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ABSTRACT: Heart failure is a leading cause of death throughout
the world and is triggered by a disruption of the cardiac contractile
machinery. This machinery is regulated in a calcium-dependent
manner by the protein complex troponin. Calcium binds to the N-
terminal domain of cardiac troponin C (cNTnC) setting into
motion the cascade of events leading to muscle contraction.
Because of the severity and prevalence of heart failure, there is a
strong need to develop small-molecule therapeutics designed to
increase the calcium sensitivity of cardiac troponin in order to treat
this devastating condition. Molecules that are able to stabilize an
open configuration of cNTnC and additionally facilitate the
binding of the cardiac troponin I (cTnI) switch peptide have the
potential to enable increased calcium sensitization and strength-
ened cardiac function. Here, we employed a high throughput virtual screening methodology built upon the ability of computational
docking to reproduce known experimental results and to accurately recognize cNTnC conformations conducive to small molecule
binding using a receiver operator characteristic curve analysis. This approach combined with concurrent stopped-flow kinetic
experimental verification led to the identification of a number of sensitizers, which slowed the calcium off-rate. An initial hit,
compound 4, was identified with medium affinity (84 ± 30 μM). Through refinement, a calcium sensitizing agent, compound 5, with
an apparent affinity of 1.45 ± 0.09 μM was discovered. This molecule is one of the highest affinity calcium sensitizers known to date.

■ INTRODUCTION

Heart disease is the leading cause of death in the United States
and the world accounting for ∼23 and ∼33% of the total
causes of mortality, respectively.1,2 Heart failure, in particular,
affects approximately 5.7 million people in the United States
and was implicated as a contributing cause in one out of every
nine deaths that occurred in 2009.3 Heart failure with reduced
ejection fraction is a condition where cardiac muscle
contraction is too weak to circulate oxygenated blood to the
rest of the body upon increased demand (as little increased
effort as walking across the room). Therapeutics designed to
increase the contractile force of the heart provide a direct
avenue to potentially increase quality of life and lower
morbidity in people suffering from heart failure. In fact,
these compounds are currently used to support patients with
severe heart failure until a transplant can occur.4

The most populous class of drugs currently on the market
that promote cardiac muscle contractility (positive inotropes)
operate via the beta-adrenergic pathways and are catechol-
amines and phosphodiesterase inhibitors.5 Examples of these
compounds are dobutamine, milrinone, and inamrinone. At
the molecular level, these compounds ultimately increase
inotropy by increasing the level of systolic Ca2+. Alternatively,

the Ca2+ sensitivity of the contractile apparatus could be
increased without changing the level of systolic Ca2+ as initially
hypothesized by Solaro et al.6−8 and demonstrated via viral
gene delivery to myocardial infarcted mice.9 Despite the
promise Ca2+ sensitization offers in theory and animal models,
there is an absence of FDA-approved pharmaceuticals that
focus on the modulation of Ca2+ sensitivity to treat individuals
suffering from chronic heart failure.10 From 2015 to the
present day, out of the 198 novel drugs approved by the FDA,
only four of the compounds are designated to treat
cardiovascular-related diseases. While heart disease and heart
failure in particular remain a significant problem for the world,
it is complicated and challenging to bring cardiovascular
medications to market.
In order to target Ca2+ sensitivity for drug discovery

purposes, it is important to understand Ca2+-activated
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contraction in heart muscle11,12 In all nonsmooth muscle,13 the
three-subunit protein, troponin (Tn), contains a Ca2+-binding
subunit (TnC), which triggers the muscle’s contractile
machinery. Cardiac troponin (cTn) is anchored to the protein
tropomyosin by the T subunit (cTnT). The third cTn subunit
is known as the inhibitory subunit (cTnI). cTnI contains an
approximately 13 residue sequence known as the inhibitory
peptide denoted by residues cTnI136−149.

14−16 cTnI also
consists of another region that is essential for enabling muscle
contraction, the switch peptide region (cTnI150−159). The
inhibitory peptide is named for its primary role in preventing
cardiac muscle contraction in the Ca2+-free resting state. cTnI
is known to interact with all components of the thin filament.17

When the cTnI switch peptide (cTnI150−159)
16 strongly

associates with the N-terminal domain of cTnC (cNTnC) in
a Ca2+-dependent fashion, cTnI releases its hold on actin
giving tropomyosin the freedom to “rock and roll,” freeing
myosin binding sites on actin, allowing for thin and thick
filament cross-bridges to form and ultimately resulting in heart
muscle contraction.18

The cardiac Ca2+-binding domain, cTnC, is of key
importance in this study as it is a prime target for small
molecule therapeutics. It is the N-terminal domain, cNTnC,
which through Ca2+-mediated action can strongly interact with
the switch peptide region of cTnI when a hydrophobic patch is
exposed.19 Long-timescale molecular dynamics (MD) simu-
lations have shown that Ca2+ bound cNTnC samples a semi-
open configuration much more frequently than apo cNTnC
and the relative free energy costs for hydrophobic patch
opening are ∼8 and ∼20 kcal/mol, respectively.20−23 Addi-
tionally, umbrella sampling simulations have suggested that
mutations and ligand binding significantly impact the
energetics of patch opening.24,25 Experimentally, small
molecule binding to the hydrophobic patch has been shown
to have Ca2+ modulation properties.6,26−30 The total number
of known Ca2+ sensitivity modulating compounds is somewhat
limited. Some of the best known Ca2+-sensitizing compounds
are shown in Figure 1. Three of these compounds are
prescribed to treat heart failure outside of the United States:
bepridil, levosimendan, and pimobendan. Levosimendan did
not reach FDA approval, and the prescription of bepridil was
discontinued because of the propensity of these compounds to
cause fatal cardiac arrhythmias, notably the polymorphic
ventricular arrhythmia torsade de pointes (literally twisting of
the peaks). Increasing the affinity and sensitivity of cNTnC for
Ca2+ could lead to increased contractility in the heart. On a

fundamental level, the discovery of additional novel small
molecule sensitizers is one important avenue in the heart
failure drug discovery field as it will hopefully help to highlight
key structural motifs of effective sensitizers. Additional studies
to find links between the structure and activity could help
refine our understanding of important protein−ligand
interactions and help guide the rational design and
optimization of potential therapeutics.
Previous computational and experimental studies have

shown that small molecules with affinity for the hydrophobic
patch can lead to increased protein Ca2+ sensitivity.26,30−36

