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The relaxed complex scheme is an in silico drug
screening method that accounts for receptor flexibility
using molecular dynamics simulations. Here, we used
this approach combined with similarity searches and
experimental inhibition assays to identify several low
micromolar, non-bisphosphonate inhibitors, bisami-
dines, of farnesyl diphosphate synthase (FPPS), an
enzyme targeted by some anticancer and antimicrobial
agents and for the treatment of bone resorption dis-
eases. This novel class of farnesyl diphosphate syn-
thase inhibitors have more drug-like properties than
existing bisphosphonate inhibitors, making them inter-
esting pharmaceutical leads.
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The enzyme farnesyl diphosphate synthase (FPPS) has
been identified as an interesting target for antitumor and
anti-infective drug leads. Farnesyl diphosphate synthase is
a key enzyme in the mevalonate isoprenoid biosynthesis
pathway and is responsible for the condensation of dimeth-
ylallyl diphosphate with isopentenyl diphosphate (IPP) to
form geranyl diphosphate (GPP) and, subsequently, farnesyl
diphosphate (FPP) (1,2). Farnesyl diphosphate is important

as a substrate in subsequent steps to synthesize key mole-
cules like cholesterol and ergosterol. Pharmaceutically,
FPPS has gained importance in the treatment of malignant
bone disease, as inhibiting FPPS blocks excessive bone
resorption in osteoclasts by causing apoptosis (3). However,
inhibition of FPPS has implications beyond bone disease as
preclinical research has shown direct antitumor activity in a
variety of human cancers (4,5). Additionally, the isoprenoid
biosynthesis pathway is essential for bacterial cell wall bio-
synthesis as the synthesis of peptidoglycan depends on for-
mation of lipid I and lipid II from undecaprenyl phosphate,
an isoprenoid derived from FPP. Farnesyl diphosphate syn-
thase’s role in ergosterol biosynthesis also makes it an inter-
esting target in the search for drug leads against Chagas
disease and the leishmaniases, neglected tropical diseases
that affect approximately 10 million individuals.a

Historically, bisphosphonates were the first FPPS inhibitors
identified (6,7) and were developed as bleaching herbi-
cides that block carotenoid biosynthesis. It was then
shown that bisphosphonate bone resorption drugs such
as alendronate (Fosamax) targeted FPPS, and it appeared
(8–10) that bisphosphonates might be the only efficient
inhibitors of the enzyme. From a pharmaceutical perspec-
tive, bisphosphonates have several undesirable features
for anti-infective or anticancer drug leads in that they are
highly polar as well as being prone to rapid removal from
the circulatory system by binding to the bone mineral (11).
There has thus been interest in the development of more
apolar bisphosphonates and even non-bisphosphonate
FPPS inhibitors (12–14). In particular, a fragment-based
approach identified several non-bisphosphonate FPPS
inhibitors that targeted a new, allosteric binding site (3).
The pocket is mainly defined by helices C, G, H and a part
of helix J, with some residues from the B-C loop, the H-I
loop, helix A and the C-terminal loop contributing to a les-
ser extent. The pocket itself is amphipathic in nature. It
has a hydrophobic base and rear side, centered on resi-
dues F206, F239, L344, I348 and Y10. The opposite side
is polar with several positively charged (K57, R60, K347)
as well as polar (N59, T63) residues. These non-bis-
phosphonate FPPS inhibitors may represent novel antican-
cer drug leads as they are not expected to bind to bone
mineral (11). To build on this work, we carried out a virtual
screening study targeting the FPPS allosteric binding site.
For this, we used the relaxed complex scheme (RCS), an
in silico drug screening method that accounts for receptor
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flexibility using molecular dynamics simulations (15–17). A
previously reported MD and docking study on FPPS did
not target the allosteric site (12). Virtual screens were per-
formed with AutoDock Vina (18) and Glide (19,20) on crys-
tal structure data as well as numerous structures from a
FPPS molecular dynamics simulation. A neural network re-
scoring was performed to optimize the ranking of known
inhibitors, and 10 consensus predictions were screened
experimentally yielding one hit, which was further improved
by a similarity search, yielding three low (1.8–2.5) micro-
molar leads. To our knowledge, this is the first successful
virtual screen into the FPPS allosteric site.

Methods and Materials

Crystal structures and structural ensemble from
molecular dynamics simulations
We carried out a virtual screen of the FPPS allosteric site
using the crystal structures described by Jahnke et al. (3).
In addition, we carried out a second virtual screen using
representative snapshots from an MD simulation of FPPS.
The setup for the MD simulation is described in detail in
(12). Frames every 20 ps were extracted from the MD tra-
jectories; the frames were aligned using all Ca atoms in the
protein and subsequently clustered by RMSD using GRO-
MOS++ conformational clustering (21). The chosen RMSD
cutoff resulted in 23 clusters that reflected most of the tra-
jectory. The central members of each of these clusters
were chosen to represent the protein conformations within
the cluster and, thereby, the conformations sampled by the
trajectory. The central member of a cluster (also referred to
as ‘cluster center’) is the structure that has the lowest pair-
wise RMSDs to all other members of the cluster.

