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ABSTRACT
Knowledge of protein structure is paramount to the understanding of biological function, developing new therapeutics, and making detailed
mechanistic hypotheses. Therefore, methods to accurately elucidate three-dimensional structures of proteins are in high demand. While there
are a few experimental techniques that can routinely provide high-resolution structures, such as x-ray crystallography, nuclear magnetic res-
onance (NMR), and cryo-EM, which have been developed to determine the structures of proteins, these techniques each have shortcomings
and thus cannot be used in all cases. However, additionally, a large number of experimental techniques that provide some structural infor-
mation, but not enough to assign atomic positions with high certainty have been developed. These methods offer sparse experimental data,
which can also be noisy and inaccurate in some instances. In cases where it is not possible to determine the structure of a protein experimen-
tally, computational structure prediction methods can be used as an alternative. Although computational methods can be performed without
any experimental data in a large number of studies, inclusion of sparse experimental data into these prediction methods has yielded signifi-
cant improvement. In this Perspective, we cover many of the successes of integrative modeling, computational modeling with experimental
data, specifically for protein folding, protein–protein docking, and molecular dynamics simulations. We describe methods that incorpo-
rate sparse data from cryo-EM, NMR, mass spectrometry, electron paramagnetic resonance, small-angle x-ray scattering, Förster resonance
energy transfer, and genetic sequence covariation. Finally, we highlight some of the major challenges in the field as well as possible future
directions.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0026025., s

I. INTRODUCTION

In order to solve many of the large, pressing problems in science
and medicine, methods to determine accurate structures of pro-
teins and protein complexes are necessary. Understanding protein
structure gives us an enhanced ability to understand and manip-
ulate protein function. Obtaining accurate protein structures can
significantly facilitate the discovery of mechanisms of the machin-
ery of life. Once structures are determined and mechanisms of
action are better understood, new therapeutics can be developed
much more rapidly, often enhanced by the use of computer-aided

structure-based drug discovery (SBDD) methods.1 For example,
with the determination of a protein structure, SBDD can drastically
reduce the number of small molecules to be screened experimen-
tally, excluding the most unlikely binders based on computational
predictions.

There are some experimental methods that can be used to
determine the structures of proteins at resolutions where the posi-
tions of heavy atoms can be elucidated (<3 Å), namely, x-ray crys-
tallography, nuclear magnetic resonance (NMR) spectroscopy, and
cryo-electron microscopy (cryo-EM). These methods have been and
will continue to be central to the field of structural biology.2–4
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Determined structures are typically deposited in the Protein Data
Bank (PDB), making them available to the scientific community.
However, while the data collected from these methods can be used
to unambiguously determine the 3D coordinates of most or all of
the atoms, they each offer some unfortunate shortcomings. While
x-ray crystallography is still the most common structure determina-
tion method used for stable, ordered proteins (accounting for ∼89%
of protein structures in the PDB5), determining the proper crystal-
lization conditions for a specific protein system can take months to
years. Another downside of x-ray crystallography is that it can be
difficult to obtain the structures of large complexes. On the other
hand, NMR (∼7% of protein structures in the PDB5) is beneficial in
that it is the most commonly used method to determine an ensem-
ble of structures, providing information on conformational flexibil-
ity, which has made it more amenable to intrinsically disordered
proteins.6 The downside to NMR as a full structure determination
method is that it is typically limited to smaller structures (with some
exceptions) due to issues with peak overlapping and line broad-
ening. Finally, cryo-EM (∼3% of protein structures in the PDB5)
continues to increase in popularity due to its benefits such as not
requiring crystallization and utilizing conditions that are relatively
native-like. Despite these benefits, density maps at high resolution
currently cannot be routinely achieved, and the method is typically
limited to large structures (although a benefit over x-ray crystallog-
raphy and NMR is that it can be used on very large complexes).
Additionally, all three of these methods require large amounts of
sample as compared to some other experimental methods discussed
later (although cryo-EM can be performed using much less sample
than the other two methods). Despite the strong interest in protein
structure determination, there is currently a huge gap between the
number of known sequences and experimentally determined struc-
tures deposited in the PDB, highlighting the difficulties of structure
elucidation. At the time of writing, there were about 185 × 106

known sequences in the UniProt database,7 while there were only
about 163 000 structures containing proteins in the PDB,5 with many
exhibiting high sequence similarity to each other. While there are
many reasons for this discrepancy (many of which are due to the
described limitations), one reason is conformational heterogeneity.
Dynamic systems that cannot be fully described by a single structure
are typically harder to fully characterize experimentally (e.g., they
are difficult to crystallize). Nonetheless, these methods undoubtedly
will remain central to protein structure determination in the future,
and advances are still being made, but it would be beneficial to the
field to have the ability to consistently construct accurate structures
of protein systems using data from easier-to-perform experimental
methods.

There are many examples of experimental methods that are
more accessible, easier to perform, and that provide some struc-
tural information, but from which the data alone are not enough
to fully establish the structure of a protein. These data are sparse,
in that they do not contain enough information to fully constrain
the structure, but are also often simultaneously ambiguous (not
specific, allowing for multiple interpretations) and uncertain (high
false-positive signals).8 Nevertheless, some types of experimental
data may provide enough information for full structure determi-
nation but are not practically usable in that way due to a lack of
full understanding of the structural connection. For example, NMR
chemical shifts (CSs) provide a large amount of information (as

they are very sensitive to changes in structure), but currently, the
translation between CS and structure is not perfectly understood.
In summary, the experimental data that cannot practically be used
for full protein structure determination may inherently not provide
enough information (e.g., not enough measurements, ambiguity,
and uncertainty) or may not be understood well enough for transla-
tion to the protein structure (or in many cases, a combination of the
two).

Some examples of techniques that can be used to collect these
types of data are cryo-EM (when high-resolution density maps
cannot be obtained), NMR (when a full collection of structure
determination experiments are not performed), mass spectrom-
etry (MS), electron paramagnetic resonance (EPR) spectroscopy,
small-angle x-ray scattering (SAXS), Förster resonance energy trans-
fer (FRET) spectroscopy, and genome sequencing (for the anal-
ysis of co-evolving residues). These methods will each be high-
lighted in more detail later in this Perspective, but, in general, they
provide structural information such as size, shape, solvent acces-
sibility, interface location/composition, distances/contacts, spatial
density, orientation, local environment, flexibility, and stoichiom-
etry/connectivity. Figure 1 shows representations for each experi-
mental method as well as tags indicating what type of structural
information that they can provide for modeling efforts. While know-
ing these types of information can be very beneficial, unfortunately
they do not unambiguously specify the three-dimensional atomic
coordinates.

An alternative approach for protein structure determination
is to use computational prediction methods. Over the past 20–30
years, a large number of software packages and online tools have
been developed toward structural modeling of proteins, many
freely available for use. These algorithms can be broadly bro-
ken down into three categories: protein folding (prediction of
the tertiary structure from the sequence), protein–protein docking
(prediction of the quaternary structure from the structures of
the monomers), and molecular dynamics [MD, short timescale
(usually ns to μs) sampling of conformational dynamics of a pro-
tein]. As outlined in Levinthal’s paradox, computational protein
structure prediction methods realistically cannot sample all pos-
sible backbone conformations of a protein but rather generally
rely on stochastic approaches. For protein folding, most algorithms
use Monte Carlo methods, sampling different backbone conforma-
tions by iteratively inserting small fragments of backbone coordi-
nates (with similar sequences) obtained from the PDB9 and scoring
the conformations with scoring functions that generally contain
knowledge- and/or physics-based terms.10 Some examples of pro-
grams that can be used for ab initio protein structure prediction
are Rosetta,9,11–13 BCL,14,15 QUARK,16 TOUCHSTONE II,17 and
I-TASSER.18 Structure prediction can be further facilitated if the
structures of similar sequences are available in the PDB (homol-
ogy modeling). Some examples of homology modeling meth-
ods are RosettaCM,19 Modeller,20 SWISS-Model,21 and MOE.22

Quaternary structure prediction methods can either dock chains
together (locally or globally) or build entire complexes using sym-
metry. Specifically for local docking, Monte Carlo methods are
common. These methods sample many orientations between dif-
ferent protein chains and score models based on shape agree-
ment and energetic enhancement of the interface(s). For global
docking, fast Fourier transform methods (FFT) are generally used.
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FIG. 1. Representations of each featured experimental method used for computational modeling. In this Perspective, we discuss how each method has been used for
computational modeling in the form of de novo folding from the sequence (tertiary structure prediction), protein–protein docking (quaternary structure prediction), and
molecular dynamics (physics-based protein dynamics simulation), as shown in the center panel. In the outer panels, each experimental method is tagged based on the
type of structural information provided by its data. The categories are size, shape, solvent accessibility, interface location/composition, distances/contacts, spatial density,
orientation, local environment, flexibility, and stoichiometry/connectivity. (a) Cryo-EM 2D projection image of the GroEL complex,45 a homo 14-mer with D7 symmetry, in
vitreous ice is shown on the left. Some examples of individual projections of the complex in different orientations are circled. On the right, the reconstructed 3D density map of
the complex at 3.5 Å resolution (EMDB: 8750) is shown in two orientations. Cryo-EM density maps provide information on size, shape, and spatial density. (b) Representations
of the most common forms of NMR data used for integrative structural modeling. Chemical shifts (CSs) provide information on local environments, nuclear Overhauser effect
(NOE) provides distance between atom pairs, and residual dipolar coupling (RDC) provides information on inter-nuclei vector orientations. (c) Representations of various
mass spectrometry (MS) methods that encode structural information into protein/peptide mass. Chemical cross-linking (XL) provides distances between residues that are
cross-linked by fixed-length reagents and can provide the interface location when performed on a complex. In hydrogen–deuterium exchange (HDX), the exchange rates
(from H to D of backbone amide hydrogens) provide information on solvent exposure and flexibility. By performing HDX on monomers and the complex (ΔHDX) and analyzing
the difference, the interface location can also be determined. Ion mobility (IM) provides information on size and shape by separation, where larger proteins travel (left to right
in this figure) through the bath gas with a lower velocity. This velocity can be used to calculate an averaged 2D collision cross section. If enough measurements are made on
a protein complex and monomers, distances between subunits can also be approximated. Surface-induced dissociation (SID), which is exclusively used on complexes, can
provide information on overall complex stoichiometry and subunit connectivity by breaking apart non-covalent interface interactions. Additionally, depending on the amount
of energy required to break certain interfaces, a metric that depends on interface composition can also be measured. (d) Electron paramagnetic resonance (EPR) provides
distances between paramagnetic spin labels, commonly nitroxide (spin-labeled residues shown as sticks). Because of the movement of spin labels, the location can be
modeled using a cone as shown in this figure. The solvent accessibility of the paramagnetic labels can also be measured. (e) Small-angle x-ray scattering (SAXS) provides
information on shape in the form of a scattering profile (scattering intensity as a function of spatial frequency), which can be approximated from the 3D structure. (f) Förster
resonance energy transfer (FRET) can be measured by attaching a donor and acceptor fluorophore to the protein (either in vivo or in vitro) such as cyan fluorescent protein
(CFP, shown in cyan) and yellow fluorescent protein (YFP, shown in yellow). The measured FRET efficiency (EFRET) is dependent on the distance between the probes. (g)
By performing a multiple sequence alignment with a large number of evolutionarily related sequences and identifying coevolving residue pairs, distance restraints or contacts
can be determined.
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FFT methods sample the large conformational space with high
efficiency and evaluate the fit between subunits based on shape
complementarity. Some methods for protein–protein docking
are RosettaDock,23,24 Rosetta SymDock,25 DOT,26 HADDOCK,27

ZDOCK,28 ClusPro,29 PatchDock/SymmDock,30 and FTDOCK.31

Finally, while it is certainly powerful to obtain or predict a static
structure, many proteins can adopt multiple different physiolog-
ically relevant conformations in vivo. MD offers the ability to
sample some of these different structures, which can then be
used to gain crucial insight into the function. MD algorithms
typically use classical, physics-based force fields32–35 (molecular
mechanics, either all atom or coarse-grained) to simulate the
dynamics and model the structure in relevant solution condi-
tions (proteins are typically embedded in explicit water boxes
with periodic boundary conditions during the simulations). Some
programs that can be used to perform MD simulations are
NAMD,36 Amber,37 GROMACS,38 Desmond,39 CHARMM,40 and
OpenMM.41 While these methods for protein structure prediction
and modeling have been very successful, de novo modeling remains
a challenge.

Due to the challenges of both computational modeling and
interpreting the data of experimental methods, it has become
increasingly popular to incorporate restraints [reward or penalty
functions that quantify the agreement with the experiment in
some way, i.e., (1) based on deviation from the experiment using
a forward model or (2) using geometric functions derived from
the experiment] from sparse experimental data into modeling
algorithms. While we generally refer to the experimental meth-
ods as either techniques that routinely elucidate high-resolution
structures or those that provide some structural information, but
not enough to fully determine atomic coordinates; in reality, the
computational methods using these data exist on a spectrum.
Depending on the amount of information provided as well as the
understanding of those data with relation to the structure, the
methods exist somewhere in the spectrum of de novo structure
prediction (from the sequence only), structure prediction using
sparse experimental data, and full structure determination (x-ray
crystallography, NMR, and cryo-EM). While not a focus of this
Perspective, we note that dynamic systems with large confor-
mational heterogeneity may especially require integrative model-
ing. For these systems, however, it is important to be aware that
multiple conformations may be present in the data and are rel-
evant to the function. Because of the popularity of integrative
modeling, the biennial Critical Assessment of Structure Predic-
tion (CASP) competition added structure prediction categories for
modeling with multiple varieties of data from experiments such
as NMR, SAXS, cross-linking MS, small-angle neutron scatter-
ing (SANS), and FRET in CASP13.42 In addition to the incor-
poration of restraints from the experimental data into the exist-
ing structure modeling algorithms, software exclusively focusing on
structure modeling based on the experimental data, such as the
Integrative Modeling Platform (IMP),43,44 has also been devel-
oped. In this Perspective, we highlight many different ways that
the experimental data have been incorporated into protein tertiary
structure prediction, protein–protein docking, and MD. This Per-
spective will focus on methods that generate experimental restraints
from cryo-EM, NMR, MS, EPR, SAXS, FRET, and genetic sequence
data.

