium. The technique that was
first developed to probe intrinsic disorder was measuring
sensitivity to proteolysis, where enzymes such as subtilisin,
thermolysin, chymotrypsin, and trypsin tend to selectively
cleave regions with a higher probability in disordered regions
than in ordered regions. Using known IDPs and structured
proteins as controls, disorder can be measured based on the
ability of proteases to cleave peptide bonds.15 Another
commonly used technique to measure intrinsic disorder is
solution nuclear magnetic resonance (NMR), which can be
used to obtain an ensemble of tertiary structures that are then
used to probe disorder. Often residues with RMSF (root-
mean-square fluctuation) > 2 Å are defined as disordered.16

Additionally, X-ray crystallography can sometimes be used to
infer intrinsically disordered regions, which frequently present
as unresolved segments in crystal structures. Other methods
can measure changes in disorder of dynamic systems resulting
from some event (often a binding or aggregation event).
Electron paramagnetic resonance (EPR) can probe the
disorder of a specific residue over an event by measuring the
mobility (and thus disorder) of a cysteine (or any amino acid
mutated to a cysteine) when a spin-labeled moiety is
attached.17 For example, EPR was used to measure the
transition from disordered to ordered of the C-terminal region
of measles nucleoprotein when it binds to the measles virus
phosphoprotein.18 Finally, Raman spectroscopy has also been
used to measure disorder during the aggregation of intrinsically
disordered α-synuclein into ordered fibrils, which occurs in
Parkinson’s disease.19 This method takes advantage of
differences in vibrational frequencies between the disordered
soluble α-synuclein and the ordered fibril α-synuclein. While
these methods can quantify disorder of a protein exper-
imentally, to our knowledge, there is no computational
technique that can directly quantify intrinsic disorder as a
function of the coordinates of a protein. We hypothesized that
such a method could then be used to identify changes in
structure and to examine events from molecular dynamics
(MD) trajectories, such as folding/unfolding or potentially
binding events even for proteins that are not intrinsically
disordered.
Rosetta, a software suite originally developed for protein

structure prediction, contains algorithms for various methods
to study biomolecules such as protein folding, homology
modeling, loop modeling, docking, protein design, etc.20−31 At
the heart of most of Rosetta’s algorithms is its all-atom energy
function,22 which approximates the energy of a three-
dimensional protein structure using Rosetta Energy Units
(REU), which roughly correspond to kcal/mol. This energy
function was used in our developed intrinsic disorder predictor
Rosetta ResidueDisorder.14 We hypothesized that low, i.e.,
more energetically favorable, Rosetta scores would correspond
to ordered regions and high, i.e., less energetically favorable,
Rosetta scores would correspond to disordered regions.
Beginning from the primary sequence, 100 de novo structures
were generated using the Rosetta ab initio structure prediction.

Next, each residue was scored using the Rosetta energy
function (talaris2014 weights) and averaged over the 100
predicted structures. An order score was then calculated by
averaging the raw Rosetta score over a window of 5 residues in
both directions in order to smooth out the energy surface.
Finally, residues were predicted as ordered if the order score
was <−1.0 Rosetta Energy Units (REU) and disordered if the
order score was >−1.0 REU. If the protein was predicted to be
less than 60% disordered, a terminal residue optimization was
performed where the order/disorder cutoff was increased for a
percentage of the terminal residues. ResidueDisorder out-
performed all other tested IDP prediction methods based on
our independent benchmark set presumably because of the
ability to quantify long-range interactions that other purely
sequence-based methods cannot. We hypothesized that we
could use a similar methodology to measure the disorder of a
known structure by skipping the structure prediction step in
the ResidueDisorder methodology.
In this work, we successfully verified the application of

ResidueDisorder to measure intrinsic disorder directly from
3D protein coordinates. Next, we used ResidueDisorder to
examine protein unfolding trajectories of nonintrinsically
disordered proteins using steered, high-temperature, and
accelerated MD by measuring changes in denatured regions.
Finally, we used ResidueDisorder to analyze long (104−486
μs) folding/unfolding trajectories for fast-folding proteins and
developed methods to predict folding/unfolding events as well
as a native-like structure from the trajectory.