Docking and rescoring of known non-
bisphosphonate allosteric site inhibitors
To assess the abilities of the docking software, the 12
ligands described in (3) were docked. For those com-
pounds where no crystal structure information was avail-
able, the ChemDraw file was converted to PDB format
using Open Babel (22). For the AutoDock Vina screens,
pdb2pqr (23,24) was used to add hydrogen atoms to the
crystal structure receptor. The AutoDock scripts (25) pre-
pare_ligand4.py and prepare_receptor4.py were used to
prepare ligand and receptor PDQBT files. A docking grid
of size 18.0 �A 9 18.0 �A 9 18.0 �A, centered on the posi-
tion of the ligand in the allosteric site, was used for dock-
ing. For Glide docking, the ligands were prepared using
LigPrep, and the receptors were prepared using the tools
provided in the Maestro Protein Preparation Wizard and
the Glide Receptor Grid Generation.

For rescoring of AutoDock Vina docked poses, we used
the python implementation of NNScore 1.0 in combination
with a consensus of the top three scoring networks
(12.net, 16.net and 20.net).

Receiver operating characteristics analysis
A receiver operating characteristics–area under the curve
(ROC-AUC) analysis (26) was performed on all known
allosteric site crystal structures as well as the 23 MD
cluster centers. For this, the eight FPPS allosteric site
inhibitors with IC50 values <100 lM from (3) were com-
bined with the Schr€odinger decoy library [1000 com-
pounds with average molecular mass approximately
400 Da (19,20)]. All compounds in the decoy set were
assumed to be inactive. Both AutoDock Vina and Glide
were then used to dock the 1008 compounds into the
allosteric sites of all 32 receptor structures. The com-
pounds were ranked by their AutoDock Vina scores and
Glide XP docking scores, and AUC values were calcu-
lated from the ROC analysis.

Virtual screen of NCI diversity set II
The virtual screen was performed using the National Can-
cer Institute (NCI) diversity set II, a subset of the full NCI
compound database. Ligands were prepared using Lig-
Prep, adding missing hydrogen atoms, generating all pos-
sible ionization states, as well as tautomers. The final set
used for virtual screening contained 1541 compounds.
Docking simulations were performed with both AutoDock
Vina (18) and Glide (19,20,27). An additional rescoring was
performed on the AutoDock Vina results using NNScore.
Finally, the individual Glide rankings and NNScore results
were combined to form a consensus list of compounds
that scored well with both methods.

Figure 1: Set of 12 compounds known to bind to the farnesyl
diphosphate synthase (FPPS) allosteric site. These ligands were
used as positive controls and benchmark compounds to optimize
the virtual screens.
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Experimental inhibition assay
Human FPPS was expressed and purified and inhibition
assays carried out as described previously (14). Briefly,
FPPS inhibition assays were carried out using 96-well plates
with a 200-lL reaction mixture in each well. The condensa-
tion of GPP (100 lM final) and IPP (100 lM final) was moni-
tored at room temperature using a continuous
spectrophotometric assay for phosphate-releasing enzymes
(28). The reaction buffer contained 50 mM Tris–HCl (pH 7.4),
1 mM MgCl2 and 0.01% Triton X100. The compounds
investigated were preincubated with enzyme for 30 min at
room temperature. The IC50 values were obtained by fitting
dose–response curve using PRISM 4.0 (GraphPad Software
Inc., La Jolla, CA, USA, www.graphpad.com).

Results and Discussion

Docking known non-bisphosphonate inhibitors into
the FPPS allosteric site
For control and benchmarking purposes, the 12 ligands (1
–12, Figure 1) described in (3) were docked using Auto-
Dock Vina (18) and Schr€odinger’s Glide (19,20,27). These
compounds have IC50 values between 80 nM and 500 lM,
and all are thought to target a previously unreported allo-
steric binding site. Compound 11, the most potent inhibi-
tor with a published structure (PDB-ID 3N6K), has an IC50

of 200 nM. No structure was published for compound 12,
the best (80 nM) inhibitor.

The bound pose of compound 11, as well as the relative
binding affinities of the 12 compounds, was then used as
positive control to fine-tune the virtual screen parameters.
First, compound 11 was docked into the allosteric site of
3N6K using AutoDock Vina. The top scoring model (pre-
dicted binding affinity �7.8 kcal/mol) recaptured the pub-
lished binding pose to within 0.8 �A RMSD (Figure 2).
Similarly, Glide correctly found the experimentally
determined binding pose of compound 11 (0.6 �A RMSD,
Figure 2). This establishes that both AutoDock Vina and
Glide can correctly predict bound poses for the FPPS
allosteric site which, as is apparent from Figure 2A, B, is
distinct from the bisphosphonate (zoledronate) or IPP
binding sites.