II. INTEGRATIVE MODELING: COMBINING
EXPERIMENTAL DATA AND COMPUTATIONAL
MODELING
A. Cryo-electron microscopy

Cryo-EM is performed by rapidly freezing an aqueous pro-
tein sample in a thin layer of vitreous ice and then analyzing the
frozen sample with electron microscopy. From this analysis, 2D
images of individual molecules in many different orientations can
be obtained. After taking numerous measurements and obtaining
thousands of 2D projections, a 3D density map of the protein can
be reconstructed by combining projections of single particles in dif-
ferent rotational orientations. An example for GroEL, a homo 14-
mer with D7 symmetry, is shown in Fig. 1(a): the 2D image on
the left and density map on the right. However, the resolution of
cryo-EM density maps can vary significantly (∼1.25 Å to >20 Å).46,47

At low resolutions, the overall shape and topography can be
observed. As the resolution increases to ∼5 Å to 7 Å, secondary
structure elements such as alpha helices and beta sheets become
visible, but side chains are not resolved until ∼3 Å or higher reso-
lution is obtained. Recent years have seen a resolution revolution,
where the number of high-resolution structures (and structures in
general) deposited in the Electron Microscopy Data Bank (EMDB)
has increased significantly.48 For example, in as late as 2014, no
maps with a resolution higher than 3 Å had yet been deposited in
the EMDB, while in 2019 alone, 265 maps of such resolution were
released. Over the same time frame, the total number of deposited
maps has increased from 2725 to 11 363. Despite this success, high-
resolution maps are not yet routinely obtained from cryo-EM exper-
iments, and thus, many medium- to low-resolution density maps
are available for modeling. Over the years, numerous computational
methods have been developed to model the structure of proteins
based on these density maps.49 In a recent protein–protein dock-
ing study, it was shown that the information contained in even
very low-resolution density maps (∼20 Å) was more useful for inte-
grative modeling than contact or interface information.50 Results
from this study showing the effectiveness of the different types of
information for modeling are shown in Fig. 2. In this Perspective,
we will focus on computational methods that use density maps for
rigid fitting, flexible fitting (refinement), and de novo modeling.
However, it is important to point out that the sophisticated com-
putational algorithms have been developed to construct 3D struc-
tures from the obtained 2D projections.51–53 Additionally, methods
have also been developed to identify secondary structural elements
(SSEs) from a density map (of which many modeling methods take
advantage).54–58

The original computational methods developed to model the
structure based on cryo-EM density maps were rigid fitting meth-
ods. Rigid fitting methods attempt to place previously obtained
high-resolution structures into density maps without altering the
tertiary structures. One of the first algorithms to perform rigid fit-
ting was Situs.59 This method uses an exhaustive docking approach
to sample all possible conformations. Other examples of rigid fit-
ting methods have been developed based on rotational/translational
search (EMfit),60 fast Fourier transform,61–63 grid-threading Monte
Carlo,64 spherical harmonics for rotational sampling (ADP_EM),65

and geometric hashing (BCL::EM-Fit).66 While rigid fitting meth-
ods are often used with tertiary structures obtained experimentally,
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FIG. 2. Comparison of the utility of differ-
ent types of information (green: contacts;
orange: interface; and blue: EM den-
sity) for protein–protein docking. Docking
results for a benchmark set of 162 com-
plexes were evaluated based on the suc-
cess rate (percentages of cases with a
good model in the top N = 1, 10, 20, 100,
or all), Fnat (fraction of native contacts),
L-RMSD (ligand RMSD), and I-RMSD
(interface RMSD). For all metrics, infor-
mation on EM density was the most ben-
eficial for integrative modeling. Reprinted
with permission from de Vries et al., Bio-
phys. J. 110(4), 785–797 (2016). Copy-
right 2016 Cell Press.

generated homology models of monomers have been built into
complexes using rigid modeling.67

Flexible fitting methods, which perform fitting into density
maps, while allowing changes in tertiary structure, have since
become more common as structure refinement tools. One branch of
these methods uses molecular dynamics simulations to sample struc-
tures while using the well-established MD force fields combined
with cryo-EM density maps to energetically guide the sampling.
The molecular dynamics flexible fitting (MDFF,68,69 using NAMD)
method was developed to guide the structures of biomolecules
toward density maps by including a density map-based potential
function. MDFF has been shown to be very robust as it can also
be performed on membrane proteins,70 it can include additional
symmetry restraints,71 and further advances have been made such
that it can be used with a wide range of resolutions (even down to
sub-5 Å).72,73 An example of the drastic improvement in terms of
agreement with a density map that can be obtained using MDFF
is shown in Fig. 3. A similar approach to flexible fitting has been
performed using Amber, where the potential was based on cross cor-
relation between the density map and the structure.74 In addition
to all-atom modeling, a coarse-grained, Gō-model (which translated
the initial structure to C-α positions and native potentials between
the C-α’s) has been used to simulate proteins based on density
maps.75 Finally, REMDFit that increases conformational fitting trials
with a variety of different force constants has been developed.76

As an alternative to using MD to sample conformations for
EM-based structure refinement, and to possibly obtain more diverse

backbone sampling, normal mode analysis (NMA) can also be
used. In NMA, backbones are sampled by perturbing the struc-
ture along normal modes, collective motions where bonds vibrate
with the same phase and frequency.77 Methods have been devel-
oped to use NMA to distort the structure away from its starting
state and toward agreement with the density map. In order to probe
more physically realistic deformations, NMFF-EM only considers
low-energy motions of the protein to guide the structure toward
the low-resolution density maps.78,79 Rather than excluding high-
energy normal modes, iMODFIT uses all normal modes for its
coarse-grained density map fitting.80 Because of this, a larger range
of conformations can be sampled including large scale conforma-
tional changes. Similarly to NMFF-EM, iMODFIT samples only the
low frequency vibrations and can efficiently sample using internal
coordinates.81

In addition to cryo-EM-based flexible fitting with MD and
NMA, structure refinement can also be performed using Rosetta.82

The density-based refinement performs particularly well on high-
resolution density maps (<4.5 Å). In short, segments (fragments)
of the protein are optimized within the density map by first rigid
body minimizing, then optimizing the side chain rotamers, and
finally minimizing torsions with the inclusion of density agreement
into the force field. A similar, automated approach can be used to
refine models of complexes into large density maps.83 Additionally,
exploiting the orthogonality of the force fields, MDFF has been suc-
cessfully combined iteratively with Rosetta to refine the structures
of both soluble and membrane proteins based on cryo-EM density
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FIG. 3. Improvement in fit to the density map using MDFF for acethyl-CaA syn-
thase. Target structures and simulated density maps are shown in gray, and the
initial and fitted structures are shown in green (top) and colored by backbone
RMSD (Å) per residue (bottom). After MDFF, there was a significant improvement
both in density map fit and RMSD. Reprinted with permission from Trabuco et al.,
Structure 16(5), 673–683 (2008). Copyright 2008 Cell Press.

maps.84–87 By iterating between the two cryo-EM structure refine-
ment protocols, these methods have been successful in reducing the
RMSD (root-mean-square deviation) to the native model beginning
with models at about 5 Å RMSD.

While flexible fitting into EM density maps can be very advan-
tageous, obtaining the starting structure for the modeling can, of
course, be a challenge. For this reason, de novo methods have been
developed to essentially predict the structures based on the sequence
and the cryo-EM density maps. The first such method, EM-Fold,
was originally designed to predict folds of proteins using medium-
resolution density maps (∼5 Å to 10 Å, where density rods cor-
responding to secondary structure elements are visually identifi-
able).88,89 The method fits secondary structure elements (identified
from the sequence by secondary structure prediction methods) into
manually identified density rods in the density map. After using a
Monte Carlo search algorithm for rod placement, Rosetta is used
to build in the missing side chains and loops. EM-Fold has been
applied to predict the structures of multiple large proteins (up to
∼400 residues) within cryo-EM density maps.90,91 Another tool,

Gorgon, can be used to build de novo models using density maps
in the range of 3.5–10 Å resolution.92 Gorgon uses a feature detec-
tion tool, SSEHunter,54 to identify the secondary structure in the
density maps and builds coarse-grained models using geometric
modeling techniques. In addition to structure refinement based on
density maps, Rosetta can also model structures de novo using maps
at high resolutions (3 Å–5 Å).93,94 Rosetta uses its fragment assem-
bly Monte Carlo simulated annealing method to sample backbone
conformations but chooses fragments that agree best with the den-
sity map based on a scoring function. After iterating between model
generation and fragment scoring, density-guided refinement is per-
formed on the best models. Along with proteins, RNA can be mod-
eled into density maps in Rosetta as well.95 Pathwalking (part of the
EMAN package) uses a very different approach to de novo model-
ing with cryo-EM density maps using the traveling salesman prob-
lem as an inspiration.96–98 Pathwalking essentially determines a valid
path of C-α atoms through the density map for a given number
of residues, which then need to be refined, and a specific sequence
needs to be mapped onto the structure. Along with its other mod-
eling tools for cryo-EM and x-ray crystallography, Phenix can be
used to model structures de novo into high-resolution density maps
through its phenix.map_to_model tool with the goal of automati-
cally mapping the structure using a strategy similar to an experi-
enced biochemist’s intuition.99,100 In short, the method looks for
regions of strong density to place secondary structures and subse-
quently branches out from the strongest density backbone region
to place the side chains. Finally, all-atom refinement is performed.
Another de novo modeling method, MAINMAST, outputs multi-
ple models with confidence scores.101,102 The method first identifies
points of high density and connects them into a minimum span-
ning tree, which is subsequently refined into essentially a C-α model.
Finally, the top models are converted to all-atom and further refined
using MDFF. In addition to full-sequence structural modeling, indi-
vidual fragments of a protein can be modeled into a cryo-EM density
map using FragFit, which searches the PDB for similar sequences
of the fragment and models the structure of that fragment into the
overall structure of the protein based on the density map.103 While
machine learning techniques have previously been used in the cryo-
EM modeling pipeline (picking of 2D single particle images104–110

and SSE identification from density maps55–58), it has recently been
used for de novo modeling.111 Using a deep learning approach that
included three cascaded convolutional neural networks, a method
has been developed to produce confidence maps for major com-
ponents of the structure (such as SSEs, backbone, and C-α loca-
tions). This has been further converted into backbone traces, and
then, the sequence is mapped onto the trace to obtain full atomic
structures. In the spirit of blind competitions, EMDataResource has
organized modeling competitions using cryo-EM density maps.112

In the most recent competition in 2019, 13 groups predicted struc-
tures for 4 high-resolution density maps (1.8 Å–3.1 Å), many of
which were very accurate. Future model challenges are expected to
expand to medium-resolution (3 Å–4 Å) maps of more complicated
systems.

In addition to cryo-EM-guided de novo modeling (effectively
from the sequence), protein–protein docking has also been per-
formed using ATTRACT-EM, docking with very low-resolution
(∼20 Å) density maps.113 Starting from the structures of the
monomers, ATTRACT-EM assembles many starting structures
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and restrains the further refinement based on symmetry and the
agreement with the density map, with final models being refined
further. In the Integrative Modeling Platform (IMP), a Bayesian
scoring function to quantify the agreement between structures and
density maps has been developed.114 The input to this integrative
modeling is the structures of the monomers. From these struc-
tures, monomers are fitted into their portions of the density maps,
and they are assembled into complexes using Monte Carlo replica
exchange. Importantly, the scoring function includes prior informa-
tion, such as how well the monomer agreed with their portions of the
density map.

Cryo-EM is certainly one of the fastest growing techniques in
protein structure determination. Modeling approaches are used for
both high- and low-resolution density maps obtained from cryo-EM
to study many different systems involving proteins and protein com-
plexes. For cryo-EM, the biggest challenge is dealing with hetero-
geneous and dynamic systems where multiple conformations may
blur the overall density map. Moving forward, cryo-EM will likely
become the prime structure determination method, elucidating pro-
tein structures for many systems that have long evaded traditional
techniques such as x-ray crystallography and NMR.

B. Nuclear magnetic resonance spectroscopy
As previously mentioned, solution NMR can be used to

uniquely determine the 3D structure for some small protein systems.
However, doing so requires the collection of a full set of structure
determination data from a variety of different NMR experiments.
Depending on the experiment, prior to collecting data, the proteins
need to be expressed in isotopically labeled media using NMR active
13C and/or 15N isotopes. Optimizing the expression medium and
conditions to produce large amounts of sample is incredibly expen-
sive and challenging due to the inherent cost of isotopically labeled
materials. While the specific experiments performed to determine
the protein structure with NMR can vary, typically, this requires
assigning the peaks of the 2D HSQC (heteronuclear single quan-
tum coherence) spectra in order to determine the sequence positions
of observed amide chemical shifts and then performing 2D NOESY
(nuclear Overhauser effect spectroscopy) experiments to determine
which atoms are close in space, as well as some other experiments
to determine additional restraints. Assigning the backbone peaks
of the HQSC spectra can be very time consuming and expensive,
requiring multiple separate experiments [such as 3D HNCACB and
3D CBCA(CO)NH] which require days to weeks of data collection
for each. In addition, because of the continuous data collection time
necessary for these experiments, the proteins must be very stable in
solution. Once enough distance restraints from NOESY as well as
additional restraints such as dihedral angles and inter-nuclei vector
orientation are defined (such that the restraints are abundant and
not sparse), an ensemble of structures can nearly unambiguously
be determined using simulated annealing. Despite the successes of
the technique, typically, a full set of restraints can only be deter-
mined for small proteins (although there are some exceptions with
more advanced techniques). Even then, the data collection and anal-
ysis can be very expensive and time consuming (typically months
to years and thousands of dollars). However, some useful struc-
tural restraints can be determined from NMR experiments on a
larger variety of systems without performing a full set of structure

determination experiments, saving time and money. In this Per-
spective, we will highlight computational methods that can incor-
porate sparse data from NMR into protein structure prediction and
modeling.