Recently, we combined a high-throughput virtual screening
approach, receiver operator characteristic (ROC) curve
analysis, as well as experimental verification assays including
steady-state fluorescence and stopped-flow kinetics to identify
two novel cNTnC Ca2+ sensitizing agents.37 The work
described in this article extends upon this proof of principle
study. We have increased the number of docking method-
ologies tested as well as the number of protein receptors, some
from Gaussian-accelerated molecular dynamics (GaMD), used
in our relaxed complex scheme (this scheme accounts for the
flexible nature of both the receptor and the small
molecule).38−40 Importantly, we used a self-docking workflow
in order to evaluate each docking methodology and its ability
to accurately reproduce bound poses of ligands in
experimentally determined cNTnC−ligand complexes before
proceeding to active/decoy docking and ROC curve analysis.
We investigated new, curated libraries of drug-like small
molecules containing more diverse sets of pharmacophores and
functionality and utilized a cheminformatics approach to
prefilter these compounds and streamline docking. This new
procedure led to an increased number of positive hits for small
molecule Ca2+ sensitizers. Hits discovered by our virtual
screening process were tested in vitro by stopped-flow kinetics
in order to measure the calcium off-rate. Additionally,
compounds that initially performed well in stopped-flow
kinetic screenings were further characterized with dose
response curves. Ultimately, upon iterative refinement, we
discovered a small molecule with a binding constant sixfold
lower than the best currently known Ca2+ sensitizers.41

■ MATERIALS AND METHODS
Protein Selection and Preparation. We performed a

search for human cNTnC experimental structures archived in
the RCSB protein data bank. We selected receptor conformers
that were in complex with Ca2+ sensitivity modulators in order

Figure 1. Known cardiac troponin binders and Ca2+ sensitivity modulators.
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to compare our theoretical docking to experiment. PDBs
selected were: 5WCL, 5W88, 2L1R, 2KRD, 2KFX, 1LXF, and
6MV3. 5WCL and 5W88 contain 3-methyl-N-phenylaniline
(3-mDPA) in two different modes; one (“solvent exposed
mode”) in which the methyl group of the ligand is directed
toward a more solvent-exposed region of the protein (Met60
and Val64) and the other (“peptide mode”) where the methyl
group associates more closely to the cNTnC−cTnI interface.33
Both 5WCL and 5W88 are structures of a cardiac troponin
chimera, in which the switch peptide region of cTnI is tethered
to the N-terminal regulatory domain. PDB IDs 2KRD, 2KFX,
and 6MV3 are all bound to the compound W7; however, the
nature of the protein complex differs in each case. 2KRD
contains cNTnC along with the switch peptide and the ligand
while 2KFX is simply cNTnC and the ligand.42,43 6MV3 is the
most recent PDB of all those listed above and is again the
chimeric version of cNTnC tethered to the switch peptide
region of cTnI.44 2L1R contains cNTnC in complex with the
switch peptide and the Ca2+ sensitizer 2-((2′,4′-difluoro-[1,1′-
biphenyl]-4-yl)oxy)acetic acid (dfbp-o). Finally, 1LXF is a
structure of cNTnC in complex with the switch peptide and
the Ca2+ sensitizer bepridil.45 All selected proteins were
derived from NMR experiments and contained multiple solved
conformers. Each conformer was extracted yielding a total of
176 structures that we used in our docking studies.
In order to account for troponin conformational flexibility

not represented in the protein data bank, additional protein
receptor conformations were obtained from 300 ns GaMD
production simulations performed with Amber18 and the
Amber14ffSB forcefield.46−48 We simulated the representative
conformers of proteins 1LXF, 2KRD, and 1MXL. 1MXL, not
listed above, is an NMR structure of cNTnC in complex with
cTnI147−163, but does not have any ligand bound.49

The final structures to be used for docking studies were
obtained by clustering each 300 ns GaMD simulation
individually. The simulations were clustered to obtain 10
most representative frames of the trajectory based on an
agglomerative hierarchical algorithm as implemented by
AMBER’s CPPTRAJ. The centroid of each cluster was
extracted for further use in active/decoy docking studies.
This procedure yielded an additional 30 conformers for the
docking analysis. For a much more detailed description of the
MD procedure, please refer to the Supporting Information.
Finally, all 206 conformers were imported into Schrödinger’s

Maestro and prepared using Schrödinger’s Protein Preparation
Wizard.50 The C-terminus of cNTnC was capped by the
addition of an N-methyl amide in lieu of a carboxylate
moiety.51 The protonation states of all titratable residues were
assigned using EPIK with a pH constraint of 7.0 ± 1.0.52

Ligand Preparation. The LigPrep module of the
Schrödinger Suite was used to prepare each ligand for docking.
All protomers, tautomers, and stereoisomers were generated
for each input. Potential protonation states were assigned by
EPIK for a pH value of 7.0 ± 1.0.52,53 The only exception to
this was the known sensitizer levosimendan where the
enantiomeric center is known to be (R) in the active form.54

The coordinates of bepridil (1LXF), dfbp-o (2L1R), 3-mDPA
(5W88 and 5WCL), and W7 (2KFX, 2KRD, and 6MV3) were
extracted from their corresponding PDBs while known actives
levosimendan, pimobendan, trifluoperazine, NSC611817,
NSC600285, and NSC147866 were built using Schrödinger’s
Maestro. All other structures used in our docking protocol

came from existing SDF files containing 3-dimensional
coordinates.

Self-Docking Methodology.We docked extracted ligands
from PDB IDs 1LXF, 2L1R, 2KFX, 2KRD, 6MV3, 5WCL, and
5W88 back into their respective receptor conformations in
order to determine which docking program, scoring function,
and adjustable parameters performed best in terms of
reproducing experimentally bound poses in cTnC. This was
assessed by the calculation of in-place root-mean-square
deviation (rmsd) (described below) of the top scoring docked
pose to the experimental position. Docking was carried out on
the representative NMR conformer for each of the seven PDBs
listed above. Our cutoff criterion for success was an in-place
rmsd value of 2.00 Å or lower. We tested the following docking
algorithms: AutoDock Vina, Glide HTVS, Glide SP, and Glide
XP.
The main differences between AutoDock Vina and Glide are

due to the scoring function and search algorithm. AutoDock
Vina employs both knowledge-based and empirical scoring
terms (based on the X-score function), treats nonpolar
hydrogens implicitly, and neglects the direct treatment of
electrostatics.55−57 Schrödinger’s Glide HTVS and SP use the
same empirical-based scoring function while Glide XP imposes
harsher penalties to poses that violate physical chemistry-based
criteria such as not positioning charged and polar groups
toward solvent exposed areas.58,59 Glide uses a series of
hierarchical filters to locate candidate poses and notably
performs a forcefield-based geometry refinement for final pose
selection. Glide’s search is deterministic in nature while
AutoDock Vina uses a stochastic global optimization and
gradient descent (with respect to the scoring funtion).55,58

For AutoDock Vina, it was necessary to further adjust our
prepared proteins and ligands to be compatible for docking.55