■ MATERIALS AND METHODS
Validation of ResidueDisorder To Measure Protein

Disorder. As a proof of principle, we first tested our
hypothesis that ResidueDisorder could accurately measure
intrinsic disorder from protein structures, evaluating a
benchmark set of 229 proteins from a previous study.14 This
set contained proteins extracted from the protein databank
with the following criteria: fewer than 150 residues, single
chained, and structures determined by NMR. From the NMR
ensembles, root-mean-square fluctuation (RMSF) values were
calculated for each residue after alignment. The experimental
disorder was defined for each residue as disordered if RMSF >
2 Å and ordered if RMSF < 2 Å as is common in the
literature.16 The test set contained 10 899 disordered and
10 674 ordered residues (within 1% of each other to avoid
biasing). To measure the disorder, we first relaxed the reported
representative structure for each protein using Rosetta. If a
representative model was not reported, the first model was
used. Those relaxed structures were input into the Rosetta
ResidueDisorder application in lieu of performing ab initio
structure predictions. The percent accuracy was defined as the
number of residues predicted correctly divided by the total
number of residues.

Protein Data Set. For the molecular dynamics (MD)
trajectory analyses we used the data set of fast-folding proteins
from Lindorff-Larsen et al. (see Table S1 for full
description).32 These proteins ranged from 10 to 80 residues,
contained no prosthetic groups or disulfide bonds, and
contained representatives from all three major structural
classes (α-helical, β sheet, and mixed α/β). Of these proteins,
8/12 had either crystal or NMR structures in the protein
databank, while the other four had close homologues. For the
unfolding trajectories, the homologous portions of the
sequences were used and for the long folding/unfolding
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trajectories; the homologues from the pdb were used as the
native (for RMSD calculation). These proteins did not
necessarily contain intrinsically disordered regions. For
example, of the five pdb structures that were NMR ensembles,
each contained less than 12% of intrinsic disorder with two
containing no intrinsic disorder. However, the scope of this
method is not limited to IDPs only but rather any protein that
can undergo a significant conformational change.
In the developed methods where this protein data set was

used, ResidueDisorder was used to assign residues in each
conformation as ordered or disordered using the previously
described parameters.14 Since these residues were not
necessarily intrinsically disordered and can change structure
over time in a simulation, we will refer to the percent of
residues that were assigned as disordered by Rosetta
ResidueDisorder as percentage of denatured residues. While
the concepts of intrinsic disorder and denaturation are
biologically very different, we hypothesized that they would
have the same effect on the Rosetta energy function: residues
with low scores would be more ordered or less denatured and
vice versa. Thus, we hypothesized that our method Rosetta
ResidueDisorder could be used to not only measure intrinsic
disorder (using a single native structure or ensemble of native
structures) but also track conformational changes of proteins
by assigning residues as denatured or not denatured as a
function of time and structure. For example, the percentage of
denatured residues would decrease during a folding event. This
metric was used in the evaluation of MD trajectories for
proteins in this data set.
Unfolding Proteins Using MD (SMD, High-Temper-

ature, aMD). Steered molecular dynamics (SMD)33 was used
to unfold the 12 fast-folding proteins. Each protein was
solvated using visual molecular dynamics (VMD)34 in a 14 Å
padded TIP3P water box and ionized with Na+ and Cl−. SMD
simulations were performed using the CHARMM27 force
field35 and NAMD 2.12.36 For each protein, two minimization
phases were performed: ion/water minimization for 20 000
steps followed by protein/ion/water minimization for 20 000
steps. Two equilibration steps were also performed: heating of
the system to 300 K by weakening restraints followed by 20 ps
equilibration. Following the minimization/equilibration, SMD
was performed for 10−25 ns at constant velocity (SMD atom
spring constant = 7 kcal/mol/Å, SMD velocity = 0.00002 Å/
time step) where the N-terminal Cα was fixed and the C-
terminal Cα was pulled in the opposite direction from the N-
terminal Cα. Finally, frames every 0.2 ns were extracted from
the trajectory, relaxed in Rosetta, and input into the
ResidueDisorder application to determine the percentage of
denatured residues.
High-temperature molecular dynamics was also used to