The restraints derived from sparse NMR data that are used for
structural modeling most commonly come in three forms: chem-
ical shifts (CSs), distance restraints from NOE, and orientational
restraints from residual dipolar coupling (RDC), as displayed in
Fig. 1(b). Chemical shifts provide information on the local environ-
ment for specific atoms, which has been incorporated into mod-
eling in multiple different ways, but, in general, tools are used
to predict CSs from the structure,115–118 which can then be com-
pared to CS values derived from the experiment. NOE is a relax-
ation technique, where the basic idea is to alter the spin on one
nucleus and measure the effect that has on a different nucleus.
Because the intensity of the measurement is dependent on the dis-
tance between two atoms, NOE can provide through-space dis-
tance restraints for atoms that are within approximately 5 Å. While
NOE is an important part of full structure determination from
NMR as described above, often, sparse amounts of these restraints
can be measured and input into computational modeling methods.
Finally, RDC arises when proteins in solution align to the mag-
netic field, facilitated by the alignment medium. When this hap-
pens, the amount of dipolar coupling observed is dependent on
the angle between the inter-nuclei vector and the magnitude of
the magnetic field. These measurements can provide orientational
restraints for computational modeling as RDCs can be predicted
from the structure and compared to the experiment.119 In addition
to using these sparse data for structural modeling (i.e., using them
as restraints in structure prediction and simulations, which will be
the focus of the rest of this section), NMR data have also been used
to parameterize120,121 and evaluate122–126 molecular mechanics force
fields.

Chemical shifts, which are obtained in the early stages of any
NMR structure determination protocol as previously described, can
be used to guide protein structure prediction as they encode infor-
mation about local environments. Many of the CS-based structure
prediction methods use tools such as TALOS, which can be used to
predict secondary structure or torsion angles from CS.127–129 One
of the first methods to incorporate chemical shifts into structure
prediction was CHESHIRE.130 In CHESHIRE, the secondary struc-
tures are predicted based on both sequence and chemical shifts,
which are then used to predict backbone torsion angles. These tor-
sion angles are subsequently used to select fragments from the PDB,
which are then used for Monte Carlo fragment insertion. While
these fragments are typically selected based on the local sequence
similarity for ab initio modeling, choosing them based on CS data
ensures that the fragments have backbones that are more native-
like. In a benchmark, CHESHIRE predicted native-like structures for
11 proteins with up to 123 residues. A similar approach is taken in
CS-Rosetta.131–133 When Rosetta performs Monte Carlo simulations
to sample the protein structure, it does so by inserting backbone
angles of fragments obtained from the PDB. Similar to CHESHIRE,
CS-Rosetta includes a CS-based bias into the fragment selection in
order to select fragments with a similar local environment as well
as a sequence. The difference is that CS-Rosetta’s fragment selection
is performed by directly comparing experimental CS to predicted
CS for fragments in the PDB (rather than first predicting bb
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torsions and then using that to select fragments). This method has
been shown to be successful even when only sparse chemical shift
assignments are available. While CS-based de novo methods such as
CS-Rosetta and CHESHIRE have been successful, they are typically
only viable for smaller proteins (up to ∼125 residues). To overcome
this size limitation, CS data can also be incorporated into homol-
ogy modeling for proteins with the available homologs. In Rosetta,
this has been done by using the CS data to identify homologs of
the target sequence and to align it to templates (alignment method
called POMONA), with RosettaCM used for the homology modeling
(CS-RosettaCM).134 In a benchmark (proteins between 100 and 400
residues), the method predicted accurate structures (<2.5 Å) in 15/16
cases. In addition to tertiary structure prediction, CS values can be
used to predict elements of the secondary structure, which could be
additionally helpful for modeling. MICS was developed to do this
and used a neural network to develop a model that can accurately
predict the locations of helix capping and β-turn motifs as they are
inherently dependent on the local environment and thus chemical
shifts.135

Distance restraints from NOE can be incredibly useful because
one of the most difficult aspects of computational structure pre-
diction methods is to correctly identify contacts that are close in
space but far in sequence. For example, this is one of the reasons
why the structures of proteins with high beta sheet content are often
more difficult to predict. One of the first computational methods to
illustrate the usefulness of NOE restraints into structure prediction
was RosettaNMR.136 The developed approach was to alter the scor-
ing function to take into account the sparse NOE restraints (∼1 per
residue). Another method that was developed to use NOE restraints
for structure prediction is TOUCHSTONEX.137,138 This method
uses a coarse-grained approach where proteins are represented by
C-α, C-β, and side chain center of mass and an energy function
that includes a pairwise energy term that is dependent on the
NOE-derived atom–atom distances. Additionally, NOE restraints
have been incorporated into I-TASSER (I-TASSER-NMR).139 In this
approach, a scoring function is used to not only evaluate distance
restraints for a single pair of atoms at a time but also to include the
probability that the NOE restraint could be assigned to a different
pair.

Furthermore, RDCs can be used in protein structure model-
ing, providing information on the inter-nuclei vector orientations.
RDC’s were incorporated into RosettaNMR by including an addi-
tional score term with the Rosetta scoring function that quanti-
fied the agreement between predicted119 and experimental RDC’s.140

Another method, REDCRAFT, has also been developed to model
structures using RDC data.141 In this method, RDC fitness for each
pairwise residue–residue interaction is ranked and the structure is
built up one residue at a time based on this RDC agreement. While
RDC data provide useful information to include into structure pre-
diction, RDC’s are not typically used as the exclusive NMR restraint
for structure prediction.

Because they can provide different types of orthogonal infor-
mation and are sometimes collected at the same time, incomplete
sets of CS, NOE, and RDC can be even more beneficial to structure
prediction when used together. Even unassigned NMR data of the
three types have been shown to effectively predict accurate struc-
tures using Rosetta.142 After initial structure generation, a Monte
Carlo method was used to search for assignments that best match the

data and structures. This method was able to identify correct folds in
all cases, and refinement was able to identify high-resolution mod-
els in some cases. As integrative modeling has become more popular
and strategies have been developed to model structures with NMR
data, many methods now commonly incorporate multiple types of
sparse NMR data into their structure prediction methods. CS, NOE,
and RDC data have been used to build complexes in Rosetta from
the sequence.143 This strategy is to use CS data to build monomers
(CS-Rosetta) as previously described and dock them together with
the NOE interface and RDC restraints to predict the accurate struc-
tures of homodimers. In this method, the RDC restraints were
incorporated by quantifying the deviation of predicted and experi-
mental RDC as a scoring function into docking. Another method,
MFR (molecular fragment replacement) also uses NMR restraints
from CS, NOE, and RDC to produce backbone models of a pro-
tein.144 In this method, backbone data (CS and RDC) are used to
select fragments, and RDC and optionally NOE are used during the
fragment assembly process. The biggest benefit of this method is
the speed. Additionally, CS, NOE, and RDC data can be used for
coarse-grained modeling in BCL::Fold and BCL::MP-Fold.145,146 In
a benchmark which included dozens of small proteins and some
very large (6 with more than 220 residues), the correct protein fold
was sampled in 65/67 cases. Figure 4 shows the improvement of
sampling when NMR restraints were included. Again in Rosetta, a
combination of NOE and RDC restraints was used to predict struc-
tures in CASP13.147 In this method, low-resolution models were
produced using NOE distance restraints and RosettaCM was used
to refine based on NOE and RDC restraints. In the blind test set,
more than half of the proteins were predicted with a RMSD of less
than 3.5 Å.

While the most common types of NMR data used for modeling
are CS, NOE, and RDC, other types of sparse data have been used for
structure prediction as well. For example, paramagnetic restraints
from NMR have also been used for structure prediction with
RosettaNMR.148 As a supplement to the CS and NOE data, paramag-
netic relaxation enhancements (interactions between nuclear spins
and paramagnetic metals or nitroxide spin-labels) can provide long
distance restraints (up to 40 Å, compared to ∼5 Å for NOE). Simi-
lar to RDC, orientational restraints from pseudocontact shifts (PCS)
can be obtained and used for modeling in RosettaNMR. In a large
benchmark (of both structure prediction and docking), both over-
all sampling and the RMSD of the predicted structure improved
when the paramagnetic NMR data were included. While NMR is
typically performed in the solution state for protein structural char-
acterization, restraints can also be derived from solid-state NMR.
Some examples include magic-angle-spinning assignments,149 dis-
tance restraints,149 and angular restraints.150

In addition to structure prediction, NMR-based restraints can
be incorporated into molecular dynamics simulations (outside of
the use of MD to refine high-resolution structures). These simu-
lations are typically used for structure refinement, with the goal
of sampling a structure or an ensemble of structures that is in
good agreement with both the experimental data and the molec-
ular mechanics force field. The restraints can sometimes be used
for long MD simulations as well. As early as the mid-1990s, dis-
tance restraints from NOE were incorporated into MD simulations
using GROMOS, showing the proof of principle of such methods.151

Furthermore, restraints from CS, RDC, and/or NOE were
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FIG. 4. NMR restraints improved native-like sampling in BCL. Each point signifies one protein. Points are colored based on size (green: <150 residues; yellow: ≥150 and
<250 residues; orange: ≥250 and <400 residues; and red: ≥400 residues) and shaped based on type (circle: soluble and square: membrane). (a) The mean RMSD100 with
error bars of ±1 SD of the top 10 models with (y-axis) and without (x-axis) NMR restraints. (b) The RMSD100 of the top model with and without NMR restraints. Reprinted
with permission from Weiner et al., Proteins 82(4), 587–595 (2014). Copyright 2014 John Wiley and Sons.

incorporated into MD simulations using GROMACS,152,153 Amber,154

and ALMOST.155 Regardless of the MD platform, PLUMED is
another useful tool for incorporating restraints into MD simula-
tions.156,157 The strength of PLUMED is its versatility as it can not
only be used with several different MD packages (such as NAMD,
Amber, and GROMACS) but can moreover be utilized to incor-
porate many different types of restraints. While it can be used to
incorporate experimental data-based restraints, in general, it is com-
monly used for NMR-restrained simulations. An example applica-
tion of PLUMED is to incorporate chemical shifts into MD sim-
ulations as collective variables (based on the difference between
predicted and experimental CS) to guide the simulations toward
agreement with the experimental data without explicitly altering
the force field.158 In another example, PLUMED was incorporated
into cryo-EM- and CS-based structure refinement with Rosetta and
MD.87 For heterogeneous systems (such as disordered proteins),
PLUMED-ISDB159 (integrative structural and dynamic biology)
can be used to determine an ensemble of structures based on
ensemble-averaged and noisy experimental data using a Bayesian,
metainference approach. While it can be used with multiple types of
experimental data, NMR data such as CS, J-couplings, and RDC are
commonly used.160,161

MELD (Modeling Employing Limited Data) takes a slightly
different approach for structural modeling with the experimental
data.8,162 Like PLUMED, it can, in principle, take multiple different
types of experimental data but was specifically designed to be used
with general experimental data that are very sparse and sometimes
incorrect. In order to account for the fact that some of the data may
be missing or incorrect, MELD uses a Bayesian scoring function,
where the Amber force field is used to evaluate the prior probability

and the experimental data are used to evaluate the likelihood proba-
bility. The likelihood and prior probabilities are combined to define
the scoring function using OpenMM for sampling. The innovation
in MELD is to exclude the weakest restraints from the energy eval-
uation, which are determined to be unreliable. For example, in the
incorporation of both NMR and EPR restraints, it was determined
that 65% of the data were reliable and thus included into the scor-
ing function. In a benchmark, MELD generated structures with low
RMSD (less than 2.5 Å) for the majority of tested cases. In the NMR
data category in CASP13, MELDxMD was the best structure predic-
tion method (results shown in Fig. 5), illustrating the success of the
approach.

We have highlighted many different techniques that can be
used with NMR to obtain structural and dynamic information on
both ordered and disordered protein systems. While size limitation
remains a significant challenge, the large amount of information
(such as distances/contacts and local environment) that can be pro-
vided by NMR data has made it one of the most popular tools for
structure elucidation and integrative modeling.

C. Mass spectrometry
In recent years, mass spectrometry (MS) has become an

increasingly popular tool to study proteins and protein complexes
due to some important advances starting in the late 1980s. The
initial problem with using MS on proteins and peptides was the
need to softly ionize the molecules into the gas phase for analy-
sis in order to preserve their covalent bonds or even structures.
Until the invention of soft ionization techniques such as electrospray
ionization (ESI)163 and matrix-assisted laser desorption/ionization
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FIG. 5. MELDxMD was the highest
ranked group in NMR data-assisted
CASP13 (2018). (a) MELDxMD (431)
had the highest Z-score in the category.
(b) Predicted structures for CASP tar-
gets are shown with reference to the
native structures. Five of these predicted
structures were best in CASP. Reprinted
with permission from Robertson et al.,
Proteins 87(12), 1333–1340 (2019).
Copyright 2019 John Wiley and Sons.

