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Accurate protein structure prediction with hydroxyl
radical protein footprinting data
Sarah E. Biehn1 & Steffen Lindert 1✉

Hydroxyl radical protein footprinting (HRPF) in combination with mass spectrometry reveals

the relative solvent exposure of labeled residues within a protein, thereby providing insight

into protein tertiary structure. HRPF labels nineteen residues with varying degrees of relia-

bility and reactivity. Here, we are presenting a dynamics-driven HRPF-guided algorithm for

protein structure prediction. In a benchmark test of our algorithm, usage of the dynamics data

in a score term resulted in notable improvement of the root-mean-square deviations of the

lowest-scoring ab initio models and improved the funnel-like metric Pnear for all benchmark

proteins. We identified models with accurate atomic detail for three of the four benchmark

proteins. This work suggests that HRPF data along with side chain dynamics sampled by a

Rosetta mover ensemble can be used to accurately predict protein structure.
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In addition to sequencing and elucidating the mass to charge
ratio of proteins, mass spectrometry data can provide insight
into protein structure1–5. Currently, a number of techniques

exist with the potential to determine elements of protein tertiary
structure6. Hydrogen–deuterium exchange involves the exchange
of solvent deuterium atoms with amide hydrogen atoms, and
structural changes are easily identified by the addition of one
atomic mass unit7. Limited proteolysis relies on the partial clea-
vage of the protein at particular residues, with residues that are
more exposed being more likely to be enzymatically cleaved8.
Chemical crosslinking facilitates the cross-linking of protein
functional groups both within protein subunits and within
complexes9. Covalent labeling involves exposure of a protein to a
labeling reagent that will irreversibly modify residues. Residues
that are more accessible to solvent are generally more likely to be
covalently modified, providing insight into the tertiary protein
structure10,11.

Covalent labeling can be achieved with a multitude of reagents,
including carbenes, diethylpyrocarbonate, and hydroxyl radi-
cals11–13. Hydroxyl radicals, a commonly used covalent labeling
reagent, are frequently derived from radiolysis or photolysis of
hydrogen peroxide or water14,15. Hydroxyl radical protein foot-
printing (HRPF) is an attractive labeling method because of its
high sensitivity, robustness, and simplicity16. Also, the majority of
the amino acids can be covalently modified with varying degrees
of reactivity and reliability16,17.

Despite the promising utility of HRPF, the covalent labeling
data lacks detailed structural information sufficient for unam-
biguous tertiary structure determination18. The marriage of
HRPF data and computational techniques provides a unique
opportunity for more accurate protein structure prediction. The
recent innovative work of Xie and colleagues featured molecular
dynamics (MD) simulations used cooperatively with HRPF pro-
tection factor (PF) data19. A strong correlation between experi-
mentally determined PFs and solvent accessible surface area
calculated from the MD simulations was observed. Notably, this
agreement could be used to accurately distinguish models with
backbone root-mean-square deviation (RMSD) greater than 4 Å
from models with backbone RMSD less than 3 Å. For the first
time, this validated the capability of using HRPF data to identify
low RMSD computational models19. We have previously shown
that the correlation between experimentally determined PFs and
residue neighbor count can be exploited as a Rosetta scoring term
to improve protein structure prediction20. In addition, compu-
tational protein structure prediction guided with sparse experi-
mental data has been successfully implemented for a wide range

of experimental data21–27. Our previous HRPF modeling work,
however, relied on static protein structures. Because proteins
under physiological conditions are not strictly static objects and
sample ensembles of protein conformations, we hypothesized that
accounting for protein flexibility could improve the correlation
between residue solvent exposure metric and experimental
covalent labeling data and hence protein structure prediction.

In this study, we have probed whether the incorporation of
protein dynamics can improve previously observed correlations
between residue neighbor counts and experimentally derived PFs.
We developed a scoring term that uses HRPF data and rewards
models using a dynamics-based agreement of their PFs and
conical neighbor counts. For the benchmark protein ab initio
models, our score term improved model quality and Pnear value
upon rescoring with HRPF data versus Rosetta’s score function
alone. In addition, Rosetta movers were used to generating
ensembles of models of the top ab initio structures. The best
scoring model RMSD improved considerably for all four proteins
in our benchmark set. We identified models with accurate atomic
detail for three out of four benchmark proteins, indicating that
factoring dynamics into the prediction played a strong role in our
enhanced results.