unfold the 12 fast-folding proteins at 500 K. Proteins were
solvated and minimized (as described for SMD above).
However, the two equilibration phases were performed at
500 K. Following the minimization/equilibration, 200 ns MD
production runs were performed at the elevated temperature
(500 K). Similarly, frames every 0.2 ns were extracted from the
trajectory, relaxed in Rosetta, and input into the ResidueDis-
order application for determination of denatured residues.
Finally, accelerated molecular dynamics (aMD)37,38 was

furthermore used to unfold the 12 fast-folding proteins. The
procedure was previously described in detail,39 but in short,
proteins were solvated, minimized, and equilibrated (as
described for SMD above). Following the equilibration, a

100 ns conventional MD simulation was performed at 300 K in
order to fully equilibrate the system and extract appropriate
acceleration parameters. From the 100 ns conventional MD
simulation, aMD parameters (E and α for both total and
dihedral potentials) were extracted for each protein as
previously described.39 However, to facilitate faster unfolding,
a higher boost potential was used for both total and dihedral
potentials, cutting the α parameters in half. Using the
calculated aMD parameters, 200 ns aMD simulations were
run for each protein. Similarly, frames every 0.2 ns were
extracted from the trajectory, relaxed in Rosetta, and input into
the ResidueDisorder application for determination of dena-
tured residues.

Measuring Disorder of Folding/Unfolding Events
(Fast Folding Trajectories). MD trajectories of 12 fast-
folding proteins were obtained from D. E. Shaw Research.32

The simulations were performed near the respective melting
temperatures of each protein and ranged from 104 to 486 μs in
length. Some simulations were initiated in the folded state,
while some were initiated in an unfolded state. In all
simulations, multiple spontaneous folds/unfolds were observed
throughout the trajectories. From these trajectories, protein
coordinates were extracted every 20 ns. These frames were
relaxed in Rosetta in order to equilibrate within the Rosetta
energy function. Subsequently, each relaxed frame was
separately input into the ResidueDisorder application, and
the percentage of denatured residues was determined.

Prediction of Folding/Unfolding Events. For each
extracted time point (every 20 ns) from the folding/unfolding
MD trajectories, the difference in the average percentage of
denatured residues for 25 steps (500 ns) before that time point
and 25 steps after that time point was calculated. A cutoff line
for the absolute value of the difference was instituted, above
which an event was defined, representing a significant change
in structure at that time point. This cutoff line was defined as
60% of the largest difference for each protein. If the percentage
of denatured residues increased during the event, it was
defined as an unfolding event, and if the percent of denatured
residues decreased during an event, it was defined as a folding
event. If events were detected in adjacent time steps, they were
combined to form a single event in the center of the range.
To test the effectiveness of this prediction, we used

TimeScapes,40 a software specifically designed to detect events
from MD trajectories (containing frames every 20 ns) as a
comparison. To run on the trajectories, the terrain algorithm
from TimeScapes was used, which performed event detection
and activity monitoring. We utilized the recommended
parameters: cut1, 6.0 Å; cut2, 7.0 Å; delta, 5% of total frames;
gtype, Cutoff.