(MALDI),164 this was not possible. These inventions sparked the
development of new mass analyzers and ultimately techniques to
determine structural information on proteins. These techniques can
be broken down into two categories: bottom-up and top-down. In
bottom-up MS, proteins are enzymatically digested into small pep-
tides and these peptides are separated and analyzed using tandem
MS (MS/MS). Alternatively, in top-down MS, intact proteins are
separated and ion-trapped using tandem MS. Many pre-MS ion acti-
vation or chemical modification methods have been developed to
infer structural information from MS experiments.

Ultimately, MS can be used to measure the mass-to-charge ratio
of a molecule. While this information is useful for an entire pro-
tein (especially when analyzing complex mixtures), structural infor-
mation is gained by analysis of results after different pre-MS steps
are performed. These pre-MS steps have been developed in order
to encode structural information into the mass of the protein or
protein fragments. Many of these methods have then been incor-
porated into computational pipelines to model protein structures.
The MS-based methods highlighted in this Perspective are chemical
cross-linking, covalent labeling (such as hydrogen–deuterium
exchange and hydroxyl radical footprinting), ion mobility, and
surface-induced dissociation. While the structural data obtained
from these MS-based methods are not enough to fully elucidate the
structure, MS does not suffer from many of the drawbacks of the
typical structure determination methods. MS can handle complex
mixtures, does not require crystallization, can be performed on both
large and small systems (up to megadalton-sized complexes), and
requires small amounts of sample (μl of sample at low μM concen-
trations). Finally, as will be described in Secs. II C 1–II C 4, the types
of structural information that can be obtained from MS experiments
are very diverse.

1. Chemical cross-linking
Chemical cross-linking (XL, CX, or CL) has been combined

with MS (XL-MS) using a bottom-up approach. The general idea
of the method is to chemically connect two atoms that are close
in space, while the protein is in a native-like environment. In XL-
MS, the native protein in solution is incubated with a bifunctional
cross-linking reagent, as depicted in Fig. 1(c). After cross-linking,

the proteins are enzymatically digested into smaller peptide frag-
ments, cleaving some peptide bonds, but keeping the newly created
cross-links intact. The peptides are then separated and analyzed by
liquid chromatography and tandem MS. If the sequence location
of the cross-links can be determined from the peptides, this analy-
sis provides information about which residues are interacting (i.e.,
close in space), often across protein–protein interfaces. Based on
the length of the cross-linking reagent (which can be up to about
35 Å depending on the reagent), distance restraints can be inferred
and included in computational structure prediction algorithms.165

Cross-linking information can be extremely beneficial for computa-
tional modeling because contacts that are close in space, but far in
sequence, are generally hardest to predict.

Workflows have been developed in Rosetta to individually use
the data from cross-linking experiments for de novo modeling,
homology modeling, or protein–protein docking. These methods
were first developed to use detected cross-linked residue distances as
restraints in model generation as well as to filter models after struc-
ture generation.166,167 Distance restraints from XL-MS have also
been used with homology modeling using I-TASSER,168 XLinkDB169

[a combination of Modeller and PatchDock from the Integrative
Modeling Platform (IMP)], and MD refinement.170 Cross-linking
data have been used to model the interaction between Psb27 and
Photosystem II, combined with protein–protein docking.171 The
top-ranked (without incorporating the XL) docked models did not
match the XL data, so the data were necessary to properly model
the structure. Additionally, software is available to detect cross-
links such as Mass Spec Studio, which was validated based on its
ability to improve protein–protein docking when used with avail-
able software.172 More recently, chemical cross-link data have been
used to build full quaternary structures from the sequence using
Rosetta.173 This has been done by generating tertiary models using
de novo or homology modeling and then docking those models to
form the complex (all done without guiding the predictions with
XL data). Next, the models were filtered based on the agreement
between the number of cross-links observed and the lysine–lysine
distances in the predicted models. Models that passed the filter
were refined by docking at higher resolution and rescored based on
lysine–lysine distances of experimentally observed cross-links and
the Rosetta scoring function to select the predicted structures. In
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addition in Rosetta, flexible peptide docking has been performed
using experimentally determined cross-links as filters to select good
models.174

Rather than simply using XL data as restraints, the importance
of cross-link distance restraints being surface accessible (rather than
through the protein) has furthermore been examined by calculat-
ing the surface accessible surface distance using Jwalk and using
that in a scoring function to score homology models based on XL
data.175 In another study, a statistical XL-based potential based on
distance calculations from the protein data bank was developed
and incorporated into the Rosetta ab initio folding as a proof of
principle.176 This force field improved tertiary structure prediction
by including the probability that cross-linked residues are surface
accessible.

In addition to detecting if and where cross-links bind to gen-
erate distance restraints or use in a scoring function, it is possi-
ble to quantify the number of cross-links between two residues
(quantitative chemical cross-linking). Based on the intensity of dif-
ferent cross-links, this type of analysis can give information on
dynamics and can sometimes detect multiple conformations. It has
been shown that multiple relevant protein conformations can be
modeled based on cross-link intensity by combining xTract with
docking.177

2. Covalent labeling
While XL-MS methods gain insight into residue–residue dis-

tances, covalent labeling methods gain insight into solvent acces-
sibility and flexibility. Covalent labeling (CL) reagents can bind to
proteins in solution and thus chemically alter their masses (either
irreversibly or reversibly). The structural hypothesis is that the
reagents bind more favorably or more rapidly to residues that are
more solvent-exposed and more flexible. The general workflow for
covalent labeling MS (CL-MS) methods is to incubate the pro-
tein in solution with the labeling reagent for a certain period of
time to allow the labeling reagents to bind to the protein. Then,
the protein is enzymatically fragmented into peptides (bottom-up),
which are separated and analyzed by tandem MS to determine the
binding location of the labels within the sequence by detecting the
change in mass (although it can sometimes be a challenge to deter-
mine the exact, residue-resolved locations since measurements are
generally performed on peptides). Covalent labeling strategies can
be employed in many different flavors (depending on the label-
ing reagent used) but can generally be broken down into spe-
cific and non-specific labeling methods. Specific covalent labeling
reagents bind to particular amino acids or amino acid functional
groups. Common methods are available to target arginine, car-
boxylic acids, cysteine, histidine, lysine, tryptophan, or tyrosine.178

On the other hand, non-specific labeling reagents can label most or
all of the amino acid types. The most commonly used non-specific
labeling methods are hydroxyl radical footprinting (HRF) and
hydrogen–deuterium exchange (HDX). While both types of cova-
lent labeling can provide useful structural information, the use of
non-specific methods to this point has been more successful in struc-
tural modeling since they provide more information by labeling
more residue types; therefore, this Perspective will highlight meth-
ods that incorporate HDX and HRF into modeling. To make struc-
tural hypotheses, it is also important that covalent labels do not
cause changes to the overall structure of the protein. However, this

effect is minimal when small labels are used (such as with HDX
and to a lesser extent HRF)178 and also when the experiment is per-
formed sufficiently fast [such as fast photochemical oxidation of
proteins (FPOP)].179 It has been shown using simulated CL data
with noise that labeling the following residues provides the most use-
ful information toward tertiary structure prediction because of their
abundance in sequence: L, G, R, V, and S.180

a. Hydrogen–deuterium exchange. Hydrogen–deuterium
exchange, a non-specific covalent labeling method, has been used for
a long time to study biomolecules (since the 1930s for small systems)
but has become very popular when combined with MS (HDX-MS).
As the pre-MS, covalent labeling step, the protein is incubated in a
D2O buffer solution. In this solution, some hydrogens in the protein
are able to exchange with deuterium, as shown in Fig. 1(c). After
some time, the exchange is quenched and continued in the CL-MS
pipeline, as previously described. This experiment is repeated for
many different incubation times so that kinetics can be determined.
Rate constants or protection factors derived from rate constants at
each measured position are commonly reported in the literature.
However, it is not uncommon to report percent deuteration incor-
poration of certain positions at certain time points. Because of fast
back-exchange for side-chain hydrogens (after quench) and slow
exchange for carbon-bound hydrogens (prior to quench), only the
amount of exchange from backbone amide hydrogens is measured
(starting at the third residue in each fragment). One major difficulty
of HDX is to convert the data collected on peptides to the residue
level, although many methods have been developed to facilitate this
conversion.181,182 For HDX to occur at a given position, it is particu-
larly important that the amide hydrogens be both exposed and flex-
ible (i.e., not participating in a hydrogen bond) in order to rapidly
exchange because hydrogen-bonded hydrogens are much less likely
to exchange with deuterium.

HDX data have been successfully incorporated with homology
modeling to predict structures. In one study, using a two-step
homology modeling strategy, where the sequence alignment was
adjusted after the first step to better match the HDX data, the
models were further evaluated based on solvent exposure.183 Of
the predicted models, the best model showed a strong correlation
(R2 = 0.94) between the backbone solvent-accessible surface area
(SASA) and percent deuterium incorporation measured with HDX
at the peptide level. This analysis leads to new mechanistic hypothe-
ses for the system. In a different study, correlations between the
number of deuterons and the backbone SASA for each peptide were
used to analyze homology models of IκBε generated with two dif-
ferent templates (both with strong correlations).184 The templates
differed in length and the HDX analysis, showing a good correlation
in the extended region, was used to justify an additional structured
ankyrin repeat in the target.

In addition to homology modeling, HDX data have been
successfully incorporated into protein–protein docking. Differ-
ential HDX (ΔHDX), performing HDX-MS experiments on the
monomers separately and comparing to HDX of the complex,
can provide useful information specifically on the location of the
protein–protein interface. Interface residues are likely to exchange
rapidly in the monomer but may exchange slower in the complex
as they generally become more buried and less flexible upon bind-
ing. However, it is important to note that changes in non-interface
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residues upon binding (protection or deprotection) can also occur
due to the general stabilization of the complex as well as allosteric
effects. Figure 1(c) shows an example of the difference in deuteration
that could occur in the unbound and bound forms. To demonstrate
this, the hUNG-UGI complex was docked using DOT and outputs
were filtered based on HDX data.185 For peptides observed in both
the monomer and the complex, the difference between the num-
ber of deuterons in the monomer and the complex was measured
(this number indicates the number of backbone amide hydrogens at
the interface). The filtering step required that the same number of
residues in the fragment was within a 7 Å interaction distance of the
other subunit and this part of the interface. This filtering was shown
to enrich the number of native-like structures in the prediction. In
another study, ΔHDX was used to help identify the binding interface
between two partners and was combined with RosettaDock, which
was also restrained using inter-subunit cross-links.186 In addition to
using HDX to identify the interface, models were evaluated based on
SASA and HDX agreement, which resulted in a model with a RMSD
of less than 2 Å. Similar analyses have been done with protein–ligand
complexes.181,187–189

Since HDX is a solution-based approach, it can provide infor-
mation on the ensemble of structures present in the solution.
Because of this, it is beneficial to use HDX data in conjunction
with MD simulations. It has been shown that HDX data can dis-
criminate between native and non-native folds from conformations
generated in an MD simulation.190 This was done by predicting
the deuterium uptake based on near contacts and hydrogen bonds
from the structures and comparing it to the experimental results.
In addition to actually modeling HDX during MD simulations, the
simulations themselves have been extensively used to better under-
stand and predict the HDX results. For example, MD simulations
have been used to predict the peptide-resolved HDX data based
on solvent accessibility. These data were calculated over the sim-
ulation based on both residue SASA and whether the amide NH
interacts with a water molecule. The predictions correlated well with
the experimental results.191,192 Numerous other methods have been
developed that quantify some combination of hydrogen bonding,
solvent accessibility, and RMSF (root-mean-square fluctuation).193

b. Hydroxyl radical footprinting. In contrast to HDX, HRF
methods irreversibly alter the mass of the protein at certain posi-
tions. The strategy is to introduce hydroxyl radicals into solution
to interact with the side chains of exposed residues. The result-
ing mass change is very dependent on the amino acid type, for
example, the radical can abstract hydrogens from aliphatic residues
or directly attack sulfur atoms or aromatic rings. Although there
are many different ways to introduce the hydroxyl radicals (such
as radiolysis of water with electrons, x rays, or gamma radiation,
transition metal-dependent chemical reactions with peroxide, or
high-voltage electrical discharge in water), one of the most com-
mon methods that has been used in structure prediction is through
peroxide photolysis, called fast photochemical oxidation of pro-
teins (FPOP). In FPOP, hydroxyl radicals are produced in situ by
UV laser-based photolysis of hydrogen peroxide. The radicals then
alter the mass of a broad range of amino acid types with differ-
ent intrinsic reactivities that have been tabulated. Similarly to HDX,
FPOP rate constants can be determined for each residue and from
the rate constants, protection factors (intrinsic reactivity divided by

rate constant) are generally derived. The structure-based hypothe-
sis for this metric is that a higher protection factor should corre-
late with less solvent exposure due to the lack of accessibility of the
radicals.

Based on this hypothesis, correlations between structure and
FPOP data have been examined.194 The average SASA derived
from MD simulations normalized by the sequence context, calcu-
lated for residues with high and moderate hydroxyl radical reac-
tivity, was shown to be strongly correlated with a normalized
protection factor (PF). Analyzing the frames from unfolding simu-
lations, this metric was able to discriminate well between native-like
and non-native-like models based on RMSD. Furthermore, FPOP
has been incorporated into a de novo tertiary structure prediction
framework.195 Based on an observed correlation between neighbor
count, a surface-accessibility measure of the number of neighbor-
ing residues within a specific distance, and natural logarithm of PF,
a model to predict FPOP data from structure was developed. This
model was incorporated into an FPOP-quantifying scoring term,
which was used to rescore models generated in Rosetta. Structure
prediction was improved with the inclusion of FPOP data. Fur-
thermore, accounting for side chain flexibility through MD and
Rosetta movers has been shown to improve the observed correla-
tion between residue exposure and experimental PF.196 Incorpora-
tion of this improved correlation into a scoring function produced
improvement in model selection for tertiary structure prediction as
well. Extracting the top 20 scoring models and generating 30 addi-
tional structures for each using a combination of Rosetta movers
chosen to boost side-chain sampling further improved the predicted
structure in all cases. An example is shown in Fig. 6 for myoglobin.
The selected model (based on score) improved from 6.48 Å (left)
when no HRF data were included to 4.85 Å (middle) and when
HRF data were included and further improved to 2.37 Å (right)
when additional side-chain sampling was allowed using the mover
models.