AutoDock tools was used to merge all nonpolar hydrogens into
their neighboring carbons for both the protein receptor
conformations and their ligands. Two separate search spaces
were defined, one as a 20 × 20 × 20 Å3 box and the other was
a 50 × 50 × 50 Å3 box positioned at the experimental ligand’s
center of mass. We tested exhaustiveness levels of 8, 20, and
200 for each box size. Increasing the exhaustiveness parameter
within AutoDock Vina expands the iterations spent searching
ligand−protein interactions in order to increase the chance of
finding a global minimum with respect to the scoring function.
In each case, the ligand was allowed to be flexible while the
receptor conformation remained rigid.
The three core methods of Schrödinger’s Glide (HTVS, SP,

and XP) were tested with their default values as implemented
in the Schrödinger 2018-3 release as well as with adjustments
to customizable parameters (enhanced sampling during
predocking conformer generation and expanded sampling for
the selection of initial docked poses to further refine-
ment).58−60 Before docking, it was necessary to generate a
receptor grid or search space for use with Glide’s docking
methods.
In general, receptor grids for Glide simulations were

generated by selecting the ligand within Maestro’s workspace
where it set the search area on the center of the ligand and
allowed the centroids of any docked species to fully explore a
10 × 10 × 10 Å3 inner search space, while the periphery of the
ligand was able to extend out to 20 × 20 × 20 Å3. The OPLS3e
forcefield was selected in each case to generate the desired
search grid.61 In addition, all hydroxyl groups were selected to
be freely rotatable in the search area. Ligand sampling was set
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as flexible in all cases allowing for inversions at pyramidal
nitrogen centers as well as different available ring conformers
where appropriate. Nonplanar amide configurations were
penalized in all cases.
For the docking runs, Glide’s HTVS methodology was used

exclusively without adjustments. In the first trial, Glide SP was
used with default values, and in the second (referred to as
SP2), enhanced sampling was used for ligand conformer
generation and expanded sampling for the selection of initial
docked poses. Glide XP was also initially used without
adjustments (enhanced sampling is a nonadjustable parameter,
i.e., on by default in this case), and in the second trial (referred
to as XP2), expanded sampling was enabled for the selection of
initial docked poses.58−60

In-place rmsds were calculated for the five combinations of
methods and parameters. These rmsds were calculated by the
comparison of all heavy atoms and polar hydrogens of the
docked molecule to the experimental coordinates without
superposition. Nonpolar hydrogens were omitted from the
calculation. For AutoDock Vina and Schrödinger’s Glide, an
in-house python script was written in order to calculate the
rmsds. Additionally, Glide’s automatic rmsd calculation was
implemented in order to cross-check docked compounds.
Active/Decoy Screening and ROC Curve Analysis.

Optimized parameters found for AutoDock Vina and
Schrödinger’s Glide SP performed equally well during the
self-docking phase in terms of reproducing the known bound
poses for the NMR conformers. In order to break this tie and
select a docking method to use for the virtual screens, the
representative conformers from PDB IDs 1LXF, 2L1R, 2KFX,
2KRD, 6MV3, 5WCL, and 5W88 were used in trial active/
decoy screenings to select which docking method had the best
capacity to distinguish between known active compounds.
A set of small molecules curated as decoy ligands were

obtained from Schrödinger. This set contained 1000 ligands
with an average molecular weight (MW) of 360 g/mol58,60

(close to the 298 g/mol average of the ten known actives). The
active compounds docked against the assumed decoys are
shown in Figure 1. The ten compounds expanded to 19 total
isomers/protomers post-LigPrep.
All 1019 ligand structures were docked into each of the

seven PDB structures listed above using Glide SP with default
options and then again with AutoDock Vina using a 50 × 50 ×
50 Å3 box size and an exhaustiveness of 20. The resulting
docked poses were ranked by their docking score. The top
scoring pose of each protomer/stereoisomer was kept. The
true positive rates (TPRs) and false positive rates (FPRs) were
calculated at each threshold in order to produce ROC curves.
The area under each ROC curve was calculated using Python’s
scikit-learn library (ver. 0.22.1).62 In addition, enrichment
factors were calculated for each receptor conformation
according to the following equation.

= × = ×

= ×

N N
N

N

N

EF
40 40

1010
10

2.525

active in top 40 total

active

active in top 40

active in top 40

Note, the values for Ntotal and Nactive were 1010 and 10,
respectively, instead of 1019 and 19. If the LigPrep procedure
for an active compound produced more than one output
structure (two structures for bepridil, enantiomers of one
another, e.g.), the top scoring structure was kept and lower
scoring structures discarded making the assumption that the

potent form would be the one with better binding affinity. In
order to set a reasonable threshold for number of compounds
to purchase and test, a cutoff of 40 compounds was selected for
calculating enrichment factors for each receptor conformation.
In the perfect limiting case all ten, known active compounds
would be scored with better affinities than all 1000 decoy
compounds, the AUC would be 1.00, and the enrichment
factor would be 25.25.
Based on the results of these initial active/decoy screens,

Glide SP with default parameters was selected as our preferred
docking method for the blind screening. Using Glide SP with
default parameters, we tested the remainder of the 206
receptor conformations in active/decoy screenings following
the exact procedure listed above. After completing active/
decoy screenings in all 206 receptor conformations, the three
receptors with the highest enrichment factors and subsequently
highest AUCs (in the case of enrichment factor tie) were
selected for blind screening and consensus docking.

Small Molecule Library Selection and Blind Screen-
ing. We selected the ChemBridge EXPRESS-Pick Collection
for screening in this study, which contained 504,599 small
drug-like molecules. In order to increase the efficiency of our
screening process, we prefiltered compounds based on MW,
predicted solubility, and excluded compounds with functional
groups implicated as pan-assay interference compounds.63 This
prescreen was performed using the 2019.03 release of RDKit
package implemented through Python 3.6.64 The SDF file
containing all 504,599 compounds was used to convert each
ligand into an RDkit molecule object. Molecule objects
contained all of the necessary descriptors of the molecule
(atomic identity, position, connectivity, etc.) in order to
perform further calculations. In order to increase the
computational tractability of screening a large database using
the Glide SP model, all compounds with MWs above 325 g/
mol were filtered out to maintain sizes closer to the average of
known actives, ∼300 g/mol. PAINS filters A, B, and C as
implemented in RDKit were utilized to remove compounds in
these families, as described by Baell and Holloway.63 Molecules
with predicted logP values under 2.0 and over 4.0 were
discarded. These log P parameters were calculated from the
molecule objects using Wildman and Crippen’s model.65 With
all of these filters in place, the original 504,599 molecules in
the ChemBridge EXPRESS-Pick Collection were reduced to
90,759. The initial MW filter removed the majority of
compounds (328,353) while the second phase log P filter
removed an additional 80,668 leaving 95,478 compounds. The
final PAINS filter removed 4719 compounds leaving 90,759.
These 90,759 remaining compounds were prepared with the
Schrödinger LigPrep module leading to a final number of
135,247 stereoisomers/protomers used for screening.
These final 135,247 structures were all docked using Glide