Results and discussion
Initial optimization of the correlation between experimentally
derived PF and conical neighbor count. Our first goal was to
improve the correlation between residue neighbor count and
HRPF data. Our benchmark set consisted of four proteins
(myoglobin, calmodulin, lysozyme, and low molecular weight
protein tyrosine phosphatase (LMPTP)). These proteins had at
least 15 labeled residues with residue-resolved PF data
available19,28,29. To optimize the conical neighbor count calcu-
lation, we tested and identified an angle midpoint value of π/2
that balanced minimized NRMSE and larger R2 values (Supple-
mentary Table 1). We further systematically tested residue types
grouped by their relative intrinsic reactivities30. We found that
residue types W, Y, F, H, and L yielded a low NRMSE value
(NRMSE= 0.24) for the natural logarithm of the PF (lnPF) and
conical neighbor count calculated from crystal structures of
benchmark proteins (Fig. 1a and results for other residue types in
Supplementary Fig. 1). These five residue types are characterized
by high to intermediate relative intrinsic reactivity, defined as
5–20 times the intrinsic reactivity of Pro. This might make them
the most useful residues in HRPF, and we speculated that this
intrinsic reactivity range played a role in the lower NMRSE value

Fig. 1 Correlations of the natural logarithm of the protection factor with conical neighbor count using residue types WYFHL. The line of best fit,
equation of the line, and the NRMSE value are included in the plot. The labeled residues are color-coded by protein. Myoglobin labeled residues are red,
calmodulin green, lysozyme blue, and LMPTP purple. a Conical neighbor count was calculated from crystal structures of benchmark proteins. b Conical
neighbor count was averaged over every frame of a 200 ns MD simulation. c Conical neighbor count has averaged over 30 Rosetta mover models per
benchmark protein.
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of this combination of residues compared to more extensive
residue type sets.

Because we hypothesized that a failure to account for protein
dynamics may contribute to a disagreement between lnPF and
conical neighbor count, we simulated dynamics with NAMD and
a Rosetta mover ensemble31–33. Averaging conical neighbor count
from a 200 ns simulation over frames extracted every 2, 10, 20, 30,
50, 100, 500, or 1000 ps showed little change in NRMSE values
(Supplementary Table 2). Overall, conical neighbor count
averaged from the 200 ns simulation for all proteins had a
slightly lower NRMSE value (0.23) than that from crystal
structures (Fig. 1b). Since sidechain dynamics occur on a
1–10 ns timescale, the 200 ns simulation length should adequately
capture sidechain fluctuations that could influence labeling34.
Because hundreds of nanoseconds MD simulations are compu-
tationally expensive and time-consuming, we strove to account
for side-chain flexibility at a fraction of the cost via a Rosetta
mover ensemble. Our mover set combined a normal mode
analysis mover with the FastRelax mover to sample various
protein conformations based on the crystal structure. We
generated 10, 20, 30, 40, 50, 100, 150, and 200 models per
benchmark protein and averaged conical neighbor counts overall
models, then calculated NRMSE from the correlation with lnPF
(Supplementary Table 2). Averaging conical neighbor count from
thirty models per benchmark protein generated with movers led
to a lower NRMSE (0.23) value correlated with lnPF than with
neighbor count from crystal structures (Fig. 1c). A comparison
between the conical neighbor counts of labeled WYFHL residues
from crystal structures, MD frames, and mover models is shown
in Supplementary Fig. 2.