Prediction of Native-Like Structures from MD
Simulations. To select a native-like structure from a
folding/unfolding MD trajectory, the percentage of denatured
residues was first smoothed for each frame by calculating the
average using a window of 50 time steps (1 μs) in both
directions. On the basis of this analysis, we selected frames in
highly structured regions (i.e., low window-averaged percent
denatured). We hypothesized that the lower the fraction of
denatured residues for a structure, the more native-like the
structure would be, even for proteins that do contain some
intrinsically unstructured regions (i.e., intrinsic disorder). Next,
the 5% of structures containing the fewest denatured residues
based on the window average were extracted. The extracted
structures were then clustered using MaxCluster41 with the
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neighbor pairs cluster method and a cluster radius of 0.01 Å.
The final selected structure was the lowest scoring (Rosetta,
after relaxation) structure in the largest identified cluster.

■ RESULTS AND DISCUSSION

ResidueDisorder Measures Intrinsic Disorder More
Accurately than Prediction from Sequence. Using the
benchmark set from a previous study,14 which contained 229
protein structures determined by NMR, we first tested our
hypothesis that ResidueDisorder could be used to measure the
intrinsic disorder from a known structure rather than
predicting the disorder from an amino acid sequence. When
ResidueDisorder was used on the predicted ensemble of

tertiary structures (from sequence using Rosetta ab initio
protein folding to generate structures), the accuracy in disorder
prediction was 65.4%, which outperformed six other available
disorder prediction methods in our previous study.14 When the
NMR representative models were relaxed in Rosetta and input
into ResidueDisorder instead of predicted structures, the
accuracy increased to 69.2%. ResidueDisorder made consis-
tently accurate predictions over all levels of disorder. Figure 1
shows the percent accuracy for all levels of disorder (0−20%,
20−40%, 40−60%, 60−80%, and 80−100%) when Residue-
Disorder was used to predict and measure disorder. In addition
to being consistent over all levels of disorder (within 15%), the
accuracy for measuring was higher than for predicting for four

Figure 1. Percent accuracy of Rosetta ResidueDisorder on a benchmark set of 229 NMR proteins when used to predict intrinsic disorder from
sequences and measure intrinsic disorder using reported representative models. ResidueDisorder was consistently accurate over all levels of disorder
and was more accurate when used to measure than predict in 4/5 categories. Overall, ResidueDisorder was more accurate when measuring disorder
(69.2%) than predicting (65.4%)

Figure 2. SMD (10−25 ns simulations) percent denatured vs time plots for the unfolding of six proteins (2f21, 2hba, 2a3d, 1mi0, 1fme, and 1prb).
Color of the data points represents RMSD to the native structure (or closest homologue) for each frame. Figure S1 shows data for the remaining six
proteins. As each protein unfolded, the percentage of denatured residues increased until the protein reached 100% denatured and constituted an
extended chain.
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out of five levels of disorder. When all NMR models were input
into ResidueDisorder (averaging raw Rosetta scores over all
the models before calculating order scores), the accuracy only
further increased to 69.8%. Interestingly, including the
additional models only slightly improved the accuracy. This
suggests that ResidueDisorder can accurately measure disorder
using a single structure as input, not needing an ensemble of
structures. In addition to the NMR data set, ResidueDisorder

was also able to accurately measure intrinsic disorder from the

structure for the 16 protein training set.14 The accuracy

improved from 71.8% when predicted to 74.6% when

measured. These results were note surprising as using the

actual structures to measure the disorder reduced the noise

from predicting the structures. This analysis served as a proof

of principle for our next hypothesis, that the same method

Figure 3. High-temperature (500 K) MD (200 ns simulations) percent denatured vs time plots for the unfolding of six proteins (2f21, 2hba, 2a3d,
1mi0, 1fme, and 1prb). Color of the data points represents RMSD to the native structure (or closest homologue) for each frame. Figure S2 shows
data for the remaining six proteins.