SP with default values into the three most predictive receptor
conformations as determined by our active/decoy ROC curve
analysis. The ranking of the docked molecules was averaged
across the three separate docking simulations and used to
select a top set of promising compounds to test experimentally.
A final filter was utilized on docked compounds, the Virtual
Computational Chemistry Laboratory Web Service’s ALOGPS
2.1 lipophilicity predictor. This program has been shown to
provide log P and log S values closer to experimental values
than Crippen’s model. Because of server limitations this was
only used on a final, docked set of the top 50 candidates and
not implemented in the prescreen phase. An upper log P cutoff
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of 3.6 was used in this case based on solubility data from our
prior experimental screening (work unpublished). After
filtering by these criteria, the poses of the top docked
compounds were visually inspected. After visual confirmation
of binding in the hydrophobic patch, 40 compounds were
ordered directly from ChemBridge and tested in vitro.
Preparation of Proteins for Biochemical Studies. The

T53C-IAANS chimera (herein designated as chimera) was
generated as previously described.19 Briefly, a Pet17b vector
containing the chimera was transformed into Rosetta 2 (DE3)
competent cells and expressed after induction with 1 mM
IPTG. The cells were resuspended in buffer A (20 mM Tris, 2
mM ethylenediaminetetraacetic acid, 6 M urea, 0.5 mM
dithiothreitol, at pH 8.0) containing a protease inhibitor
cocktail. The cells were sonicated on ice and the resulting
solution was centrifuged at 19,000 rpm at 4 °C for 30 min and
the supernatant was collected. Ammonium sulfate was added at
20% saturation to remove some of the contaminating proteins.
The solution was centrifuged again at 19,000 rpm at 4 °C for
30 min and the supernatant was collected. Ammonium sulfate
was then added to 60% saturation to precipitate the chimera.
The solution was centrifuged at 19,000 rpm at 4 °C for 30 min
and the pellet was collected. The pellet was resuspended in 30
mL buffer A and dialyzed at least four times against 1 L of the
same buffer. The solution was then loaded onto an
(diethylamino)ethyl-sepharose column equilibrated with buffer
A. After an initial wash with buffer A, a 500 min gradient was
applied with 0−100% of buffer B (buffer A containing 0.3 M
NaCl). Fractions containing chimera were collected and
further purified using 50 kDa cut-off Amicon Ultra-15
Centrifugal Filter Units. Flow-through samples containing
the chimera were collected and dialyzed against 4 L of 10 mM
MOPS, 150 mM KCl, at pH 7.0 at least four times. The

purified chimera was labeled with the environmentally sensitive
fluorescent probe IAANS as previously described.66

Stopped-Flow Fluorescence Measurements. All ki-
netics measurements were carried out at 15 °C using an
Applied Photophysics Ltd. (Leatherhead, UK) model
SX.18MV stopped-flow apparatus with a dead time of ∼1.4
ms. IAANS fluorescence was excited at 330 nm with emission
monitored using a 420−470 nm band-pass interference filter
(Oriel, Stratford, CT). 10 mM EGTA in stopped-flow buffer
(10 mM MOPS, 150 mM KCl, at pH 7.0) in the absence or
presence of compounds was used to remove Ca2+ (200 μM)
from T53C-IAANS chimera (0.5 μM) in the absence or
presence of compounds also in the stopped-flow buffer.
Varying concentrations of each compound were individually
added to both stopped-flow reactants. Data traces were fit
using a program (by P.J. King, Applied Photophysics Ltd.) that
utilizes the nonlinear Levenberg−Marquardt algorithm. Each
koff represents an average of at least three separate experiments
± standard error, each averaging at least five shots fit with a
single exponential equation.

Identification of Compounds Highly Similar to Top
Experimental Hit. The top performing Ca2+ sensitizer
identified in the first round of stopped-flow kinetics was
compared to all 504,599 compounds in the unfiltered
ChemBridge EXPRESS-Pick Collection in order to determine
highly similar analogues for a second round of experimental
tests.
The RDkit library for python 3.6 was used in order to

perform molecular fingerprinting on all 504,599 compounds
(MW filters as well as log P filters were removed at this stage,
PAINS filtering was performed on the final set of molecules to
assure no problematic functional groups were present). The
Tanimoto similarity coefficients between the lead experimental
compound and the entire Express library were calculated. The

Figure 2. Drug discovery workflow.
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RDkit-specific molecular fingerprinting algorithm was used (a
full description of this scheme is discussed in the RDkit
Book.64 Using a Tanimoto coefficient cutoff of 0.7, nineteen
additional molecules were filtered and docked into the top
performing conformer, 1LXF M16, using optimal Glide SP
parameters. Five small molecules were selected for a second
round of experimental testing based upon inspection three key
criteria: visualization of the 2D structures to confirm their
similarity to the initial hit using chemical intuition, visual-
ization of the docked poses to assure they were correctly
located within the hydrophobic patch, and assessment of the
docking scores in order to select those that ranked best.
The refined hit obtained from our similarity search and the

second round of experimental assays was again compared to all
504,599 ChemBridge EXPRESS-Pick Collection compounds
and similarities were calculated. This time, compounds with
Tanimoto coefficients over 0.55 were selected, previously
purchased compounds removed, and the remaining 42
compounds redocked into the top conformer, 1LXF M16.
After this, two approaches were taken. The average docking
score among all 42 compounds was used as a filter
(compounds scoring worse than the average were thrown
out). After application of the scoring filter, the remaining
compounds were sorted from highest to lowest similarity to the
newest hit, filtered for PAINS functionality, and the top ten
were selected. The second approach disregarded docking score
and only selected the top ten most similar compounds. The
top ten compounds from each filtering method listed above
(giving a final total of twenty compounds) were visually
inspected as described above and from those, five final
compounds were purchased for experimental testing based
on their uniqueness and structural differences from previously
screened, poor performing compounds.

■ RESULTS AND DISCUSSION
We utilized a computer-aided drug discovery approach in order
to identify high affinity, novel Ca2+ sensitizing compounds
targeting the N-terminal, regulatory domain of human cardiac
troponin. Expanding upon our previous study that used
computer-aided drug discovery targeting cNTnC,37 here we
have refined our methodology to account for different docking
algorithm’s ability to reproduce experimentally bound poses of
known active compounds. We screened more compounds with
a strong focus on drug-likeness and solubility. In addition, we
expanded the number of tested protein receptor conformers
from 35 to 206 in order to increase the chances of finding a
conformer with the best possible ability to identify known
active compounds by ROC curve and enrichment factor
analysis. A summary of our drug discovery workflow can be
found in Figure 2.
Self-Docking rmsd Comparisons. We hypothesized that

docking algorithms that accurately reproduced binding poses
of known cNTnC binders would likely predict binding poses of
unknown compounds best. We tested Glide scoring functions
HTVS, SP, SP2, XP, and XP2 as well as AutoDock Vina using
two different box sizes and three different levels of
exhaustiveness for their ability to dock known cNTnC binders
correctly. The representative conformer of small molecule
containing PDB IDs 1LXF, 2KRD, 2KFX, 6MV3, 2L1R,
5WCL, and 5W88 had their coordinating ligand removed and
redocked with each methodology listed in the Materials and
Methods section above. In-place rmsds were calculated to
evaluate relative docking algorithm performance. The set of