Neighbor counts from MD and the Rosetta mover set had
comparable NRMSE values when related to lnPF but at vastly
different computational costs. All processors used for computa-
tions were model type Intel® Xenon® CPU E5-2650 v4 at
2.20 GHz. Totally, 200 ns MD simulations took about 52 h per
protein system using the Ohio Supercomputer Center35. The
NAMD simulation production runs utilized 28 CPUs with GPU
acceleration, requiring about 1456 core hours per protein system.
For comparison, if 28 processors were used to generate
30 structures with the Rosetta mover set, about 0.3 h would be
required. Compared to the MD simulations, the Rosetta mover
ensemble resulted in a 173-fold decrease in both run time and
computational cost, allowing for Rosetta mover results to be
obtained more quickly than NAMD results. We speculated that
the Rosetta mover ensemble can capture some of the relevant
side-chain dynamics in less time than the MD simulation. While
the changes in NRMSE were not statistically significant, we aimed
to pursue structure prediction with the equation relating lnPF and
conical neighbor count averaged from mover models as we
hypothesized that the implementation of dynamics would lead to
downstream improvements in structure prediction.

Scoring model agreement with HRPF data improved RMSD of
the lowest-scoring model and the Pnear value. We used the
equation relating lnPF and conical neighbor count averaged from
the mover models for implementation of an improved Rosetta
HRPF scoring term. Our main goal was to further enhance top-
scoring model quality with HRPF data by accounting for
dynamics in our prediction equation. While we relied on crystal
structures for our initial analysis and determination of our pre-
diction equation for rescoring, we did not rely on crystal struc-
tures for any of the actual modeling. We investigated the
equation’s prediction capability by comparing observed and
predicted neighbor counts for each benchmark protein’s ten top-
scoring ab initio models with RMSD within 5 Å of the best RMSD

model generated (top-scoring low RMSD models) and ten top-
scoring ab initio models with RMSD greater than 10.0 Å (top-
scoring high RMSD models). We quantified the difference
between observed and predicted neighbor counts by determining
how the percentage of labeled residues compared between the low
RMSD and high RMSD sets (Supplementary Fig. 3). We selected
a deviation value, delta, of 3.5 to be used in the scoring term, as
this value captured the upper end of the range of high difference
between low and high RMSD models. A larger delta value
resulted in more residues being scored, providing a meaningful
contribution to the largest possible number of labeled residues.
We then proceeded to evaluate the scoring term by examining
whether it could enhance structure prediction quality. 20,000 ab
initio models were generated for each benchmark protein. The
models were then rescored with our score term, hrf_dynamics,
which was added to the original Rosetta Ref15 score. While we
examined weight values from 1 through 20, values greater than or
equal to 12.0 were found to consistently maximize improvement
for benchmark proteins (Supplementary Fig. 4). Total score
versus RMSD to the crystal structure plots are shown in Fig. 2;
Rosetta Ref15 scores versus RMSD are shown in Fig. 2a while
Rosetta score+ hrf_dynamics versus RMSD plots are shown in
Fig. 2b. As seen in the density scatter plots shown in Supple-
mentary Fig. 5, there was a high density of models at high RMSD
values, and lower RMSD models were comparatively rare. Sup-
plementary Fig. 6 includes the hrf_dynamics versus RMSD plots.
Interestingly, the hrf_dynamics score term alone was not neces-
sarily more funnel-like than the Ref15 scoring function and
indicative of the trends observed when the scoring term was
combined with Rosetta Ref15. However, most individual Rosetta
score terms (the components of Ref15) are not funnel-like indi-
vidually and rely on being combined with other terms to form the
Rosetta Ref15 score36. In addition, data from HRPF experiments
is not comprehensive of protein structure, so combining Rosetta
Ref15+ hrf_dynamics led to results with the enhanced structural
agreement. Figure 3a, b shows the crystal structure aligned with
the top-scoring model from Rosetta scoring and rescoring with
hrf_dynamics, respectively. Compared to scoring with Rosetta
Ref15, the addition of hrf_dynamics term to the score improved
all metrics by which we quantified scoring. The best scoring
model RMSD for LMPTP remained at 1.67 Å when the hrf_dy-
namics term was used. As this model already contained accurate
atomic detail, it was reassuring that rescoring did not increase the
best scoring model RMSD. Rescoring of calmodulin models
showed a fair improvement, with the best scoring model RMSD
improving from 14.87 to 9.13 Å. Improvement was observed for
lysozyme, for which the best scoring model RMSD decreased
from 11.06 to 6.65 Å, with the lowest RMSD model generated for
lysozyme being 4.24 Å. The best scoring model RMSD for myo-
globin improved from 6.48 to 4.85 Å.