Figure 4. Accelerated MD (200 ns simulations) percent denatured vs time plots for the unfolding of six proteins (2f21, 2hba, 2a3d, 1mi0, 1fme, and
1prb). Color of the data points represents RMSD to the native structure (or closest homologue) for each frame. Figure S3 shows data for the
remaining six proteins.
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could be applied to individual structures to track changes
throughout a conformational change.
Unfolding Proteins Using MD (SMD, High-Temper-

ature MD, and AMD) and Tracking Conformational
Transitions. Steered molecular dynamics (SMD) was
performed for each of the 12 fast-folding proteins (2rvd,
2jof, 1fme, 2f4k, 2f21, 2hba, 2wxc, 1prb, 2p6j, 1mi0, 2a3d, and
1lmb) that did not necessarily contain intrinsically disordered
regions. Each simulation started in the nondenatured, folded
state (as they were obtained from pdb structures). For each
simulation, the C-terminal end was pulled away from the N-
terminal end with a constant velocity, which unfolded the
proteins. Frames were extracted every 0.2 ns, and the
percentage of denatured residues was measured using Residue-
Disorder as a function of the simulation time. All simulations
showed that as the protein unfolded over time, the amount of
denaturation also increased, as shown in Figures 2 and S1. This
was due to the loss of favorable interactions and secondary
structure which are rewarded by the Rosetta energy function,
resulting in ResidueDisorder assigning more residues as
denatured. At some point in each simulation the protein
unfolded to form an extended chain, which constituted a
completely denatured state. Figures 2 and S1 also show RMSD
values to the native structure at each time point as a heatmap.
Percentage of denatured residues correlated well with RMSD
for these simulations.
In order to probe a more realistic denaturation pathway,

high-temperature MD simulations were also performed for the
12 fast-folding proteins at 500 K for 200 ns. Figures 3 and S2
show the measured percent denatured vs time plots over the
simulations as well as the RMSD for each frame. The proteins
generally unfolded during the 200 ns. Similarly to the SMD
trajectories, the amount of denatured residues correlated well
with the RMSDs. While most proteins did unfold quickly

within the 200 ns, 2a3d remained mostly folded (relatively
small changes in RMSD). However, the percent denatured also
stayed relatively constant throughout the simulation.
Finally, accelerated molecular dynamics simulations (aMD)

were also performed using a high boost potential. Figures 4
and S3 show the percent denatured vs time plots for the aMD
trajectories. Because of the high boost potential allowing for
the sampling of high-energy conformations faster, unfolding
was observed in all cases. Again, all of these unfolding events
(evidenced by large increases in RMSD) corresponded to large
increases in the denatured fraction of residues.

Tracking Conformational Changes of Folding/Un-
folding Events (Fast-Folding Trajectories). Fast-folding
protein MD trajectories were obtained from D. E. Shaw
Research.32 These simulations were initiated from either folded
or unfolded states, were performed near the melting temper-
atures, and ranged from 104 to 486 μs (see Table S1 for
details). Each trajectory contained multiple folding/unfolding
events (transitions with decreases/increases in denaturation,
respectively). From these trajectories, frames were extracted
every 20 ns, relaxed in Rosetta, and input into the
ResidueDisorder application to measure the instantaneous
fraction of denatured residues for each frame. Percent
denatured vs time plots, Figures 5 and S4, show that there
was a correlation between low denaturation and low RMSD
(plotted as a heatmap). In general, low RMSD regions (blue)
were less denatured than high RMSD regions (red) for each
trajectory. The average RMSD of frames with fewer than 5%
denatured residues was 1.9 Å, while the average RMSD of all
frames with more than 90% denatured residues was 9.1 Å.
Average RMSDs over the whole range of denaturation are
shown in Table 1. Figure S5 shows the percent denatured
residues vs RMSD for all frames. There was a trend that low
RMSD structures generally had a lower fraction of denatured