3. Ion mobility
Ion mobility (IM), a top-down, native MS approach, provides

structural information not on specific residues, but rather on the
shape of the entire protein or protein complex. In IM, the entire
native protein, rather than broken into peptides, is softly ionized in
the gas phase and accelerated through a bath gas (commonly nitro-
gen or helium) and subsequently analyzed with MS. The velocity
of each ion as it passes through the bath gas depends on its size
and shape (as well as charge and other experimental factors), which
can then be translated into a rotationally averaged collision cross-
sectional area (CCS). Figure 1(c) illustrates this separation, show-
ing smaller ions moving faster through the bath gas (left to right).
This experimentally derived CCS can then be used for structural
modeling. While there is a plethora of different computational meth-
ods to predict the experimentally measured CCS from the 3D coor-
dinates of a protein, selecting the best method can be challenging
because there is usually a tradeoff between accuracy and computa-
tion time. Briefly, some methods simply calculate the average projec-
tion area over multiple rotations of the protein [projection approx-
imation (PA)197,198 and exact hard-spheres scattering (EHSS)199],
while some also take gas–protein interaction energy and multiple
gas–protein collisions into account [trajectory method (TJM),200,201
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FIG. 6. The inclusion of HRF data improved structure prediction for myoglobin. Top shows score vs RMSD plots and quality of funneling metric, Pnear, for 20 000 ab initio
models (top scoring model for each shown with a star). Bottom shows a comparison of top scoring model (cyan) to the crystal structure (gray). Results are shown for when
no HRF data were included (left), when hrf_dynamics score was included (middle), and when hrf_dynamics score was included with further sampling using Rosetta movers
for the top 20 models (right). Figure credit: Sarah Biehn.

diffuse trajectory method (DTM),202 and projection superposition
approximation (PSA)203]. Rather than predicting the CCS from a
single structure, the structure relaxation approximation (SRA), a
method to predict IM spectra from an ensemble of structures for
a specific charge state, has been developed.204 The SRA uses short
timescale molecular dynamics simulations to sample structures in
the correct charge states and uses the predicted CCS values from the
PSA of snapshots to predict the overall IM spectra.

IM CCS data have been incorporated into structure predic-
tion of protein complexes using the IMP. In these studies, coarse-
grained models of large complexes were generated in the IMP.205,206

By applying a scoring function based on the agreement between
predicted (PA) and experimental CCS, the candidate models were
ranked and clustered to predict a native-like model. In a benchmark,
the predicted coarse-grained structures were in good agreement
with structures in the PDB. It is also possible to generate dis-
tance restraints between subunits in a complex using IM.207 For
example, IMMS_modeler was developed (within the IMP) to fur-
ther predict coarse-grained models of protein complexes using
IM data and clustering. In this method, IM is used to determine
the CCS, as described previously. Then, based on this CCS value,
a radius for each individual subunit is determined (assuming a
rough sphere shape). After performing the experiment on individual

subunits as well as different subcomplexes, rough intersubunit dis-
tance restraints were determined and input into the modeling
method. This method was successful in identifying coarse-grained
topologies of complexes.208–210

In addition to predicting the structures of complexes, some
work has been done toward incorporating CCS biasing into MD
simulations. By using a simplified, but very fast model for CCS pre-
diction that is based on the radius of gyration (developed based
on the correlation between the radius of gyration and the pre-
dicted CCS using EHSS) combined with MD, it has been shown that
unfolding of a protein can be modeled based on the CCS.211 Such a
method has many potential future uses such as structurally modeling
or calculating the free energy change between collision-induced
unfolding and transitions between conformations.

4. Surface-induced dissociation
While surface-induced dissociation (SID) has been around for

a while (originally used on small molecules and peptides), because
of the advances of MS technology, it has recently become a viable
method to study the structures of protein complexes.212–215 Simi-
lar to IM, in the top-down (native MS) SID approach, whole pro-
tein complexes are softly ionized into the gas phase. Using some
amount of applied voltage, they are then collided with a rigid surface,
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where they can break apart into intact monomers or smaller sub-
complexes; an example of possible breakages is shown in Fig. 1(c) for
a homotetramer. The resulting proteins are then analyzed using MS
to determine the relative intensity of each product. The dissociation
pattern depends on the lab-frame energy (acceleration energy) of the
complex, provided thorough the applied voltage. The experiment is
repeated multiple times with different acceleration energies. While
SID is frequently used to determine connectivity and stoichiometry
of protein complexes,216–218 it has recently been shown that it can
also measure a form of interface strength.219 It was hypothesized that
weaker interfaces would break at lower acceleration energies, while
stronger interfaces would stay intact until a high enough acceleration
energy was provided. Based on this, a quantitative measure called
appearance energy (AE, lab-frame acceleration energy at which the
subcomplexes resulting from the breakage of a specific interface
reach 10% of the relative intensity of the original complex) was
developed. A model to predict AE from the structure was developed,
which was based on interface properties such as size and hydrogen
bonding.219 Based on this model, a scoring function was developed
to quantify the agreement between the experimental and predicted
AE for each docked pose. The inclusion of SID data into the Rosetta
scoring function improved the ranking of docked poses and ulti-
mately improved the predicted structures obtained from docking.220

The structures of three cases where RMSD improved by more than
18 Å when SID data were included are shown in Fig. 7.

While in its infancy compared to other methods, mass spec-
trometry has grown in popularity in terms of providing useful

information about the protein structure. While further develop-
ments need to be made for MS to establish itself as a pillar of struc-
ture determination, it has become a prime method for the collection
of sparse data (with small amounts of sample), which contain infor-
mation of many types (such as distances and solvent accessibility).
As MS methods become more widely commercialized and used, and
the data become better understood, MS may develop into one of the
most important tools for structure elucidation.

D. Electron paramagnetic resonance spectroscopy
Similar to NOE with NMR, electron paramagnetic resonance

(EPR) spectroscopy can be used to determine distances between
atoms, often measured through site-directed spin labeling (SDSL-
EPR). To do this, specific residues are mutated to cysteine and
labeled with a paramagnetic spin label (typically nitroxide), as shown
in Fig. 1(d). Similar to NMR NOE, the measurement of the mag-
netic dipolar interaction depends on the strength of the magnetic
field and the distance between the two probes, with the differ-
ence being that NMR depends on the spin of nuclei and EPR
depends on the spin of electrons. Originally, this technique could be
used to measure medium- to long-range distances between probes
(∼8 Å to 20 Å), but the development of pulse EPR methods such
as double quantum coherence (DQC) and double electron–electron
resonance (DEER) has increased the measurable distance range to
∼20 Å to 80 Å. This increased range has made it possible to probe
a larger number of interactions and thus obtain more data. This is

FIG. 7. Comparison of predicted sub-
complexes with (left, blue) and with-
out (right, red) the inclusion of SID
data into protein–protein docking. The
native structures are shown for reference
(green). RMSD (Å) to the mobile chain is
shown. RMSD improved by >18 Å when
SID data were included for these cases.
Reprinted with permission from Seffer-
nick et al., ACS Cent. Sci. 5(8), 1330–
1341 (2019). Copyright 2019 American
Chemical Society (ACS). Further permis-
sions related to the material excerpted
should be directed to the ACS.
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particularly significant because to use EPR data in structure predic-
tion, the locations of the labels are often scanned over to determine
many distance restraints. While in this Perspective, we will mainly
focus on structure modeling methods, these distance measurements
have also been used to identify the secondary structure of alpha
helices221,222 and beta sheets.223,224 By systematically scanning the
placement of paramagnetic probes, the distances between residues
that are close in sequence can be compared to canonical distances
between residues in helices and sheets, which are well established.
Additionally, conformational changes can be detected using EPR
based on measured distances.225–227 Along with measuring distances,
it is possible to measure the accessibility of the spin label probe
which can give some information about solvent accessibility at that
position.228

In Rosetta, restraints from EPR have been used for de novo
structure prediction using both distance and solvent accessibility
information from EPR experiments.229 Importantly, because the
paramagnetic portion of the spin labels does not occur at the loca-
tion of any atom in the protein, a technique to properly model the
location was necessary. For this, in Rosetta, a cone centered at the
C-β position was used to map the possible locations of the elec-
tron with respect to an actual atom in the protein, as shown in
Fig. 1(d). In the original implementation, these locations and the
measured distances of the interaction of spin labels were used to
generate restraints for the scoring function using the same scoring
function as RosettaNMR uses for NMR NOE distance restraints.
To account for the solvent accessibility portion, a correlation was
observed between spin-label accessibility and the number of C-β
neighbors within 8 Å (negative correlation: higher accessibility cor-
responds to higher solvent exposure, which means fewer C-β neigh-
bors). It was shown that fewer than one restraint per four residues
was needed to accurately predict structures. An updated version
(RosettaEPR) used a statistical, knowledge-based potential along
with the positions on the cone to influence the scoring method for
the distance portion.230 Currently, rotamers of spin labels (such as
methanethiosulfonate spin label) can be used to explicitly model
the distances between the backbone and the relevant electron.231

Using the approach with the knowledge-based cone potential, large
membrane proteins can be modeled using BCL::MP-Fold, includ-
ing the EPR terms into the Monte Carlo SSE assembly.232 The
use of EPR data enriched the sampling with native-like structures.
A similar approach has also been used in BCL::Fold to assem-
ble the structures of large soluble proteins (up to 200 residues).
The use of EPR data improved the RMSD of the predicted struc-
ture.233 As mentioned in Sec. II B, EPR distance restraints have
been incorporated into MELD (along with NMR NOE).8 More
recently, RosettaDEER has been developed as a scoring method
for structure prediction.234 In this method, the scoring function
explicitly predicts the DEER decay traces and spin-label distance
distributions fast enough for on-the-fly calculation. RosettaDEER
improves on the cone-based scoring function as it includes more
information from the experiment. RosettaDEER showed a signifi-
cant improvement in sampling as compared both to the cone-based
method and to when no experimental data were used, as shown in
Fig. 8.

Along with structure prediction, EPR data can be included
in molecular dynamics simulations. Tools have been developed
in CHARMM-GUI (DEER Facilitator) not only to measure the

FIG. 8. Comparison of sampling for Bax and ExoU de novo folding using DEER
data to predict structures. RosettaDEER showed improvement in sampling over
the previous cone method and when no EPR restraints were included. Reprinted
with permission from Del Alamo et al., Biophys. J. 118(2), 366–375 (2020).
Copyright 2020 Cell Press.

distribution of spin-pair distances from a simulation (Spin-Pair
Distributor) but also to include distance restraints from EPR into
a simulation (reMD Prepper).235 This is done by explicitly modeling
the rotamers of the spin labels. Comparison of distance distributions
from experiment and simulation has been shown to be in excellent
agreement.

EPR has been around for a while and has contributed mean-
ingful structural information (such as distances and solvent accessi-
bility) for many systems. However, the uncertainty in EPR data can
still be relatively high possibly due to the length of the spin labels.
If the size of spin labels can be reduced, the accuracy of integrative
modeling efforts may improve significantly.

E. Small-angle x-ray scattering
While x-ray diffraction methods have, for years, been used to

analyze the structures of crystallized molecules, including proteins
as described previously, it is also possible to measure the x-ray scat-
tering of molecules in solution using small-angle x-ray scattering
(SAXS). SAXS provides information on both the overall shape and
the oligomeric state of a protein while the protein is under native-
like conditions in solution. In SAXS, x rays are passed through a
target sample and the scattered photons are detected at small angles
(typically ∼0.1○ to 10○), as shown in Fig. 1(e). Scattering occurs
because of constructive or destructive interference with electrons
that resonate at the same frequency as the incident x rays. The SAXS
profile (scattering intensity as a function of spatial frequency) of
the protein of interest is obtained by subtracting the scattering pro-
file of the buffer from the scattering profile of the sample (protein
and buffer). The profile can then be converted into the pairwise dis-
tribution function, an approximate distribution of pairwise atomic
distances of the macromolecule, using an inverse Fourier transform
method.236

One of the most important advantages of SAXS compared to
some other methods is that the protein stays in solution during the
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experiment (and thus does not need to be crystallized) and is not
artificially disrupted (for example, with labeling reagents), which
allows SAXS to provide information on the ensemble of conforma-
tions of the protein in near-native conditions. Because of this, SAXS
is very amenable to multi-domain proteins and intrinsically disor-
dered proteins. While SAXS has many advantages, there are also
some important disadvantages. Whereas x-ray diffraction of crys-
tals can provide high-resolution structural information, measuring
the scattering of x rays in solution significantly decreases the res-
olution (typically ∼10 Å–20 Å or lower). Because of this low reso-
lution, it is typical to combine the data obtained from SAXS with
data determined from other structure determination methods. It
has become very common to use computational structure predic-
tion methods with SAXS data to model the structures of proteins.
In addition to SAXS, a similar experimental method, small-angle
neutron scattering (SANS), has been used to some extent for struc-
tural modeling (generally low-resolution modeling of membrane
proteins, sometimes combined with SAXS).237–241 Because structure
prediction methods using SANS data are not as well developed at
this stage, we will focus on SAXS in this Perspective.