AutoDock Vina parameters that produced the lowest rmsd
results (averaged across each protein) were a box size of 50 ×
50 × 50 Å3 and an exhaustiveness of 8 (Table 1). The small

molecules associated with PDB IDs 2KFX, 2L1R, and 5W88
(W7, dfbp-o, and 3-mDPA) had top scoring poses identified
with rmsds of 1.368, 0.798, and 1.377 Å, respectively. We did
not observe qualitatively different results between the six
different parameter sets selected for AutoDock Vina. In every
case, ligands from 2KFX, 2L1R, and 5W88 were classified as
hits under our 2.0 Å rmsd cutoff criteria.
Using Schrödinger’s Glide functionality with the HTVS, SP,

and XP scoring functions as well as parameter modifications in
protocols SP2 and XP2 yielded zero to three correctly
identified poses. The number of hit results for HTVS, SP,
SP2, XP, and XP2 were two, three, one, zero, and one,
respectively (Table 1). Glide SP with default parameters
yielded a three out of seven-hit result (similar to AutoDock
Vina) with the best performing score function and parameters.
The representative receptor conformer for PDB IDs 6MV3,
2L1R, and 5W88 with corresponding small molecules W7,
dfbp-o, and 3-mDPA had top scoring poses with rmsds of
1.487, 1.715, and 1.615, respectively (Figure 3). A comparison
of all rmsds for AutoDock Vina and Glide can be found in
Table 1. Glide HTVS was unable to locate a docked pose of
bepridil in the representative model of 1LXF because of
HTVS’s reduced sampling (a trade-off to increase the speed of
docking per compound). The lack of result is denoted in Table
1 by “N/A”.
PDB receptors 2L1R and 5W88 remained consistent as hits

among AutoDock Vina and Glide SP. These structures are
cNTnC in a noncovalent complex with the switch peptide
region, cTnI147−163 in the case of 2L1R and cNTnC tethered to
the switch peptide in the chimeric 5W88. Additionally, Vina
correctly identified the bound pose of W7 for 2KFX, a
structure of cTnC not in complex with the switch peptide,
whereas Glide SP succeeded in docking W7 for the 6MV3
chimera, in which cNTnC is tethered to the switch peptide.

Table 1. Self-Docking rmsd (Å) Comparison for the
Representative Conformers of Each PDB

docking
algorithm 1LXF 6MV3 2KFX 2KRD 2L1R 5W88 5WCL

Vina Box:
203 Å3 Ex: 8

5.41 3.23 1.59 2.99 0.46 1.40 4.95

Vina Box:
203 Å3

Ex: 20

5.36 3.26 1.88 3.47 0.44 1.40 4.95

Vina Box:
203 Å3

Ex: 200

5.37 3.22 1.84 3.39 0.42 1.40 4.94

Vina Box:
503 Å3 Ex: 8

4.76 2.10 1.37 2.02 0.80 1.38 4.91

Vina Box:
503 Å3

Ex: 20

5.99 3.46 1.62 2.20 0.39 1.41 12.1

Vina Box:
503 Å3

Ex: 200

3.55 3.16 1.77 2.84 0.43 1.36 4.95

Glide HTVS N/A 2.91 4.02 4.64 1.94 1.21 5.77
Glide SP1 4.26 1.49 3.86 5.02 1.72 1.62 5.68
Glide SP2 5.96 3.02 4.10 5.15 1.96 2.31 5.68
Glide XP1 2.54 5.75 4.43 4.77 2.43 2.31 5.80
Glide XP2 6.52 4.86 4.03 5.62 1.72 2.29 5.64
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Although results from AutoDock Vina are stochastic in
nature, the scoring function remained the same in all of the
Vina docking simulations. Because of a consistent scoring
function (a modified version of Xscore),55 even if the
exhaustiveness and/or the search area were increased, well-
bound and well-scored poses should remain the same (unless
there was a secondary binding site). Thus, qualitatively, we did
not observe much variance of in-place rmsd for different Vina
parameter sets.
The scoring functions for Glide HTVS and SP are identical

while XP employs a more complex scheme. Glide docking
simulations are deterministic in contrast to AutoDock Vina.
Interestingly, despite enhanced conformational sampling and a
more sophisticated scoring function in Glide XP, for our
particular protein system Glide SP performed the best among
all investigated Glide docking algorithms (Table 1).
In general, regardless of docking algorithm, the representa-

tive protein receptor conformations for 1LXF, 2KRD, and
5WCL did not perform well in self-docking trials. 5WCL is a
secondary structure for the 3-mDPA bound protein. 5W88 and
5WCL capture two significant small molecule orientations
found as contributors during the NMR studies of cNTnC−3-
mDPA. In one case, the methyl group located on the phenyl
ring of the small molecule was oriented toward the interior of
the hydrophobic patch (this conformer was deposited as
5W88, known as peptide mode). In the other case, the methyl
group was directed outside of the hydrophobic patch toward
the solvent (deposited as 5WCL, known as solvent exposed
mode). From a molecular simulation standpoint, it is
unsurprising that the solvent exposed pose for 5WCL could
not be easily recovered by docking because of the relative
penalization that the methyl group received by not maximizing
nonbonded interactions. When self-docking 3-mDPA into
5WCL, both AutoDock Vina and Glide SP favored poses
where the methyl group was not “solvent exposed”.
It is possible that protein receptor conformations for 1LXF

and 2KRD performed poorly during self-docking trials because
of the large amount of degrees of freedom in the respective
small molecule ligands and subsequently their size as well.
Using a methodology that allows for flexibility in the protein
receptor could help alleviate inherent unfavorable clashes as
determined by the current docking protocols’ scoring
functions.
Both Glide SP and AutoDock Vina performed equally well

during the self-docking trials. Each was able to reproduce three
known docked poses of their corresponding small molecules.
We hypothesized that identifying a scoring function and
docking algorithm that predicted accurate poses with better
scores would enable our blind studies to discover more potent
potential hints. In order to down-select to one docking
algorithm used in the blind screens, the results of active/decoy

screenings were taken into account in order to break this self-
docking rmsd tie.

Optimal Parameter Active/Decoy Comparisons. By
docking the known active compounds along with a set of 1000
compounds assumed to be inactive decoys into the seven
representative conformers for PDB IDS 1LXF, 2L1R, 2KFX,
2KRD, 6MV3, 5WCL, and 5W88 the predictivity of the Glide
SP and AutoDock Vina docking algorithms was assessed by
ROC curve analysis. The most desirable outcome would be for
active compounds to have a more negative docking score
(indicating higher predicted binding affinity) than all of the
decoy compounds. The ROC area under the curve (AUC)
assesses preferential scoring of actives versus decoys for all
docked compounds as a whole while the enrichment factor
measures preferential scoring of actives versus decoys within
the top 40 compounds. All resulting enrichment factors and
AUC values are displayed in Table S1. For each NMR
conformer except for 5W88, Glide SP was more predictive as
determined by the enrichment factor (where ties were broken
with AUC).
For the purposes of this study, a higher enrichment factor

was given more weight than the AUC for each ROC curve.
Early enrichment is beneficial when planning to order a limited
number of compounds (in this case 40). A software and
protein receptor that allows for rapid identification of known
active compounds makes it statistically more likely that a
selection of 40 compounds from blind screening will contain
an active compound. Thus, for our cardiac troponin/Ca2+

sensitizer system the most accurate and predictive method-
ology was determined to be Glide SP. All subsequent dockings
were performed with Schrödinger’s Glide SP.