Figure 5. Percent denatured vs time plots for the trajectories of six fast folding proteins (2f21, 2hba, 2a3d, 1mi0, 1fme, and 1prb). Figure S4 shows
data for the remaining six proteins. Color of the data points represents RMSD to the native structure (or closest homologue) for each frame.
Rosetta ResidueDisorder separated the folded (low RMSD) states from the unfolded (high RMSD) states based on percentage of denatured
residues. Highly nondenatured regions corresponded to low RMSD (folded) and highly denatured regions corresponded to high RMSD
(unfolded).
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residues, as also evidenced by the data in Table 1. As can be
seen in Figure 5, not every high RMSD frame was also highly
denatured, and conversely, not every low RMSD frame was
highly structured, but rather the frames generally separated
well into regions of high or low RMSD and thus high or low
fraction of denatured residues which corresponded to the
unfolded and folded states, respectively. For example, consider
2f21, which started in an unfolded state with both high RMSD
and fraction of denatured residues. At around a time step of
1100 (22 μs), a short-lived folded state was observed as
evidenced by the low RMSD and fraction of denatured
residues, followed by a rapid unfolding. Then at around time
step 6300 (126 μs), the protein began to fold, unfold, and fold
again, where it stayed folded until time step 12 500 (250 μs).
Finally, the protein folded again at time step 13 200 (264 μs).
All of these changes in conformation can be observed based on

regions of high RMSD and denaturation, corresponding to an
unfolded state, and regions of low RMSD and denaturation,
corresponding to a folded state. On the basis of this evidence,
we wanted to take advantage of the separation between folded
and unfolded states to predict folding/unfolding events that
occur during the trajectories in the absence of a crystal
structure.

Predicting Folding/Unfolding Events. Since the Resi-
dueDisorder-calculated percentage of denatured residues
naturally separated the trajectories into folded and unfolded
regions, we sought to predict these folding and unfolding
events based on the measured denaturation in the absence of a
native structure. To do this, the difference between the average
percentage of denatured residues of the 25 timesteps before
and after each time point was calculated. If the absolute value
of this difference was greater than a cutoff (60% of maximum
absolute value of difference for each protein), an event was
defined. This event was defined as an unfolding event if the
fraction of denatured residues increased and as a folding event
if the fraction of denatured residues decreased. Figures 6 and
S6 show the percentage of denatured residues vs time plots for
six proteins with the predicted events shown with black vertical
lines (dotted, unfolding; solid, folding). Visually, this
prediction worked best for trajectories that had clear
separation between folded and unfolded states. To further
test these predictions, we used the terrain algorithm from
TimeScapes, which performs event detection and activity
monitoring, on the trajectory containing the same frames
(every 20 ns) as a comparison. These results are also shown in
Figures 6 and S6 as blue arrows. If we again consider 2f21,
ResidueDisorder identified all of the previously described
events and correctly identified them as either folding or
unfolding (fold at time step 1101 (22 μs), unfold at time step
1220 (24 μs), fold at time step 6299 (126 μs), unfold at time
step 6406 (128 μs), fold at time step 6544 (131 μs), unfold at

Table 1. Average RMSDs (Angstroms) over a Range of
Structures for All Proteins from the Fast-Folding MD
Trajectories32 a

range of percent denatured average RMSD (Å)

0−5 1.8
0−10 2.0
10−20 2.6
20−30 3.8
30−40 5.9
40−50 7.5
50−60 8.0
60−70 8.5
70−80 9.0
80−90 9.3
90−100 9.1

aAverage RMSD increases as the percentage of denaturation
increases.

Figure 6. Percent denatured vs time plots for six fast-folding proteins (2f21, 2hba, 2a3d, 1mi0, 1fme, and 1prb) with ResidueDisorder predicted
folding (solid) and unfolding (dotted) events shown as black vertical lines and TimeScapes terrain predicted events show as blue arrows for the fast
folding protein trajectories. Figure S6 shows data for the remaining six proteins. RMSD to native for each frame is shown as a heatmap.
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time step 12 448 (249 μs), and fold at time step 13 244 (265
μs)). TimeScapes did correctly identify the more large-scale
folding/unfolding events (events at time steps 6718 (134 μs),
11 539 (231 μs), and 14 140 (283 μs)) but missed the quick
fold/unfold around time step 1100 (22 μs) as well as the fold/
unfold/fold transition around 6500 (130 μs), instead
identifying it as a single event. Additionally, the events
predicted by ResidueDisorder were much closer to the actual
observed changes in RMSD for the folding around time step
12 500 (250 μs) and folding around time step 13 200 (264 μs).
For each predicted folding and unfolding event we