Many methods are available to predict the SAXS profile from a
structure so that the agreement with SAXS data can be measured
in a variety of ways.242–244 A common strategy to use SAXS pro-
files for structural modeling is to filter/rank the predicted structures
based on their agreement with SAXS data. Another common strat-
egy to model the data is to use the predicted structures to choose
an ensemble that, when the structures are combined, matches the
data. While the first approach is more common for structure predic-
tion and docking, both strategies can be performed using the FoXS
family of analysis tools.245,246 Using FoXS, a model can be evaluated
based on the agreement with a SAXS profile, which could be used
in structure prediction (as can be done for protein–protein dock-
ing using FoXSDock, described in the next paragraph). The second
approach can be performed using MultiFoXS, where an ensemble of
structures is generated based on an input structure. The structures
in the ensemble are then evaluated based on the SAXS agreement,
and probabilities are output for the top models. Another method,
BILBOMD, takes a similar approach, generating different confor-
mations using molecular dynamics and then using those frames
to determine a representative ensemble that matches the SAXS
data.247

Because of the topological information gained from SAXS
profiles, the data have been very useful for the modeling of pro-
tein complexes through protein–protein docking. The first such
method to combine SAXS data with docking, pyDockSAXS (which
has since been incorporated as a webserver), uses an approach
that ranks potential docked structures based on a scoring function
and SAXS agreement after unrestrained docking.248,249 FoXSDock,
another online SAXS-based docking server takes a similar approach,
rescoring docked poses (generated using PatchDock) based on the
agreement with the SAXS profile of the complex.245,246 Another
notable method for protein–protein docking with SAXS data is
ClusPro.250–252 The method for docking with SAXS data in Clus-
Pro is performed with a few simple steps. First, 70 000 structures
are obtained using unrestrained docking using the PIPER method
in ClusPro. These structures are filtered down to the top 2000
based on the agreement with the obtained SAXS profile by predict-
ing the SAXS profile for each structure and calculating the χ-score

agreement. Finally, the resulting 2000 structures are ranked based on
their PIPER energies, and the resulting top 1000 structures are clus-
tered to produce 10 clusters. In a benchmark, the inclusion of SAXS
data improved the model selection. It has also been shown by simu-
lating the experimental data based on crystal structures that iSPOT
could combine both SAXS and footprinting data to filter docked
structures and identify a native-like model.253

While most protein–protein docking methods use SAXS data to
rank the predicted structures as a post-processing step, some meth-
ods use the data during the structure generation phase. In theory,
this should enrich the sampling of native-like structures as compared
to docking without the SAXS data. ATTRACT-SAXS can generate
and rank structures based on SAXS data alone.254 This approach is
particularly significant because the method relies only on assessing
the interface energy but does not require forcefield to assess ener-
gies for all atoms. ATTRACT-SAXS uses a scoring function based
on SAXS agreement as the energy function for the Monte Carlo sam-
pling and clusters top models to select a predicted structure. In a
benchmark, ATTRACT-SAXS was able to improve the sampling of
native-like structures when including SAXS and outperformed some
other available methods. A few predicted structures are shown in
Fig. 9. While ATTRACT-SAXS generates structures based on data
alone, another study that included SAXS data during docking was
performed using RosettaDock.255 This method incorporated SAXS
restraints into the low-resolution docking phase along with using the
Rosetta energy function and significantly improved both sampling
and structure prediction.

Some alternative approaches are also available for protein mod-
eling with SAXS data. It has shown that principal component anal-
ysis and SAXS data with clustering can be used to classify ab initio
predicted models.256 Additionally, DecodeSAXS, a machine learn-
ing algorithm, has been developed to generate 3D models of proteins
from SAXS profiles.257

SAXS profiles can furthermore be useful for modeling of multi-
domain proteins. Due to flexible linker regions, the whole structures
of multidomain proteins can be particularly difficult to obtain with
x-ray crystallography, but it is not uncommon to obtain the struc-
tures of the stable regions. SAXS data, when used with those struc-
tures of stable domains, can be used to model the flexible linker
regions. This type of prediction can be done using SAXSDom.258

Based on the input structures of the domains, the sequence (i.e., the
sequence and location of the linker region), and the SAXS profile,
the method performs Monte Carlo sampling on the linker region
and evaluates each move based on the agreement with the SAXS
profile of the entire protein. A similar approach can be used with
algorithms in ATSAS.259 Using BUNCH,260 multidomain proteins
can be modeled from the structures of the individual domains, but
also CORAL can be used to build up those multidomain monomers
into complexes.

Due to the encoding of flexibility into the data (since data are
collected in native-like solution conditions), molecular dynamics
simulations have been used in combination with SAXS in multiple
different ways. For example, coarse-grained MD simulations have
been used to predict the SAXS profile for a protein.261 By simu-
lating the structure and analyzing the trajectory, a better estimate
can be made toward the experimental profile than with just the
crystal structure because of the use of dynamic information. Addi-
tionally, restraints based on SAXS data have been incorporated into
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FIG. 9. Docked structures generated
using ATTRACT-SAXS for an easy [(a)
2GTP], medium [(b) 1B6C], and hard
[(c) 3F1P] case. Docked models are
shown in green and red, and the crys-
tal structure is shown in gray along
with the cluster rank, IRMSD, LRMSD,
and fnat. For comparison, the simulated
SAXS profiles are also shown along with
the experimental curves. Reprinted with
permission from Schindler et al., Struc-
ture 24(8), 1387–1397 (2016). Copyright
2016 Cell Press.

MD simulations using a quick on-the-fly SAXS energy to bias the
simulation.262 The method was used on intrinsically disordered pro-
teins, a good test case due to their high intrinsic flexibility, to create
an ensemble of structures that agreed very well with the experimen-
tal SAXS data. Finally, a hybrid resolution MD method (hySAXS)
has been developed to incorporate SAXS data into a simulation. In
a comparison to an MD simulation without the incorporation of
the data, the SAXS-based simulation was better able to reproduce
a separate set of data from NMR.

While SAXS provides information on shape and oligomeric
state, the data are sparse and require integrative modeling. Using
data from SAXS has been successful for protein–protein docking

because it breaks degeneracy in the overall symmetry of the protein.
However, when used in CASP (for tertiary structure prediction),
SAXS has not thus far provided a huge advantage. While SAXS data
are useful, the sparsity of the data might make the method best used
in conjunction with orthogonal data from other methods.

F. Förster resonance energy transfer
Förster resonance energy transfer (FRET) occurs when a fluo-

rescent donor and acceptor are in close proximity in space. In FRET,
the donor is excited, and then, energy is transferred to the accep-
tor non-radiatively by dipole–dipole coupling. In order for FRET to
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occur, there must be overlap between the emission spectra of the
donor and the excitation spectra of the acceptor, and the distance
between the donor and the acceptor must be somewhere between 10
and ∼90 Å (depending on the pair). For example, one of the most
common FRET tag pairs is cyan fluorescent protein (CFP) and yel-
low fluorescent protein (YFP). In this pair, CFP excites at 436 nm
and emits at 480 nm, while CYP excites at 500 nm and emits at
520 nm.263 For proteins, FRET is usually performed by attaching
the donor and acceptor to termini of different subunits within a
complex in order to probe their interactions. Figure 1(f) shows a
representation of CFP and YFP attached to proteins. FRET is often
measured and reported as FRET efficiency (EFRET), which is depen-
dent on the distance between donor and acceptor (R) as well as the
Förster distance (R0) and number of acceptors (a). In many cases,
the Förster distance can be estimated so that the distance between
donor and acceptor can be derived, which can be used for model-
ing. One benefit of using FRET for structural modeling is that it can
be either performed in vitro [also known as single molecule FRET
(smFRET), provides information about individual molecules] or
in vivo (which can give information about protein–protein interac-
tions inside a cell). In general, the fluorescent proteins are not as well
behaved for smFRET, but, in principle, smFRET provides access to
subpopulations for heterogeneous systems. Some drawbacks are that
the fluorescent labels need to be attached and can only provide dis-
tance information on the positions at which they are attached and
that uncertainty in the derived distances can be high.

In general, smFRET can be used to determine distances
between the centers of the covalently attached fluorophores if careful
considerations are made. One way to use these data for modeling is
to provide restraints for protein–protein docking.264 While consid-
ering the centers of the covalently attached fluorophores as dummy
atoms, docked structures can be ranked based on their distance

agreement between the dummy atoms and the FRET-derived dis-
tance restraints. Using a similar approach, the FPS (FRET position-
ing and screening) toolkit has been developed for docking of protein
and DNA using FRET restraints.265 This method ranks structures
based on FRET distance agreement while taking into account spa-
tial distributions of the fluorophores. In another study, a Bayesian
scoring function has been developed to fully model the statistics
and Markov chain Monte Carlo was used to sample the posterior
distribution to obtain structures.266

FRET measured in vivo can be modeled in the Integrative
Modeling Platform (IMP) using a Bayesian approach to predict
the structures of complexes.267 In the IMP method, the FRET effi-
ciency (EFRET) is replaced by the FRETR index, which is a ratio
between the fluorescence intensity of the donor excitation wave-
length and the fluorescence intensity of the acceptor emission wave-
length. The Bayesian scoring function uses a forward model for
FRETR (including noise) with the goal of maximizing the probabil-
ity of the structure based on the data and prior information. In a
benchmark of large ternary and quaternary complexes, the scoring
function selected models in good agreement with the native at the
positions of the FRET tags (N or C terminal), but the overall agree-
ment with the entire model was worse (data shown in Fig. 10), which
indicated to the authors that FRET data should be most helpful when
supplemented with additional experimental data as is particularly
convenient in the IMP.

FRET data have also been used to model intrinsically disor-
dered proteins (IDP). In one study, many different FRET-based
distance restraints were generated by combining different FRET
pairs at different locations in α-synuclein.268 Then, different con-
formations of α-synuclein were generated in PyRosetta by perform-
ing Monte Carlo simulations. These conformations were analyzed
using harmonic potential restraints based on the collected library

FIG. 10. Benchmark of FRET-based modeling in the integrative modeling platform. The accuracy (average C-α RMSD between crystal structure and 20 most probable
models) of the modeled structures as a function of noise and data sparseness is shown for (a) all residues and (b) N- and C-terminal residues. Because the FRET tags
were placed on the termini, the accuracy of the models was significantly better [(b) vs (a)]. (c) The ensemble of the most probably models compared to the native for 1FRT
and 1M56. Reprinted with permission from Bonomi et al., Mol. Cell Proteomics 13(11), 2812–2823 (2014). Copyright 2014 American Society for Biochemistry and Molecular
Biology (United States).
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of FRET distance data. The structures that best matched the FRET
data similarly matched other experimental data for α-synuclein. In
another study, FRET data were used to model the structures of IDPs
bound to polyethylene glycol (PEG), an organic polymer.269 In this
method, the structures of the IDPs were sampled using flexible-
meccano and TRaDES and were evaluated by predicting the FRET
efficiency from the predicted IDP structures and comparing that to
the experimentally measured FRET efficiency. Then, these structures
of IDPs were inserted into coarse-grained MD simulations of PEG
and scored based on their interaction to predict the structure of the
complex.

FRET data have been used for structural modeling for a handful
of cases; however, the data may be too sparse for modeling without
including other information as well. Even the most successful meth-
ods note noise as an issue because of the need for the attachment of
the fluorescent proteins. However, one advantage is the ability to run
the experiment in vivo and obtain information about interactions
inside living cells.

G. Contact inference from sequence co-evolution
In addition to explicitly collecting experimental data to be

input into a computational structure prediction method, informa-
tion derived from sequence data stored in a database such as UniProt
can also be incorporated into structure prediction algorithms. As
previously described, obtaining information on which residues in
a protein interact (specifically interactions that are not close in
sequence) can be very beneficial for structure prediction mainly due
to the difficulty in sampling a large number of long-range contacts.
This type of information, contact information, can be obtained by
analyzing large numbers of evolutionarily related protein sequences
and searching for covariation between two residues in the sequence.
Occasionally, mutations in one residue are accompanied by covari-
ant mutations in an interacting residue. For example, consider two
interacting residues packed tightly in the core of a protein. If one of
the residues were to mutate to a larger amino acid in order to retain
the same shape and function of the entire protein, the other inter-
acting residue would have incentive to mutate to a smaller residue.
This process is called genetic covariation. If co-evolving residues
in a target sequence can be located when analyzing evolutionar-
ily related sequences, contacts can be predicted and then used as
restraints for structure prediction, although sophisticated statistical
and machine learning techniques are needed to analyze the data. A
cartoon example of identification of coevolving residue pairs (left)
and their underlying contacts (right) is shown in Fig. 1(g). Because
of the large number of protein sequences that have been experimen-
tally determined and the useful information that can be obtained,
this approach has become increasingly popular in recent years.