Glide SP Top Performing Receptor Conformations.
Having established that the Glide SP docking methodology
was the most predictive for our system of interest, we set out to
evaluate a larger number of protein receptor conformers in
order to identify the three most highly predictive conformers in
terms of enrichment factor and area under their respective
ROC curves. 206 receptor conformers were compiled from
two main sources: NMR structures of cNTnC in complex with
known Ca2+ modulators and representative structures obtained
from GaMD simulations of a subset of these structures. All
downloaded PDB structures (5WCL, 5W88, 2L1R, 2KRD,
2KFX, 1LXF, 1MXL, and 6MV3) were derived from NMR
measurements and each deposited PDB contained the
coordinates for several different NMR conformers yielding a
total of 176 receptor conformers (a summary of these
conformer models per PDB can be found in Table S2). In
addition, the representative models from 1LXF, 2KRD, and
1MXL were subjected to 300 ns GaMD simulations. The
rational for using 1LXF and 2KRD for GaMD simulations was
that these contained the two largest ligands, bepridil and W7

Figure 3. Protein receptors with an experimental pose (beige) and docked ligand (cyan) of top performing Glide SP self-docking simulations.
rmsds of 3-mDPA, dfbp-o, and W7 are 1.49, 1.72, and 1.62 Å, respectively.
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and would hopefully maintain the largest opening of the
hydrophobic patch for docking. 1MXL was selected in addition
to 1LXF and 2KRD for contrast as it contained no ligand. The
coordinates for each protein were clustered to obtain ten
representative receptor conformers for each of the three
simulations giving a total of 30 extra receptor conformers and
an overall total of 206 receptor conformers when added to
those taken directly from the PDBs listed above.
The ten known active compounds from literature were

subjected to Schrödinger’s LigPrep utility to account for
appropriate potential protomers/stereoisomers resulting in 19
final structures. These 19 prepped structures along with the set
of 1000 already LigPrepped decoys were combined for a total
of 1019 compounds. Each of these 1019 compounds was
docked into each of the 206 receptor conformers listed above
using the Glide SP docking algorithm determined to be the
most predictive at identifying known sensitizers and reproduc-
ing their docked poses fairly well. For each of the docking
simulations the poses were ranked by docking score. The top
scoring protomer/stereoisomer of the 19 active compounds
was retained and the others removed. This prevented
duplicates during our ROC curve and enrichment factor
analysis (the theoretical maximum number of compounds was
1010). All docking simulations into the 206 receptor
conformers were ranked by enrichment factor and sub-
sequently AUC in order to break ties (see Table 2 for the

top 10 conformer results; all results available in Table S3). The
theoretical maximum enrichment factor would occur if all ten
known active compounds were ranked in the top 40 (out of
1010 total), corresponding to an enrichment factor of 25.25.

The highest AUC representing perfect predictivity would arise
if the top ten scoring compounds were all known actives and
all decoys had been scored worse; this would correspond to an
AUC of 1.00.
All of the top scoring conformers (those able to discriminate

four known actives or more within the top 40 ranked
compounds) came from different structural conformers
provided by the NMR structure of bepridil-bound 1LXF.
The only exception to this was the eighth most predictive
conformer, which came from the W7-bound 2KRD NMR
structure. The top three scoring models were NMR con-
formers 1LXF M16, 1LXF M28, and 1LXF M6. These models
provided enrichment factors of 15.2 (six known active
compounds in the top 40), 10.1 (four known active
compounds in the top 40), and 10.1, respectively. The
AUCs for these three top models were 0.79, 0.86, and 0.84,
respectively. The eighth-highest ranked receptor conformer
was 2KRD M17 with an enrichment factor of 10.1 and an AUC
of 0.73. Example ROC curves are shown in Figure 4.
It is noted that the conformers for 2KFX did not contain the

switch peptide. These conformers performed rather poorly in
terms of known active identification with the maximum
enrichment factor being 5.0 (see Table S3), suggesting that
compound-switch-peptide interactions are a crucial contributor
to ligand binding. The majority of 2KFX conformers only have
an enrichment factor of 2.5 (corresponding to one known
active identified in the top 40). Bepridil is the largest in terms
of volumetric size of the small molecules.25 It stands to reason
that even though the self-docking rmsd of bepridil in 1LXF was
rather poor, the cavity of 1LXF is enlarged relative to the other
PDB conformers. This could enable other small molecules the
flexibility to orient themselves in a fashion that maximizes their
potential docking score relative to the decoy structures.
Given the results outlined above, we selected the two most

predictive receptor conformers (1LXF M16 and 1LXF M28)
for our blind virtual screening. Additionally, in order to
diversify our blind screening receptor models, we also selected
conformer 2KRD M17 for our final docking simulations. While
receptor conformer 2KRD M17 would not technically rank
third amongst all of the conformers, the enrichment factor of
10.1 matched the rest of the top scoring conformers and the
AUC was only slightly lower (Table 2).

Blind Screening Results. We docked 135,247 LigPrepped
structures from the ChemBridge EXPRESS-Pick Collection
into the three predictive receptor conformers (1LXF M16,
1LXF M28, and 2KRD M17) using the Glide SP docking

Table 2. Top 10 Most Predictive cNTnC Conformers
Resulting from Active/Decoy Screens

receptor conformer enrichment factors AUCs

1LXF_M16 15.2 0.79
1LXF_M28 10.1 0.86
1LXF_M6 10.1 0.84
1LXF_M22 10.1 0.80
1LXF_M2 10.1 0.80
1LXF_M21 10.1 0.79
1LXF_M15 10.1 0.75
2KRD_M17 10.1 0.73
1LXF_M14 7.6 0.81
1LXF_M8 7.6 0.80