A much harder task is to computationally predict the rela-
tive binding affinities of multiple known binders. To
address this question, all 12 compounds were docked into
3N6K and the 23 ensemble structures from MD, using
AutoDock Vina. Encouragingly, compound 12 (the most
potent compound) scored best, with a predicted binding
affinity of �9.3 kcal/mol. AutoDock Vina was not, however,
able to properly recapture the relative affinities of the 12
compounds. More specifically, 3 and 4 had high predicted
affinity (rank 4 and 2, respectively), while 9 and 10 were
only predicted to be weak binders.

We thus next used a neural network approach [NNScore
1.0, (29)] to rerank the compounds. NNScore has been

A

B

Figure 2: Stereo presentation of
docked poses of compound 11

into the farnesyl diphosphate
synthase (FPPS) allosteric site
(green; PDB ID code 3N6K),
superimposed on zoledronate and
isopentenyl diphosphate (IPP)-
bound structure (cyan; PDB ID
code 2F8Z). (A) The RMSD
between the crystallographic
(green) and docked pose for 11 is
0.8 and 0.6 �A, using AutoDock
Vina (purple) and Glide (yellow),
respectively. Also shown for
reference are zoledronate (in the
allylic binding site) and IPP (in the
homoallylic binding site; PDB ID
code 2F8Z). (B) Expanded view of
the ligand binding sites in (A).

744 Chem Biol Drug Des 2013; 81: 742–748

Lindert et al.



developed to characterize the binding affinities of docked
protein–ligand complexes by distinguishing between well-
docked, high-affinity ligands and well-docked, low-affinity
decoy compounds, through neural-network-based rescor-
ing. Testing this approach by rescoring the AutoDock Vina
docked poses of the 12 compounds we found that the rel-
ative ranking among the compounds (as well as the rela-
tive rankings against a large drug database) improved
considerably. Now, compounds 9, 10 and 12 were the
top three scoring docked compounds, so we then re-
scored all the AutoDock Vina virtual screen results with
NNScore.

All 12 compounds were also docked into the 3N6K crystal
structure and the 23 ensemble structures from MD, using
Glide. Here, 11 was the top scoring compound (with a
predicted binding affinity of �7.5 kcal/mol). Also, Glide
identified 9, 10 and 11 as the top three scoring com-
pounds. Given the excellent internal ranking, no rescoring
was performed on the Glide docking results.

Receiver operating characteristics analysis of
FPPS structures for enriching known active
compounds
In addition to the analysis of the ability of the 3N6K crystal
structure and the 23 MD cluster centers to rank 5–12 by
activity, a ROC-AUC analysis (26) was performed on all
crystal structures (3) as well as the 23 MD cluster centers.
The highest AUC (0.50) for the AutoDock Vina analysis
was obtained with the 3N6K crystal structure, and a num-
ber of cluster centers (clusters 23, 13, 7, 17 and 6) also
performed quite well in identifying active compounds.
Interestingly, the Glide analysis showed a bias toward the
crystal structures: the average AUC was 0.65, while the
average AUC for the cluster centers was 0.35. The best
AUC results were with 3N49 (AUC = 0.76) and 3N6K
(AUC = 0.69). Figure 3 shows the ROC curves for 3N6K
using both AutoDock Vina and Glide. Based on these
results and the ranking analysis described above, we
elected to use 3N6K (the structure of the most potent
inhibitor) as well as the 23 MD cluster centers for the
virtual screen.

Virtual screen of NCI diversity set II
The 3N6K FPPS crystal structure and the 23 structurally
representative snapshots from the FPPS MD simulation
were then used as receptors for the RCS docking protocol
(15–17). Potentially including additional crystal structures
might have improved the screening results. This will be the
focus of future studies. The data set used in the virtual
screen was the NCI diversity set II. The rationale behind
using two docking programs (AutoDock Vina and Glide)
was that a consensus result would have a better chance
of producing good leads. The Glide docking results were
ranked according to the predicted docking score, and the
AutoDock Vina results were rescored with NNScore since,

as discussed previously, this strategy gave the best rank-
ing for the set of known allosteric site inhibitors. A consen-
sus score was used to build up a list of compounds that
scored well with both methods. The top 10 compounds
from this list had either an NNScore value of >0.71 (the
NNScore value for control compound 11) or a Glide score
of <�7.46 kcal/mol (the Glide score for control compound
11) and were selected for experimental investigation. Upon
confirmation of the experimental activity of 13, a computa-
tional similarity search of the entire NCI database was then
performed based on 13, using a Tanimoto index of 90%
or higher as the search criterion. The receptors that con-
tributed to the good consensus score of compound 13

were cluster centers 10 (Vina/NNScore) and 18 (Glide). So
while the inclusion of all cluster centers into the RCS
docking analysis may seem like a drawback in light of the
AUC analysis, it was vital for identification of compound
13. This underscores the power of the RCS method to
identify compounds that a screen into the crystal structure