Although contact prediction contests have been included in
CASP since 1999 (CASP2), the rapid increase in available sequences
and other advances, such as filtering out indirect effects,270 has made
contact predictors based on co-evolution data more popular and
successful. Because of these reasons, many different contact pre-
dictors have been developed which approach the residue–residue
contact prediction (either inter- or intra-protein) using statistical
models271–280 and also machine learning.281–285 Knowledge of the
predicted contacts could then be input into a structure prediction
protocol. Once a sufficient number of sequences became available

FIG. 11. Performance of AlphaFold (A7D) in CASP13 (2018). Number of free mod-
eling domains predicted for a given TM-score threshold for AlphaFold (blue) and
other groups (red). Reprinted with permission from Senior et al., Proteins 87(12),
1141–1148 (2019). Copyright 2019 John Wiley and Sons.

for the input into such modeling, EVfold was able to predict struc-
tures to within 2.7 Å–4.8 Å RMSD based on the co-evolutionary
data.286 Using Rosetta, it was shown that structure prediction using
the predicted contact maps would be useful if the target sequence is
more similar to the queried sequences than to a structure in the pro-
tein data bank for which homology modeling could be used.287 Since
these developments, many different structure prediction methods
have been developed to incorporate the predicted contacts from
covariation (many of which have subsequently been improved to
predict histograms of contact data rather than binary contact predic-
tion),288–297 culminating in AlphaFold.298,299 AlphaFold’s structure
prediction method made a notable impact at CASP13 (2018), with
significantly better structure prediction results than have ever been
seen before. While some contact predictors only predict binary con-
tacts, AlphaFold’s deep learning algorithm instead creates an energy
landscape based on the predicted distances between pairs. One of
the most significant differences between AlphaFold’s potential and
other structure prediction force fields is that the energy landscape
is so smooth that it does not require the generation of a large num-
ber of structures through stochastic Monte Carlo methods. Instead,
a simple gradient descent method is sufficient to find the structure
with the lowest energy. Figure 11 shows the comparison to other
methods in CASP13. AlphaFold correctly predicted structures for
24/43 domains, 10 more than the next closest method.

The viability of utilizing sequence co-evolution in modeling has
recently been accelerated by large amounts of available data and
developments in deep learning. Because the use in structure pre-
diction is relatively new, intrinsic limitations of the information it
can provide are unknown. Nonetheless, the method has the potential
to play an important role in structure determination and could also
become part of all integrative modeling approaches in the future.

III. FUTURE DIRECTIONS AND CHALLENGES
In this Perspective, we have summarized computational tech-

niques that perform protein structure prediction, protein–protein
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docking, and/or molecular dynamics simulations by including
experimental data from cryo-EM, NMR, MS, EPR, SAXS, FRET,
and/or sequence covariation to improve modeling accuracy. While
improvements in algorithms and data availability have resulted in
dramatic improvements in modeling accuracy over the last decade,
there are still challenges ahead.

One challenge for integrative modeling approaches is to prop-
erly account for the experimental error and noise. While doing
so can improve modeling results even with partially incorrect or
incomplete data, perfectly accurate modeling with sparse data can-
not be reasonably expected. In addition to modeling experimental
error and noise for dynamic systems, it can also be very important to
model ensembles of multiple conformations. Another challenge and
reason for inaccurate modeling is error in forward models, which
predict the data from the structure. This might be a reason why many
methods are only successfully able to rank models after generation,
rather than being used during the sampling phase. Improvements
in understanding and theory of experimental techniques should
improve these forward models over time.

The understanding of the relationships between experimental
data and structure is one reason why integrated approaches can fail.
One way to gain a more accurate understanding of experimental data
and successfully use the information in modeling is to make datasets
more easily available. For example, databases such as the Electron
Microscopy Data Bank (EMDB) and UniProt have made a large
amount of data available for cryo-EM- and sequence covariation-
based modeling. Databases to unify and store data from other exper-
imental methods would be tremendously beneficial to protein struc-
ture modeling efforts. While unifying large amounts of experimental
data is certainly a huge challenge, we hope that the successes of com-
putational modeling highlighted in this Perspective demonstrate the
demand for these types of resources.

Despite the recent success of AlphaFold298 in covariation-based
modeling, accurate tertiary structure prediction remains a huge chal-
lenge. AlphaFold’s structure prediction results in CASP13 (2018)
were the best ever seen, but the method still failed to accurately
predict structures (TM score > 0.7) of 19/43 domains. One of the rea-
sons for AlphaFold’s success, besides the use of state-of-the-art neu-
ral networks to derive sequence-dependent potentials, is the quantity
of data available for multiple sequence alignment used to predict
distances and contacts (∼185 × 106 available sequences7). While
in the long-term, it is potentially shortsighted to place limits on
deep learning methods such as AlphaFold, current implementations
may be dependent on the amount of distance information stored in
the aligned, evolutionarily relevant sequences. One possible solution
could be to include more data, specifically data from experimen-
tal methods that contain structural information as outlined in this
Perspective, into the structure prediction potentials.

Numerous computational methods outside of AlphaFold incor-
porate multiple types of experimental data into their structure pre-
diction methods. When doing so, we hypothesize that it is most
beneficial to combine methods that provide orthogonal informa-
tion. In Fig. 1, we have roughly categorized the data obtained from
the featured experimental methods based on the type of structural
information they provide. The categories are size, shape, solvent
accessibility, interface location/composition, distances/contacts,
spatial density, orientation, local environment, flexibility, and
stoichiometry/connectivity. For example, when deciding which

methods to combine, it might be most advantageous to obtain some
information on overall shape (e.g., SAXS or cryo-EM), some infor-
mation on solvent exposed residues (e.g., covalent labeling or EPR),
and some information on contacts (e.g., sequence co-evolution,
FRET, XL, EPR, and NOE). This type of combined information
could have the potential to synergistically improve structure pre-
diction. However, one of the main challenges in the combination
of multiple types of experimental restraints is to properly weight
the information, ideally in a probabilistic approach based on their
accuracy and uncertainty. For example, Bayesian approaches in the
Integrative Modeling Platform (IMP)43,44 and Modeling Employing
Limited Data (MELD)8,162 are specifically designed to statistically
model the probabilities and noise.

While monomer fold prediction methods such as AlphaFold
are very important, much of the biological function is mediated
by protein–protein interactions, where the majority of proteins
exist at least transiently as part of a complex. In this Perspec-
tive, we have discussed several experimental methods that can
specifically provide information about these protein–protein inter-
faces, such as hydrogen–deuterium exchange (covalent labeling),
chemical cross-linking, surface-induced dissociation, Förster reso-
nance energy transfer, and electron paramagnetic resonance. Using
these methods to collect data on interfaces as well as other meth-
ods that provide information on the entire complex should facili-
tate the prediction of these complex structures. For example, it is
feasible to use some information to predict monomer structures
and some other information to predict the relative orientations of
those monomers as they form a complex, assuming that they do
not undergo significant backbone conformational changes upon
binding.

During protein structural modeling efforts, computer algo-
rithms for conformational sampling are almost always used. Con-
versely, one such unconventional approach to sampling is used in
Foldit. Foldit, a video game with a Rosetta backend, takes advan-
tage of the intuition of “citizen scientists” to explore the confor-
mational space of proteins that are visually presented in interactive
puzzles.300 In Foldit, players can sample different structures by man-
ually changing positions of backbones and side chains as well as
using built-in tools which perform some small algorithmic refine-
ment, such as gradient-based minimization and combinatorial side-
chain rotamer packing. This strategy of crowdsourcing the sampling
using Foldit has been successful in terms of predicting the struc-
tures of real proteins in multiple studies.301–304 Foldit has also been
incorporated into the classroom to teach students about the protein
structure in a more interactive manner.305–307 Recently, cryo-EM
density maps have been integrated into Foldit puzzles, allowing the
players to fit proteins into visualized density maps.308 In a com-
parison to other automated cryo-EM density flexible fitting tools,
Foldit players were able to identify a structure of S. entomophila
afp7. Of course, using Foldit to determine a structure based on a
density map is considerably more time consuming than automated
algorithms, but the method was able to produce a structure with
better side-chain placement in the density map and which was more
geometrically plausible, as shown in Fig. 12. Moving forward, it
would be interesting to see Foldit players building structures using
information from other experimental data, such as labeled residues
from covalent labeling and contacts from a variety of experimental
methods.
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In conclusion, the field of structural biology has the poten-
tial to solve many important problems; however, protein structure
determination remains a challenge. While methods have been devel-
oped to experimentally determine the structures of proteins (x-ray

crystallography, NMR, and cryo-EM), they each have limitations
and are not appropriate in all cases. On the other hand, many
experimental methods that provide some sparse structural data
are available. These data can be incorporated into computational

FIG. 12. (a) Comparison of models for
Afp7. The Foldit structure is rendered
in green, the microscopist structure in
gray, the Phenix model in magenta, and
the Rosetta model in yellow. The elec-
tron potential map is contoured at 2σ.
(b) Comparison of the Ramachandran
outlier and allowed backbone confor-
mations. (c) Comparison of Molprobity
Clashscore—in both cases, lower is bet-
ter. (d) Comparison of three different
map-to-model correlation coefficients in
which higher values are better. (e) Map-
to-model FSC curves for Microscopist
(gray), Foldit (green), Phenix (pink),
ARP w/ARP (orange), and Buccaneer
(blue) models. Reprinted with permission
from Khatib et al., PLoS Biol. 17(11),
e3000472 (2019). Copyright 2019.
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protein modeling algorithms such as de novo folding, protein–
protein docking, and molecular dynamics. Over the past few
decades, many combined experimental/computational methods
have been successfully developed and benchmarked as described in
this Perspective. In the future, significant advancements to data col-
lection and modeling of the methods highlighted in this Perspective
will be made. There is little doubt that new experimental methods
will be developed and used for protein structure modeling as well.
For example, cryo-EM, which has become one of the most pop-
ular methods for integrative modeling, was not thought of in this
light even 20 years prior. Current and future methods have tremen-
dous potential to facilitate structure determination of proteins and
protein complexes.
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T. Rasmussen, P. A. Hoskisson, J. S. Hub, U. Zachariae, F. Gabel, and A. Javelle,
“Merging in-solution X-ray and neutron scattering data allows fine structural
analysis of membrane-protein detergent complexes,” J. Phys. Chem. Lett. 9(14),
3910–3914 (2018).
242D. K. Putnam, B. E. Weiner, N. Woetzel, E. W. Lowe, Jr., and J. Meiler,
“BCL::SAXS: GPU accelerated Debye method for computation of small angle
X-ray scattering profiles,” Proteins 83(8), 1500–1512 (2015).
243D. Svergun, C. Barberato, and M. H. J. Koch, “CRYSOL—A program to
evaluate x-ray solution scattering of biological macromolecules from atomic
coordinates,” J. Appl. Crystallogr. 28(6), 768–773 (1995).
244K. Stovgaard, C. Andreetta, J. Ferkinghoff-Borg, and T. Hamelryck, “Calcula-
tion of accurate small angle X-ray scattering curves from coarse-grained protein
models,” BMC Bioinf. 11, 429 (2010).
245D. Schneidman-Duhovny, M. Hammel, J. A. Tainer, and A. Sali, “FoXS, Dock-
FoXS, and MultiFoXS: Single-state and multi-state structural modeling of pro-
teins and their complexes based on SAXS profiles,” Nucleic Acids Res. 44(W1),
W424–W429 (2016).

246D. Schneidman-Duhovny and M. Hammel, “Modeling structure and dynam-
ics of protein complexes with SAXS profiles,” Methods Mol Biol 1764, 449–473
(2018).
247M. Pelikan, G. L. Hura, and M. Hammel, “Structure and flexibility within pro-
teins as identified through small angle X-ray scattering,” Gen. Physiol. Biophys.
28(2), 174–189 (2009).
248C. Pons, M. D’Abramo, D. I. Svergun, M. Orozco, P. Bernadó, and
J. Fernández-Recio, “Structural characterization of protein-protein complexes by
integrating computational docking with small-angle scattering data,” J. Mol. Biol.
403(2), 217–230 (2010).
249B. Jiménez-García, C. Pons, D. I. Svergun, P. Bernadó, and J. Fernández-Recio,
“pyDockSAXS: protein-protein complex structure by SAXS and computational
docking,” Nucleic Acids Res. 43(W1), W356–W361 (2015).
250B. Xia, A. Mamonov, S. Leysen, K. N. Allen, S. V. Strelkov, I. C. Paschalidis,
S. Vajda, and D. Kozakov, “Accounting for observed small angle X-ray scattering
profile in the protein-protein docking server ClusPro,” J. Comput. Chem. 36(20),
1568–1572 (2015).
251D. Kozakov, D. R. Hall, B. Xia, K. A. Porter, D. Padhorny, C. Yueh, D. Beglov,
and S. Vajda, “The ClusPro web server for protein-protein docking,” Nat. Protoc.
12(2), 255–278 (2017).
252M. Ignatov, A. Kazennov, and D. Kozakov, “ClusPro FMFT-SAXS: Ultra-fast
filtering using small-angle x-ray scattering data in protein docking,” J. Mol. Biol.
430(15), 2249–2255 (2018).
253W. Huang, K. M. Ravikumar, M. Parisien, and S. Yang, “Theoretical modeling
of multiprotein complexes by iSPOT: Integration of small-angle X-ray scattering,
hydroxyl radical footprinting, and computational docking,” J. Struct. Biol. 196(3),
340–349 (2016).
254C. E. M. Schindler, S. J. de Vries, A. Sasse, and M. Zacharias, “SAXS data alone
can generate high-quality models of protein-protein complexes,” Structure 24(8),
1387–1397 (2016).
255P. Sønderby, Å. Rinnan, J. J. Madsen, P. Harris, J. T. Bukrinski, and
G. H. J. Peters, “Small-angle X-ray scattering data in combination with Roset-
taDock improves the docking energy landscape,” J. Chem. Inf. Model. 57(10),
2463–2475 (2017).
256M. Oide, Y. Sekiguchi, A. Fukuda, K. Okajima, T. Oroguchi, and M. Nakasako,
“Classification of ab initio models of proteins restored from small-angle X-ray
scattering,” J. Synchrotron Radiat. 25(5), 1379–1388 (2018).
257H. He, C. Liu, and H. Liu, “Model reconstruction from small-angle
x-ray scattering data using deep learning methods,” iScience 23(3), 100906 (2020).
258J. Hou, B. Adhikari, J. J. Tanner, and J. Cheng, “SAXSDom: Modeling multido-
main protein structures using small-angle X-ray scattering data,” Proteins 88, 775
(2019).
259M. V. Petoukhov, D. Franke, A. V. Shkumatov, G. Tria, A. G. Kikhney,
M. Gajda, C. Gorba, H. D. Mertens, P. V. Konarev, and D. I. Svergun, “New devel-
opments in the ATSAS program package for small-angle scattering data analysis,”
J. Appl. Crystallogr. 45(2), 342–350 (2012).
260M. V. Petoukhov and D. I. Svergun, “Global rigid body modeling of macro-
molecular complexes against small-angle scattering data,” Biophys. J. 89(2), 1237–
1250 (2005).
261T. Ekimoto, Y. Kokabu, T. Oroguchi, and M. Ikeguchi, “Combination of
coarse-grained molecular dynamics simulations and small-angle X-ray scattering
experiments,” Biophys. Physicobiol. 16, 377–390 (2019).
262M. R. Hermann and J. S. Hub, “SAXS-restrained ensemble simulations of
intrinsically disordered proteins with commitment to the principle of maximum
entropy,” J. Chem. Theory Comput. 15(9), 5103–5115 (2019).
263D. M. Miller III, N. S. Desai, D. C. Hardin, D. W. Piston, G. H. Patterson,
J. Fleenor, S. Xu, and A. Fire, “Two-color GFP expression system for C. elegans,”
Biotechniques 26(5), 914–921 (1999).
264A. T. Brunger, P. Strop, M. Vrljic, S. Chu, and K. R. Weninger, “Three-
dimensional molecular modeling with single molecule FRET,” J. Struct. Biol.
173(3), 497–505 (2011).
265S. Kalinin, T. Peulen, S. Sindbert, P. J. Rothwell, S. Berger, T. Restle, R. S.
Goody, H. Gohlke, and C. A. M. Seidel, “A toolkit and benchmark study for FRET-
restrained high-precision structural modeling,” Nat. Methods 9(12), 1218–1225
(2012).