In addition to improving the RMSD of the best scoring model,
the application of the hrf_dynamics score improved the funnel-
like quality of the score versus RMSD distribution. We assessed
funnel-like quality with Pnear; a Pnear value of 1.0 indicates perfect
funnel-like quality while a Pnear value of 0 indicates no funnel-like
quality37. The Pnear values improved for all four benchmark
proteins with rescoring, signifying an increase in the funnel-like
nature of the score versus RMSD plots. The Pnear for calmodulin,
while starting at 0.02, did show improvement by increasing to
0.07 with rescoring. The lysozyme Pnear improved from 0.08 to
0.19 with rescoring. The myoglobin Pnear value increased from
0.21 to 0.29, while the LMPTP Pnear stayed constant at 0.66. We
also compared the RMSD of the top-scoring models to the crystal
structure for residues involved in secondary structural elements
(SSEs). LMPTP RMSDSSE stayed constant at 1.58 Å for the top-
scoring model before and after rescoring. Calmodulin RMSDSSE
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for the top-scoring model improved from 13.76 Å with Rosetta to
8.01 Å after rescoring. The RMSDSSE for myoglobin improved
from 6.09 to 4.67 Å. Lysozyme showed a notable improvement,
with the RMSDSSE improving from 11.55 Å with Rosetta top
model to 3.53 Å with the rescoring top model. This underlined
that rescoring with hrf_dynamics successfully improved top-
scoring model quality.

Another metric of interest was the RMSD distribution of the
top 1000 scoring models, as shown in Fig. 4a. Improvements in
the percentage of the top-scoring models under 10.0 Å were seen
for three of the four benchmark proteins when scoring with
Rosetta Ref15 versus rescoring with hrf_dynamics. Calmodulin
percentages stayed constant at 34.1% while lysozyme percentages
increased from 11.9% to 12.4%, respectively, from Rosetta Ref15
to rescoring that included hrf_dynamics. While myoglobin
improved from 99.7 to 100%, the average RMSD of the
distribution improved from 4.62 Å with Rosetta Ref15 to 3.36 Å
with rescoring.

Overall, the inclusion of hrf_dynamics with Rosetta scoring
tended to improve the best scoring model quality, Pnear, and
RMSD distributions of top-scoring models, indicating that the
usage of HRPF data and dynamics-driven agreement enhanced
Rosetta protein structure prediction.

Rosetta mover ensemble combined with rescoring further
improved RMSD of the lowest scoring model. Using the
hrf_dynamics score term, which accounted for dynamics effects in
its development, we saw an improvement of the RMSD of the best
scoring model for all four benchmark proteins. However, we
hypothesized that we could further improve the RMSD of the best
scoring model for all four benchmark proteins by explicitly
sampling protein flexibility around the best scoring structures.
The top 20 scoring structures (when scored with both Ref15 and

hrf_dynamics) for each protein were used to generate 30 models
per structure with the Rosetta mover ensemble. The mover
models were used to sample side-chain dynamics of ab initio
models; no crystal structure was required to model the side-chain
dynamics as the ab initio models were used as input. We hypo-
thesized that this would sample side chain configurations that are
in better agreement with the labeling data. The generated models
were then scored with Ref15 and hrf_dynamics. As observed in
Figs. 2c and 3c, the best scoring model RMSDs further improved
for all four proteins when the mover protocol was explicitly
applied to the top 20 scoring models. The best scoring mover
model for calmodulin had an RMSD value of 7.24 Å, an
improvement in RMSD from the best scoring model RMSD of
9.13 Å with rescoring alone. The best scoring model for lysozyme
had an RMSD value of 4.37 Å, also an improvement from the best
scoring model RMSD of 6.65 Å with rescoring alone. LMPTP’s
best scoring model RMSD improved from 1.67 to 1.55 Å. While
the best scoring model RMSD with rescoring alone was 4.85 Å for
myoglobin, the best scoring mover model RMSD was 2.37 Å.