Figure 4. ROC curves depicting receptor conformer performance in active/decoy discrimination testing using Glide SP. The TPR is plotted against
the FPR showing where the docking algorithm and conformer place the known active compounds with respect to the decoys. The graphic’s
zoomed inlay shows the top 40 docked compounds and highlights the true positives, along with their identities. The number of known cNTnC
binders that ranked in the top 40 by the docking score was a key indicator for predictive receptor model selection.
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algorithm. These structures were preselected by filtering the
Express Library based on log P, MW, and the presence of
PAINS functional groups. After the docking simulations we
averaged the docking rank (based on the docking score) across
all three receptor conformers. We hypothesized that active
compounds would likely score well in all screened conformers.
One drawback of targeting cNTnC’s hydrophobic patch is that
more nonpolar compounds tend to give higher docking scores
because of the nonpolar environment of the binding site.
However, for experimental assays it is critical that the
compounds be soluble in aqueous buffer and, considering
eventual druggability, high lipophilicity poses an additional
hurdle. Thus, the top 45 compounds were filtered again
according to log P, this time using the Virtual Computational
Chemistry Laboratory Web Service’s ALOGPS 2.1 lipophilicity
predictor. The postfilter removed five compounds from the top
40 because they fell above our 3.6 cutoff range. The next five
ranked compounds meeting the log P cutoff criteria were
substituted. The docked poses of the final 40 compounds were
visually inspected to confirm docking into the hydrophobic
patch of cNTnC and subsequently ordered from ChemBridge
for in vitro assays.
Initial stopped-flow kinetics revealed that 30 of the initial 40

compounds were soluble enough in aqueous buffer that
experimental measurements could be obtained. Of the 30
compounds that were able to be experimentally tested, 11
showed at least a 10% decrease of the Ca2+ dissociation rate for
the chimera. The average Ca2+ dissociation rate observed for
the chimera in the absence of compounds was 69.4 ± 0.4 s−1.
Compounds 1 and 2 (Figure 5) led to a moderate slowing of

the Ca2+ dissociation rate to 49.1 ± 0.5 and 50.7 ± 0.6 s−1 at
100 μM. These rates were similar to those observed with
compounds that we previously discovered,37 compound 3
(52.9 ± 0.4 s−1) at 100 μM. Compound 4 performed the best
of the initial compounds screened, leading to a slowing in the
Ca2+ dissociation rate to 32.6 ± 0.5 s−1 at 100 μM.
To further characterize our top hit, compound 4 (whose

bound pose can be seen in Figure 6), we carried out stopped-

flow experiments using increasing concentrations of compound
4 in order to get a dose response. We also compared the effect
of compound 4 on the rate of Ca2+ dissociation from the
chimera to that of previously discovered compound 3. Our
results, shown in Figure 7, panel A (with representative
stopped-flow traces shown in Figure 7, panel B), indicate the
ability of compound 4 to slow the rate of Ca2+ dissociation
from chimera was greater than that of compound 3.

Figure 5. Experimental hits and highly similar compounds thereof along with their unique ChemBridge IDs below.

Figure 6. Bound pose of initial hit, compound 4, revealing lipophilic
phenyl groups positioned back in the hydrophobic patch.
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Compound 4 was determined to have an apparent
experimental affinity of 84 ± 30 μM, while compound 3 was
determined to have an apparent experimental affinity of 430 ±
138 μM. Thus, compound 4 displayed an ∼fivefold increase in
apparent experimental affinity. The bound pose of compound
4 positions the lipophilic phenyl rings branching off of the
imidazole core nestled deep within the hydrophobic patch
while the more polar amido moiety positions itself to be more
solvent exposed, potentially interacting favorably with cTnI.
Encouraged by our initial success with compound 4 we closely
analyzed the entirety of the ChemBridge EXPRESS-Pick
Collection for compounds with similar scaffolds. We took a
cheminformatics approach and utilized the RDKit package as
implemented in Python 3.6 to fingerprint all 504,599 library
compounds with the default, RDKit-specific fingerprint scheme
and compared all fingerprints to compound 4 in order to
identify structurally similar compounds. A similarity threshold
of 0.70 was used as a cutoff. With this cut-off, 20 additional
compounds were identified. Each compound was docked into
the top performing receptor model, 1LXF M16, the
compounds were ranked by docking score, and the top five
were purchased for further experimental testing (compounds
5−9, Figure 5). An additional compound (10) that did not
score as well in docking trials but still differed by only one
functional group with respect to compound 4 was also
purchased and tested. For compound 10, the terminal amide
was substituted with a carboxylic acid (calculated Tanimoto
similarity coefficients with respect to compound 4 available in
Table S4).
Additional stopped-flow experiments revealed that three of

these compounds performed relatively well. At 12.5 μM,
compounds 8 and 9 slowed the calcium off-rate to 45.5 ± 0.4
and 47.5 ± 0.4 s−1, respectively. It was also the case that
compound 5 (Figure 5) was able to slow the Ca2+ dissociation
rate from the chimera by ∼70% (to 21.1 ± 0.3 s−1 at 25 μM)
(Figure 7). Not only was the Ca2+ dissociation rate in the
presence of compound 5 significantly slower compared to
compound 4 at 25 μM, the apparent binding affinity was

determined to be 1.45 ± 0.09 μM, placing compound 5
amongst the most potent and highest affinity cTnC-cTnI Ca2+

sensitivity modulators known to date. The seemingly simplistic
modification of the terminal amide to include a thiazole ring
was able to increase effective binding by over a factor of 10.
The thiazolium containing compound 5 and the initial hit,
compound 4, display similar bound poses where the hydro-
phobic phenyl groups attached to the core imidazole lie tightly
situated in the hydrophobic patch. A view of compound 5’s
docked pose as well as an overlay of the docked poses for both
compounds 4 and 5 can be seen in Figure 8. We observed a

moderate shift in the positioning of the 4,5-diphenyl imidazole
core. It appears in the docked structure that one of the phenyl
rings shifted deeper into the hydrophobic patch. This spatial
rearrangement may occur to accommodate an alternate
favorable positioning (compared to compound 4) of the
terminal thiazolium ring. To verify that compounds 4 and 5
decreased the rate of Ca2+ dissociation from chimera by
increasing Ca2+ sensitivity, we compared stopped-flow
amplitudes measured at sub-saturating Ca2+ (1 μM) to
amplitudes measured at saturating Ca2+ (200 μM) for chimera
in the absence or presence of compounds 4 or 5. Figure 9
shows that presence of compounds 4 (at 50 μM) or 5 (at 12.5

Figure 7. Effect of compounds on the rate of Ca2+ dissociation from the chimera. Panel (A) shows the plot of the apparent rates of Ca2+

dissociation from the chimera in the presence of increased concentrations of compounds 3, 4, 12, or 5. Each data point represents an average of at
least three measurements ± standard error. Data were fit with an asymmetric sigmoid curve. The half-maximal values were 430 ± 138, 84 ± 30, 34
± 12, and 1.45 ± 0.09 μM for compounds 3, 4, 12, and 5, respectively. Panel (B) shows representative stopped-flow traces as Ca2+ is removed from
the chimera in the presence or absence of 25 μM of compounds 4, 12, or 5. Rates of Ca2+ dissociation were measured following the fluorescence of
IAANS attached to Cys53 of the chimera with C35S, T53C, and C84S substitutions. In order to measure the rates of Ca2+ dissociation, the chimera
(0.5 μM) in the absence or presence of compounds in the stopped-flow buffer (10 mM MOPS, 150 mM KCl, at pH 7.0) containing 200 μM Ca2+

was rapidly mixed with an equal volume of EGTA (10 mM) in the stopped-flow buffer, in the absence or presence of compounds. The traces have
been normalized and staggered for clarity.

Figure 8. Bound pose of lead experimental hit (compound 5)
obtained from docking simulation (panel A) and overlay of the two
top performing compounds 4 and 5 (panel B).
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μM) led to higher Ca2+ saturation of chimera at sub-saturating
Ca2+, indicative of higher Ca2+ sensitivity.