A

B

Figure 3: Receiver operating characteristics–area under the
curve (ROC-AUC) analysis of 3N6K farnesyl diphosphate synthase
(FPPS) structures in terms of enrichment for actives under
100 lM. Compounds 5–12 were used as actives. Docking was
performed with (A) AutoDock Vina and (B) Glide.
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alone would not have identified. The docked pose of
compound 13 shows several stabilizing interactions such
as p-stacking interactions with F251 and hydrogen bonds
with N49 and R50. Obtaining a crystal structure is the
focus of active ongoing research, so that we decided to
not include the docked pose here until confirmed by X-ray
crystallography.

Experimental results
The top 10 compounds identified by the virtual screen were
tested experimentally. Compound 13 (Figure 4) was the
only experimental hit and had an IC50 value of 109 lM. Fol-
lowing the similarity search, additional compounds from the
NCI database were screened. Three compounds having
IC50 values in the approximately 2–3 lM range were identi-
fied: 14, IC50 1.8 lM; 15, IC50 1.9 lM; and 16, IC50 2.5 lM.
Additionally, there were a number of other compounds
found to have IC50 values in the low micromolar range: 17,
IC50 7.0 lM; 18, IC50 10.7 lM; 19, IC50 13.7 lM; 20, IC50

20.3 lM; 21, IC50 21.0 lM; 22, IC50 22.3 lM; and 23, IC50

35.0 lM. Table 1 summarizes the experimentally deter-
mined IC50 results. The search for improved compounds
will be an important extension of this work. The most active
compound investigated so far is a bisamidine containing a
central hydrophobic biphenyl core. Polar substitutions into
this central hydrophobic core region abolish activity. The
lead compounds have IC50 values that are larger than
those found with the bisphosphonate zoledronate
(IC50 = 0.2 lM in this assay). However, as they lack the bis-
phosphonate feature, they are likely to have longer resi-
dence times in plasma, because they will not bind to bone
mineral, as well as better cell permeability.

Table 1: Enzyme inhibition results

Compound
Human FPPS
IC50 (lM)

13 109
14 1.8
15 1.9
16 2.5
17 7.0
18 10.7
19 13.7
20 20.3
21 21.0
22 22.3
23 35.0

FPPS, farnesyl diphosphate synthase.

Figure 4: Structures of the bisamidine inhibitors. Shown for convenience (in parentheses) are the National Cancer Institute (NCI) code
numbers.
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Conclusions

A number of leads for non-bisphophonate FPPS inhibitors
have been identified in a RCS virtual screen of the alloste-
ric binding site. The most potent leads, 14–16, were all
bisamidines with IC50 values in the approximately 2–3 lM
range that also satisfy Lipinski’s rule of five (30) (Suite
2012: QikProp, version 3.5; Schr€odinger, LLC, New York,
NY, USA, 2012). In other work, we have also found that
14 is also an inhibitor of undecaprenyl diphosphate syn-
thase (from Staphylococcus aureus) with an approximately
100 nM IC50 (31), opening up the possibility of developing
dual FPPS/UPPS inhibitors. How these compounds bind
to FPPS remains, however, to be determined, as they are
clearly larger than the largest and most potent allosteric
site inhibitor, 12. Other bisamidines are known to be
potent antibacterials (32,33), and it has been proposed
that some bind to DNA (33), while others inhibit bacterial
cell wall biosynthesis (34). The results presented here sug-
gest that in some cases, FPPS inhibition may be another
target, with multisite targeting being of particular interest in
the context of decreasing the likelihood of the develop-
ment of drug resistance.

The results of this study also suggest possible avenues of
optimization. We propose the following steps that can
improve the next generation of virtual screens on the FPPS
allosteric site: (i) A RCS approach seemed helpful (given
that the best scoring models for compound 13 were
reported for docking into cluster centers 10 and 18). In the
future, simulations on the actual allosteric site–bound con-
formation (3N6K) might, however, give an even clearer pic-
ture of the dynamics of this binding site. (ii) Future studies
should use the previously determined binding affinities as
well the affinities reported in this manuscript for a more
comprehensive AUC analysis. (iii) Inclusion of more than
one crystal structure may improve results as well. (iv) A
pocket volume analysis of the allosteric binding site may
be able to identify additional structures that can be
included in the AUC analysis and, possibly, future screens.
(v) Results of future 3N6K simulations should be used to
screen for additional druggable hot spots on FPPS: this
could be followed up by more virtual screens targeting the
identified sites.
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