We then added the 600 mover models to our set of 20,000 ab
initio structures for each of the four benchmark proteins, creating
a set of 20,600 structures (Fig. 2c). The lowest scoring mover
models were also the top-scoring model for the score versus
RMSD distribution of all 20,600 structures, reaffirming our
success with the mover set. Furthermore, we recalculated Pnear
values for the set of 20,600 structures. The Pnear values increased
for all four benchmark protein sets. LMPTP Pnear value increased
slightly from 0.66 with rescoring to 0.67 when movers were
included in the distribution. Calmodulin and lysozyme also saw
Pnear improvements, from 0.07 to 0.14 for calmodulin and from
0.19 to 0.22 for lysozyme. Finally, myoglobin saw the largest
improvement in Pnear, increasing from 0.29 to 0.56 with the
inclusion of mover models in the distribution.

Fig. 2 Score versus RMSD to the crystal structure for 20,000 ab initio models generated for each of the four benchmark proteins with the top-scoring
model marked by a black triangle. The Pnear value is denoted on each plot. Myoglobin models are shown in red, calmodulin in green, lysozyme in blue, and
LMPTP in purple. a Rosetta Ref15 score versus RMSD. b Rosetta Ref15+ hrf_dynamics total score versus RMSD. c Rosetta Ref15+ hrf_dynamics total score
versus RMSD, including the 30 mover models generated per structure for the top 20 scoring models.
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Moreover, we compared the RMSD of the top-scoring models
including movers to the crystal structure via RMSD over SSEs.
LMPTP RMSDSSE stayed constant at 1.58 Å. Calmodulin
RMSDSSE of the best scoring model improved from 8.01 Å with
the rescoring to 6.45 Å with mover models included in rescoring.
The RMSDSSE for myoglobin improved at each step from 4.67 Å
with rescoring to 2.11 Å with movers included in rescoring.
Lysozyme showed a notable improvement, with the RMSDSSE of
the best scoring model improving from 11.55 Å with Rosetta to
3.53 Å with the rescoring to 1.26 Å with movers included in
rescoring. Again, the incorporation of the mover models allowed
us to identify models with accurate atomic detail in secondary
structure elements for three of the four benchmark proteins. This
underscores the usefulness of HRPF data in protein structure
determination.

We also investigated the RMSD frequency of the top
1000 scoring models from the set of 20,600 structures that
included mover models, shown in Fig. 4b. The percentage of top-
scoring models under 10.0 Å continued to increase for all four
proteins, with calmodulin improving from 34.1% with rescoring
to 39.8% rescoring with movers and lysozyme from 11.9 to 33.5%.
The percentage of LMPTP models under 10.0 Å also increased
from 49.8% with rescoring to 52.0% with mover models included
in rescoring. While all myoglobin top models remained under
10.0 Å, the average RMSD of the top-scoring models further
improved from 3.36 Å with rescoring alone to 3.16 Å with the
inclusion of mover models in rescoring. The improvement of all
four benchmark proteins exhibited for top-scoring model RMSD,

Pnear values, and RMSD distributions of the top 1,000 scoring
models further demonstrated the potential of dynamics-driven
HRPF modeling to obtain higher-quality models.

In addition to our benchmark set of four proteins with at least
15 labeled residues and residue-resolved PF data, we ventured to
test our method on datasets that fell outside our benchmark set
criteria. We used cytochrome C data that was employed in our
previous work and identified an additional protein, cofilin, for
which PF data was available. After generating 20,000 ab initio
models per protein, we performed the hrf_dynamics rescoring
protocol described above. Supplementary Fig. 7 includes the score
versus RMSD plots for both additional proteins (Supplementary
Fig. 7A, C), as well as the best scoring models aligned with the
crystal structure (Supplementary Fig. 7B, D). The best scoring
model RMSD for cytochrome C improved from 2.42 Å with
Rosetta to 1.38 Å with Rosetta and hrf_dynamics combined; the
cofilin best scoring model RMSD remained at 1.78 Å upon
scoring with hrf_dynamics. 30 mover models were generated for
each of the top 20 scoring structures and then scored with
hrf_dynamics and included in the original ab initio model
distribution. We found that the best scoring model RMSD for
cytochrome C improved slightly to 1.37 Å, and the cofilin best
scoring model RMSD improved to 1.52 Å. Despite the original
datasets falling outside the benchmark criteria in place, the
improvements for the additional proteins demonstrated that the
hrf_dynamics term as well as the Rosetta mover ensemble are a
powerful tool to predict protein structure from covalent labeling
data, even for smaller numbers of labeled residues.