calculated the average RMSD change for 25 steps before and
after the event. The RMSD change (the difference in average
RMSD for 25 steps before and 25 steps after) was −3.7 Å for
predicted folding events and +3.6 Å for folding events. This
indicated that our developed algorithm using ResidueDisorder
successfully identified both folding and unfolding events well
on average. As a comparison, the RMSD change for
TimeScapes-predicted events was 1.20 Å. This event detection
algorithm has been implemented in the ResidueDisorder
application in Rosetta. Instructions to run this protocol can be
found in the tutorial in the Supporting Information.
In addition to using ResidueDisorder to predict events based

on the fraction of denatured residues, we also looked into
whether we could accurately predict folding/unfolding events
directly based on Rosetta score after relaxation. We performed
the same calculations (as described above using ResidueDis-
order), substituting Rosetta score for the percentage of
denatured residues. While the accuracy of event prediction
was frequently similar using these two different metrics, there
were multiple cases where the usage of ResidueDisorder
(which essentially discretized the Rosetta score for each
residue) predicted better events than when the Rosetta score
was used directly. Two examples (1fme and 2hba) are shown
in Figure S7. When the Rosetta score was used to predict
events (rather than the percentage of denatured residues),
folding events were not detected at 27 and 160 μs for 1fme
that were identified using ResidueDisorder. Additionally, for
2hba, using the Rosetta score to detect events did not detect
the folding event at 77 μs or the unfolding event at 140 μs,
while they were correctly detected using ResidueDisorder.
Predict Native-Like Structure from Simulation. A final

application of ResidueDisorder that we explored was to select a
frame from the folding/unfolding trajectory that most
resembled the native crystal structure. The application of
ResidueDisorder to dynamic systems does not require the
system to be either intrinsically ordered or disordered. We
hypothesized that although proteins can have intrinsic
disorder, in general, the least denatured conformation (as
measured by ResidueDisorder) sampled during the simulation
should correspond to the most native-like structure even if the
native structure has some intrinsic disorder. To do this, we
calculated a window average (50 time steps in both directions)
for each time step and selected the 5% of lowest window-
averaged denatured frames. Using these frames from highly
structured regions, we performed a clustering analysis in order
to select the most representative structure. We selected the
lowest (Rosetta) scoring frame from the largest cluster as the
native-like structure. We used the RMSDs from the Lindorff-
Larsen et al. clustering analysis of these trajectories as a
comparison to the selection method from ResidueDisorder.
Most of the structures selected from ResidueDisorder had
lower RMSDs than selected by Lindorff-Larsen et al. (7/12),

and the average RMSD over the 12 proteins was also lower for
ResidueDisorder (1.9 vs 2.1 Å). Table 2 shows the RMSDs for

each protein as a comparison. We hypothesize that the removal
of frames from highly denatured regions, determined using
ResidueDisorder, improved the clustering by also removing
high RMSD structures, thus enriching the largest cluster in low
RMSD structures.
We also explored whether we could select better (more

native-like) structures using the Rosetta score to eliminate
structures prior to clustering (rather than the percentage of
denatured residues). Similar to the analysis predicting the
unfolding events, using the score instead of percent denatured
produced results with a comparable accuracy (both identified
7/12 proteins with lower RMSD than the structures selected
by Lindorff-Larsen et al.). However, the average RMSD over
the 12 proteins was slightly lower when using ResidueDisorder
(1.9 Å) than when using the Rosetta score directly (2.0 Å).
Table S2 shows the predicted RMSD for each protein.