We continued efforts in performing a preliminary SAR by
locating purchasable compounds with similar structures and
docking profiles to our known hits. Tanimoto similarity
searches comparing compound 5 to the rest of the Chem-
Bridge EXPRESS-Pick Collection (at a similarity cutoff of 0.7)
revealed two additional unique compounds that had not been
previously purchased or tested. Additionally, we lowered our
similarity criteria to 0.55 in order to expand the list of new
potential compounds to test. We then took a two-pronged
approach where the 42 compounds identified with our less
stringent similarity requirements were docked into the top
performing receptor model 1LXF M16. Compounds with
docking scores below the mean score were removed from
consideration and ranked by similarity. In a second list the
compounds were only ranked according to their similarity from
most similar to least. By taking into account similarities,
docking scores, and chemical intuition five additional
compounds were selected for experimental screening. These
compounds (compounds 11−15 in Figure 5) all had
similarities greater than 0.60 when compared to compound 5
and encapsulated rather minor structural modifications to this
newest lead compound (Tanimoto coefficients comparing
these structures to compound 5 available in Table S5). Two
particularly interesting compounds are described in detail
below.
Compounds 11 and 12 (Figure 5) represent interesting

cases in which a single functionality was changed from the lead

compound 5. In the case of compound 11, one of the lipophilic
phenyl rings was exchanged for a methyl group. We reasoned
that this compound should have diminished binding
capabilities compared to compound 5 because one of the
“anchoring” lipophilic phenyl rings had been replaced with a
methyl group. While this aforementioned substitution could
help with solubility, it would not be likely to increase binding
ability or ability to slow Ca2+ dissociation rate. Experimentally
this was the case; some binding and activity was retained, but
in an extremely diminished capacity. Compound 12 provided
another case to probe the effect of the terminal amide on
binding and potency. Substitution of the thiazole-2-amine with
a pyrrolidine ring showed improvement over the standard
terminal amide, however, did not quite reach the binding
affinity of compound 5 giving an approximate affinity of 34 ±
12 μM, determined by dose response experiments (Figure 7).

■ CONCLUSIONS
The goal of this study was twofold: (1) to see if the confidence
in our screening process could be increased by vastly increasing
the number of receptor structures screened as well as using
self-docking to replicate experiment and (2) to add high-
affinity compounds to the existing pool of cardiac troponin
Ca2+ sensitizers. Importantly, we utilized a self-docking
methodology in order to determine an optimal scoring
function and set of parameters based on known experimental
results. We then performed all of our virtual screening studies
with these identified parameters. We screened a large number
of receptor conformations (206 total) in order to increase the
likelihood of discovering conformers able to correctly predict
known cNTnC binders. The ChemBridge EXPRESS-Pick
collection was prefiltered using a cheminformatics approach.
The filtered library was screened against three predictive
receptor conformers and the top 40 compounds were ordered
for in vitro testing. Initial stopped-flow kinetics indicated that
three of these compounds (1, 2, and 4) all appreciably slowed
the dissociation rate of Ca2+ from the chimera, with compound
4 being the most potent by slowing the dissociation rate by ∼
53% with an affinity ∼fivefold greater than our previously
reported compound 3.
Based on the initial encouraging experimental results a

Tanimoto similarity search was performed (utilizing the
RDKit-specific fingerprinting algorithm) focusing on lead
compound 4. This iterative refinement lead to the discovery
and purchase of highly similar compound 5 with a Tanimoto
coefficient of 0.75 as well as structurally similar and also active
compounds 8 and 9. Compound 5 slowed the dissociation of
Ca2+ by ∼70% and it had an apparent binding affinity of 1.45 ±
0.09 μM (∼300-fold stronger than in our previous study)
placing it among the most potent cNTnC binders and Ca2+

sensitivity modulators known to date. An additional Tanimoto
search revealed a third highly similar compound to both 4 and
5 (compound 12); however this compound had experimental
performance in-between compounds 4 and 5.
Compound 4 represents a novel pharmacophore as a

cNTnC binder that shows proven potential for refined
optimization realized by the increased efficacy from sub-
stitution of the terminal amide in compound 5. While the
lipophilic phenyl groups situate themselves deep within the
hydrophobic patch there are likely additional interactions
between the head amine and other portions of the protein
target. Future studies will focus on identifying and refining
these interactions to increase compound performance and

Figure 9. Ca2+ sensitizing effect of the compounds. The bar graphs
show the effect of compounds 5 or 4 on the ratio of the amplitude of
stopped-flow traces at 1 μM Ca2+ to the amplitude at 200 μM Ca2+.
To measure amplitudes at 1 μM Ca2+, the chimera (0.5 μM) in the
absence or presence of 12.5 μM of compound 5 or 50 μM of
compound 4 in the stopped-flow buffer containing 1 μM Ca2+ was
rapidly mixed with an equal volume of EGTA (10 mM) in the
stopped-flow buffer, in the absence or presence of 12.5 μM of
compound 5 or 50 μM of compound 4. To measure amplitudes at
200 μM Ca2+, the chimera (0.5 μM) in the absence or presence of
12.5 μM of compound 5 or 50 μM of compound 4 in the stopped
-flow buffer containing 200 μM Ca2+ was rapidly mixed with an equal
volume of EGTA (10 mM) in the stopped-flow buffer, in the absence
or presence of 12.5 μM of compound 5 or 50 μM of compound 4.
Data represent the mean ± standard error of at least three separate
experiments.
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specificity. As the number of known cNTnC Ca2+ sensitizers
increases, it will only help to refine the computer-aided drug
discovery process. Further high-throughput virtual screening
and hit identification could potentially lead to quantitative
structure−activity relationship modeling as well as hit-to-lead
optimization with free energy methodologies.
The solubility of target compounds for screening still

presented a significant barrier to the experimental study of
these small molecules despite the usage of well-known log P
predictors such as Wildman and Crippen’s model as well as
ALOGPS. While these log P models may have minimally
mitigated the situation, many compounds still exhibited poor
solubility particularly at high concentrations. Hopefully, by
extending the knowledge base of experimental solubilities,
especially focusing on attainable solution concentrations,
modeling will be able to help guide selection of compounds
amenable to in vitro testing in the future. The number of
receptors studied with GaMD could be increased for even
more structural variety. Additionally, alchemical calculations
focused on the lead compound 5 could help elucidate key
functionality that leads to binding or additionally provide
routes to further fine-tune the strength of binding/calcium
sensitization.
In conclusion, we have identified a number of novel

compounds that slowed the Ca2+ dissociation from the
chimera and had an overall Ca2+ sensitization effect. Notably,
one of the compounds had an affinity for the chimera in the
low micromolar range. These compounds were discovered
through high-throughput virtual screening coupled with
experimental verification. It is our hope that further refinement
and testing will lead to the use Ca2+ sensitizers as therapeutics
for heart failure in the near future.
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