Fig. 3 Crystal structures (dark gray) of benchmark proteins aligned with best scoring model predictions (color). RMSD and RMSD over SSEs
(RMSDSSE) are listed. Structure visualization was accomplished in PyMOL. Myoglobin models are shown in red, calmodulin in green, lysozyme in blue, and
LMPTP in purple. a Best scoring model based on scoring with Rosetta Ref15. b Best scoring model based on scoring with Rosetta Ref15+ hrf_dynamics.
c Best scoring model including mover models scored with Rosetta Ref15+ hrf_dynamics.
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For further analysis of our benchmark set results, we compared
our results to those in previously published work. For one of the
proteins in our benchmark set, homology modeling and HRPF
agreement analysis had been done previously in the pioneering
work by Xie et. al. In this work, homology modeling was used to
obtain models for lysozyme with RMSDs ranging from 1.2 to
4.6 Å19. In addition, it was possible to discriminate between
models with backbone RMSD values greater than 4 Å and models
with backbone RMSD values less than 3 Å for lysozyme19. As part
of our ab initio modeling, we built models for lysozyme with
RMSD values ranging from 4.24 to 28.14 Å. Thus, for lysozyme,
the homology models presented by Xie and coworkers were of
noticeably better quality than those presented in our ab initio
work. To demonstrate that this discrepancy can be solely
attributed to the use of homology modeling (versus ab initio
modeling), we generated lysozyme homology models to analyze
the HRPF agreement using our developed algorithm. We used

similar templates for lysozyme as those used in ref. 19. In addition
to building homology models for lysozyme, we also built models
for myoglobin, for which data was also presented in ref. 19. but no
homology models were built. We built homology models ranging
from 0.50 to 1.82 Å for lysozyme and 0.72 to 2.88 Å for
myoglobin. After rescoring and generation of mover models, we
selected the best scoring model with RMSD 0.62 Å for lysozyme
and 1.05 Å for myoglobin, indicating that our developed
algorithm can successfully identify homology models showing
atomic detail for these proteins. Our results and templates used
are shown in Supplementary Fig. 8.

We also strove to assess our work based upon our own
previous work that used neighbor counts and ab initio modeling.
Both our current and previous work focused on the difficult cases
requiring template-free modeling where the inclusion of covalent
labeling data is most beneficial. While some of the benchmark
proteins in our set are different from the previous set (benchmark

Fig. 4 RMSD histograms for each benchmark protein showing the top 1,000 scoring models. RMSD values range from 0.0 to 15.0 Å with bin widths of
0.5 Å. Myoglobin is red, calmodulin green, lysozyme blue, and LMPTP purple. Color transparency was adjusted to 0.5 for effective visualization of the
compared datasets. a The Rosetta Ref15 distribution (gray) is compared to scoring with Rosetta Ref 15+ hrf_dynamics (color). b The distribution from
scoring with Rosetta Ref15 (gray) is compared to top models when mover models are included in the distribution and scored with Rosetta Ref15+
hrf_dynamics (color).
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of static HRPF modeling for myoglobin, calmodulin, lysozyme,
and cytochrome C), we could compare the overall range of values
between the two studies. For instance, we examined the difference
between the best scoring model RMSD and the lowest RMSD
model generated. On average, there was a difference of 2.40 Å
between the best scoring model RMSD and lowest RMSD model
in the previous work; we improved this to an average difference of
1.62 Å, suggesting that we are identifying models closer to the
correct native structure. Moreover, in prior work, the Pnear ranged
from 1.17 × 10−6 to 0.38 after rescoring with the previous score
term20. The Pnear values in our current work ranged from 0.14 to
0.67 when movers were included and the 20,600 model set was
rescored with hrf_dynamics. We also improved over previous
work in terms of average RMSD over SSEs. The average RMSDSSE

for the top rescoring model to the crystal structure was 4.79 Å in
the previous work. We surpassed this average with the top models
from movers included in rescoring, yielding an average RMSDSSE

value of 2.85 Å. The improvements validated our efforts to
incorporate dynamics into the prediction equation, suggesting
that accounting for side-chain flexibility allowed us to exceed
improvements seen in previous work. These improvements
further stressed that the combination of HRPF data and side-
chain flexibility can refine protein structure prediction and yield
better model quality.