■ CONCLUSIONS
Here we present alternative applications for Rosetta Residue-
Disorder, expanding on its capability to predict intrinsic
disorder from sequence to measure intrinsic disorder directly
from structure and also to track changes in conformation for
dynamic systems (even for systems that are not intrinsically
disordered) by measuring changes in the fraction of denatured
residues. Using 229 protein structures, determined by NMR, as
a benchmark, we show that ResidueDisorder measured each
residue as intrinsically ordered or disordered with an accuracy
of 69.2%, 4 percentage points higher than when ResidueDis-
order was used to predict intrinsic disorder from sequence
(which already outperformed six other prediction methods in
our previous study).14 To our knowledge, Rosetta Residue-
Disorder is the first computational tool that can measure
intrinsic disorder directly from protein structures. This analysis
served as a proof of principle for our next hypothesis, that
ResidueDisorder could also be used to track changes in
conformation of a protein by measuring the amount of
denatured residues. The notion that the method could be used
to identify regions of a protein that are intrinsically more
conformationally labile from a single static snapshot suggests
that the method could be used to infer which regions of a

Table 2. RMSDs (Å) of Selected Structure of 12 Fast-
Folding Protein MD Trajectories Comparing Cluster
Analysis Performed by Lindorff-Larsen et al. and Clustering
Analysis Performed by Removing Highly Denatured Frames
Using ResidueDisorder

protein Lindorff-Larsen et al. (Å) Rosetta ResidueDisorder (Å)

1fme 1.6 2.8
1lmb 1.8 1.6
1mi0 1.2 1.6
1prb 3.3 2.9
2a3d 3.1 2.9
2f21 1.2 1.4
2f4k 1.3 0.8
2hba 0.5 0.6
2jof 1.4 1.2
2p6j 3.6 3.0
2rvd 1.0 1.2
2wxc 4.8 3.4
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protein are dynamic and could potentially be involved in
rearrangements or serve as regions which conformationally
readjust under a biological stimulus.
We also expanded on this ability to determine the

percentage of denatured residues by analyzing molecular
dynamics trajectories of systems that were not intrinsically
disordered. We show that percent of denatured residues in a
protein (as calculated using ResidueDisorder) correlated with
the RMSD to the native (highly denatured frames also had
high RMSD and vice versa) for steered MD, high-temperature,
and accelerated MD unfolding trajectories. We also saw the
same correlation for long MD trajectories performed near
melting temperatures to observe multiple folding/unfolding
events. Additionally, we developed methods to identify folding
and unfolding events during a trajectory and also predict a
native-like structure, which improved the accuracy of the
identified native structure compared to when clustering alone
was performed. The ability to infer folding/unfolding events
from a trajectory may help to determine which regions of
proteins are essential or play major roles in defining a protein’s
fold. Rosetta ResidueDisorder is freely available in the Rosetta
software suite as an application. This application was updated
to be able to calculate intrinsic disorder directly from structure
and also measure percentage of denatured residues from a
trajectory of structures as well as to predict folding/unfolding
events. In conclusion, we show that Rosetta ResidueDisorder
can be used to accurately measure intrinsic disorder of a
protein from a static structure (or ensemble of structures).
ResidueDisorder can also be applied to analyze molecular
dynamics trajectories of non-IDPs to find regions of low
RMSD, folding/unfolding events, and a native-like structure
throughout conformational changes.
While the current version of ResidueDisorder is limited to

studying the behavior of monomers, future work will aim to
expand the method to monitor protein−protein interactions as
well. Some potential applications could be to examine
fuzziness, short linear motifs (SLiMs), and fibril formation.
Identification of fuzziness42,43 for IDPs upon binding to a
partner could be examined by identifying regions of IDPs that
remain disordered upon binding and encode biological
function. ResidueDisorder could potentially be used to
examine SLiMs,44,45 where a short, evolutionarily specific
disordered segment of a protein becomes ordered upon
binding. Finally, this could be extended to examining changes
in disorder of IDPs as they form fibrils (disorder to order
transition), as has been done experimentally for alpha
synuclein.19 We believe that this method has the potential to
examine any event that can be observed in a molecular
dynamics simulation.
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