J. Chem. Phys. 153, 240901 (2020); doi: 10.1063/5.0026025 153, 240901-28

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1073/pnas.0813138106
https://doi.org/10.1073/pnas.0813138106
https://doi.org/10.1529/biophysj.105.059063
https://doi.org/10.1016/j.str.2007.11.015
https://doi.org/10.1016/j.jsb.2010.10.013
https://doi.org/10.1371/journal.pone.0072851
https://doi.org/10.1002/prot.24801
https://doi.org/10.1016/j.jsb.2016.04.014
https://doi.org/10.1016/j.bpj.2019.12.011
https://doi.org/10.1002/jcc.26032
https://doi.org/10.1103/physreve.87.052712
https://doi.org/10.1002/anie.201702904
https://doi.org/10.1016/j.bpj.2017.10.003
https://doi.org/10.1021/acs.jctc.9b00292
https://doi.org/10.1074/jbc.m601688200
https://doi.org/10.1021/acs.jpclett.8b01598
https://doi.org/10.1002/prot.24838
https://doi.org/10.1107/s0021889895007047
https://doi.org/10.1186/1471-2105-11-429
https://doi.org/10.1093/nar/gkw389
https://doi.org/10.1007/978-1-4939-7759-8_29
https://doi.org/10.4149/gpb_2009_02_174
https://doi.org/10.1016/j.jmb.2010.08.029
https://doi.org/10.1093/nar/gkv368
https://doi.org/10.1002/jcc.23952
https://doi.org/10.1038/nprot.2016.169
https://doi.org/10.1016/j.jmb.2018.03.010
https://doi.org/10.1016/j.jsb.2016.08.001
https://doi.org/10.1016/j.str.2016.06.007
https://doi.org/10.1021/acs.jcim.6b00789
https://doi.org/10.1107/s1600577518010342
https://doi.org/10.1016/j.isci.2020.100906
https://doi.org/10.1002/prot.25865
https://doi.org/10.1107/s0021889812007662
https://doi.org/10.1529/biophysj.105.064154
https://doi.org/10.2142/biophysico.16.0_377
https://doi.org/10.1021/acs.jctc.9b00338
https://doi.org/10.2144/99265rr01
https://doi.org/10.1016/j.jsb.2010.09.004
https://doi.org/10.1038/nmeth.2222


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

266J.-O. Hooghoudt, M. Barroso, and R. Waagepetersen, “Toward Bayesian infer-
ence of the spatial distribution of proteins from three-cube Forster resonance
energy transfer data,” Ann. Appl. Stat. 11(3), 1711–1737 (2017).
267M. Bonomi, R. Pellarin, S. J. Kim, D. Russel, B. A. Sundin, M. Riffle, D. Jaschob,
R. Ramsden, T. N. Davis, E. G. D. Muller, and A. Sali, “Determining pro-
tein complex structures based on a Bayesian model of in vivo Förster reso-
nance energy transfer (FRET) data,” Mol. Cell. Proteomics 13(11), 2812–2823
(2014).
268J. J. Ferrie, C. M. Haney, J. Yoon, B. Pan, Y.-C. Lin, Z. Fakhraai, E. Rhoades,
A. Nath, and E. J. Petersson, “Using a FRET library with multiple probe pairs
to drive Monte Carlo simulations of α-synuclein,” Biophys. J. 114(1), 53–64
(2018).
269V. Nguemaha, S. Qin, and H.-X. Zhou, “Atomistic modeling of intrinsically
disordered proteins under polyethylene glycol crowding: Quantitative comparison
with experimental data and implication of protein-crowder attraction,” J. Phys.
Chem. B 122(49), 11262–11270 (2018).
270L. Burger and E. van Nimwegen, “Disentangling direct from indirect co-
evolution of residues in protein alignments,” PLoS Comput. Biol. 6(1), e1000633
(2010).
271S. Seemayer, M. Gruber, and J. Söding, “CCMpred–fast and precise prediction
of protein residue-residue contacts from correlated mutations,” Bioinformatics
30(21), 3128–3130 (2014).
272D. T. Jones, D. W. A. Buchan, D. Cozzetto, and M. Pontil, “PSICOV: Precise
structural contact prediction using sparse inverse covariance estimation on large
multiple sequence alignments,” Bioinformatics 28(2), 184–190 (2012).
273S. Ovchinnikov, H. Kamisetty, and D. Baker, “Robust and accurate predic-
tion of residue-residue interactions across protein interfaces using evolutionary
information,” Elife 3, e02030 (2014).
274F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. S. Marks, C. Sander,
R. Zecchina, J. N. Onuchic, T. Hwa, and M. Weigt, “Direct-coupling analysis of
residue coevolution captures native contacts across many protein families,” Proc.
Natl. Acad. Sci. U. S. A. 108(49), E1293–E1301 (2011).
275M. Weigt, R. A. White, H. Szurmant, J. A. Hoch, and T. Hwa, “Identification of
direct residue contacts in protein-protein interaction by message passing,” Proc.
Natl. Acad. Sci. U. S. A. 106(1), 67–72 (2009).
276L. Kaján, T. A. Hopf, M. Kalaš, D. S. Marks, and B. Rost, “FreeContact: Fast
and free software for protein contact prediction from residue co-evolution,” BMC
Bioinformatics 15, 85 (2014).
277C. Feinauer, M. J. Skwark, A. Pagnani, and E. Aurell, “Improving con-
tact prediction along three dimensions,” PLoS Comput. Biol. 10(10), e1003847
(2014).
278M. J. Skwark, A. Abdel-Rehim, and A. Elofsson, “PconsC: Combination of
direct information methods and alignments improves contact prediction,” Bioin-
formatics 29(14), 1815–1816 (2013).
279M. Ekeberg, T. Hartonen, and E. Aurell, “Fast pseudolikelihood maximization
for direct-coupling analysis of protein structure from many homologous amino-
acid sequences,” J. Comput. Phys. 276, 341–356 (2014).
280S. D. Dunn, L. M. Wahl, and G. B. Gloor, “Mutual information without
the influence of phylogeny or entropy dramatically improves residue contact
prediction,” Bioinformatics 24(3), 333–340 (2008).
281M. J. Skwark, D. Raimondi, M. Michel, and A. Elofsson, “Improved contact
predictions using the recognition of protein like contact patterns,” PLoS Comput.
Biol. 10(11), e1003889 (2014).
282D. T. Jones, T. Singh, T. Kosciolek, and S. Tetchner, “MetaPSICOV: Com-
bining coevolution methods for accurate prediction of contacts and long range
hydrogen bonding in proteins,” Bioinformatics 31(7), 999–1006 (2015).
283S. Wang, S. Sun, Z. Li, R. Zhang, and J. Xu, “Accurate de novo prediction of
protein contact map by ultra-deep learning model,” PLoS Comput. Biol. 13(1),
e1005324 (2017).
284D. T. Jones and S. M. Kandathil, “High precision in protein contact predic-
tion using fully convolutional neural networks and minimal sequence features,”
Bioinformatics 34(19), 3308–3315 (2018).
285S. M. Kandathil, J. G. Greener, and D. T. Jones, “Prediction of inter-
residue contacts with DeepMetaPSICOV in CASP13,” Proteins 87(12), 1092–1099
(2019).

286D. S. Marks, L. J. Colwell, R. Sheridan, T. A. Hopf, A. Pagnani, R. Zecchina,
and C. Sander, “Protein 3D structure computed from evolutionary sequence
variation,” PLoS One 6(12), e28766 (2011).
287H. Kamisetty, S. Ovchinnikov, and D. Baker, “Assessing the utility of
coevolution-based residue–residue contact predictions in a sequence- and
structure-rich era,” Proc. Natl. Acad. Sci. U. S. A. 110(39), 15674–15679
(2013).
288J. Xu and S. Wang, “Analysis of distance-based protein structure prediction by
deep learning in CASP13,” Proteins 87(12), 1069–1081 (2019).
289F. Zhao and J. Xu, “A position-specific distance-dependent statistical poten-
tial for protein structure and functional study,” Structure 20(6), 1118–1126
(2012).
290S. Ovchinnikov, D. E. Kim, R. Y.-R. Wang, Y. Liu, F. DiMaio, and D. Baker,
“Improved de novo structure prediction in CASP11 by incorporating coevolution
information into Rosetta,” Proteins 84(S1), 67–75 (2016).
291C. Zhang, S. M. Mortuza, B. He, Y. Wang, and Y. Zhang, “Template-based and
free modeling of I-TASSER and QUARK pipelines using predicted contact maps
in CASP12,” Proteins 86(S1), 136–151 (2018).
292Y. Gao, S. Wang, M. Deng, and J. Xu, “RaptorX-angle: Real-value prediction of
protein backbone dihedral angles through a hybrid method of clustering and deep
learning,” BMC Bioinf. 19(Suppl 4), 100 (2018).
293J. G. Greener, S. M. Kandathil, and D. T. Jones, “Deep learning extends de
novo protein modelling coverage of genomes using iteratively predicted structural
constraints,” Nat. Commun. 10(1), 3977 (2019).
294M. Michel, S. Hayat, M. J. Skwark, C. Sander, D. S. Marks, and A. Elofsson,
“PconsFold: Improved contact predictions improve protein models,” Bioinfor-
matics 30(17), i482–i488 (2014).
295J. I. Sulkowska, F. Morcos, M. Weigt, T. Hwa, and J. N. Onuchic, “Genomics-
aided structure prediction,” Proc. Natl. Acad. Sci. U. S. A. 109(26), 10340–10345
(2012).
296T. A. Hopf, L. J. Colwell, R. Sheridan, B. Rost, C. Sander, and D. S. Marks,
“Three-dimensional structures of membrane proteins from genomic sequencing,”
Cell 149(7), 1607–1621 (2012).
297T. Nugent and D. T. Jones, “Accurate de novo structure prediction of
large transmembrane protein domains using fragment-assembly and corre-
lated mutation analysis,” Proc. Natl. Acad. Sci. U. S. A. 109(24), E1540–E1547
(2012).
298A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin,
A. Žídek, A. W. R. Nelson, A. Bridgland, H. Penedones, S. Petersen, K. Simonyan,
S. Crossan, P. Kohli, D. T. Jones, D. Silver, K. Kavukcuoglu, and D. Hassabis,
“Improved protein structure prediction using potentials from deep learning,”
Nature 577(7792), 706–710 (2020).
299A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin,
A. Žídek, A. W. R. Nelson, A. Bridgland, H. Penedones, S. Petersen, K. Simonyan,
S. Crossan, P. Kohli, D. T. Jones, D. Silver, K. Kavukcuoglu, and D. Hassabis,
“Protein structure prediction using multiple deep neural networks in the 13th
Critical Assessment of Protein Structure Prediction (CASP13),” Proteins 87(12),
1141–1148 (2019).
300R. Kleffner, J. Flatten, A. Leaver-Fay, D. Baker, J. B. Siegel, F. Khatib, and
S. Cooper, “Foldit standalone: A video game-derived protein structure manipu-
lation interface using Rosetta,” Bioinformatics 33(17), 2765–2767 (2017).
301C. B. Eiben, J. B. Siegel, J. B. Bale, S. Cooper, F. Khatib, B. W. Shen,
F. Players, B. L. Stoddard, Z. Popovic, and D. Baker, “Increased Diels-Alderase
activity through backbone remodeling guided by Foldit players,” Nat. Biotechnol.
30(2), 190–192 (2012).
302S. Horowitz, B. Koepnick, R. Martin, A. Tymieniecki, A. A. Winburn,
S. Cooper, J. Flatten, D. S. Rogawski, N. M. Koropatkin, T. T. Hailu, N. Jain,
P. Koldewey, L. S. Ahlstrom, M. R. Chapman, A. P. Sikkema, M. A. Skiba, F. P.
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