Hydroxyl radicals covalently label residues according to the
residue’s solvent exposure. Correlations between exposure metrics
of protein crystal structures and PFs have been demonstrated but
are not perfect. We hypothesized that side-chain dynamics could
account for some of the discrepancies between neighbor count and
PF. This work has shown that incorporating side-chain flexibility as
sampled by a Rosetta mover ensemble improved the NRMSE of
neighbor counts and HRPF PFs, and this improvement can be
capitalized upon for rescoring ab initio models. Our benchmark set,
comprised of HRPF data for myoglobin, calmodulin, lysozyme, and
LMPTP, was used to explore the effect of side-chain flexibility in
HRPF-guided structure prediction. Overall, NRMSE values tended
to decrease when flexibility was taken into account with MD or
Rosetta movers. Because there is an over 170-fold decrease in run
time with Rosetta movers compared to MD simulations, usage of
Rosetta movers can potentially replace time-consuming MD
simulations for the purpose of sampling side-chain exposure in
HRPF-guided modeling, providing a less computationally expen-
sive alternative. Based on these findings, we successfully imple-
mented a Rosetta score term that showed a notable decrease of the
RMSDs of the lowest-scoring ab initio models and increased the
funnel-like metric Pnear in benchmark tests. While our findings
with MD and Rosetta did not have statistically significant
implications in NRMSE, we noticed systematic, positive improve-
ments in the downstream effects from using the prediction
equation such as model selection and funnel-like quality of score
versus RMSD distributions. RMSDs of best scoring ab initio models
and Pnear values improved, suggesting that accounting for protein
flexibility when modeling HRPF data can improve model quality.
Finally, the capability of the Rosetta mover ensemble was cemented
by the improvement in the RMSD of lowest-scoring mover models
generated from the top 20 scoring ab initio structures for all
benchmark proteins. While impressive model generation and
HRPF discrimination for homology models had been shown
previously by Xie et al., the combination of HRPF data and
sidechain flexibility sampled by the Rosetta mover ensemble has
been demonstrated to yield results that are accurate to a level not
before seen with covalent labeling-guided ab initio protein structure
prediction. Furthermore, our work established HRPF as one of the
prime experimental techniques in modeling protein structure from
comparatively sparse experimental data. This is particularly
important due to the ease with which HRPF data can be generated.

In an attempt to make our algorithm widely accessible to the HRPF
MS community, an in-depth tutorial describing the modeling
protocol, along with necessary command lines, is provided as part
of this manuscript in Supplementary Note 1.

In addition to incorporating the findings presented here into the
ab initio protocol, future work will pursue the Rosetta mover
ensemble in conjunction with other covalent labels to continue to
improve Rosetta protein structure prediction. Future work will
focus on investigations of the microenvironmental effects of
covalent labels and aim to incorporate these effects into structure
prediction13. Finally, in future work, we plan to explore long-
timescale dynamics governing linked secondary or other higher-
order structure perturbations using long MD simulations. We
speculate that accounting for microsecond-timescale events has the
potential to improve agreement with HRPF data for some proteins.

Methods
Benchmark set. Our benchmark set was comprised of four globular proteins for
which hydroxyl radical PF data was available. We required each protein within our
benchmark set to have at least 15 labeled residues since we demonstrated pre-
viously that a higher number of labeled residues strongly correlates with prediction
accuracy18. We additionally required PF data to be residue-resolved. Myoglobin
(PDB: 1YMB, 153 residues) and lysozyme (PDB: 2LYZ, 129 residues) data origi-
nated from work by Xie and coworkers19. PFs of 33 residues from myoglobin and
19 residues from lysozyme were extracted. Calmodulin (PDB: 1PRW, 148 residues)
data was obtained from the manuscript of Kaur and colleagues28. PFs of 29 labeled
residues were extracted. LMPTP (PDB: 5JNS, 152 residues) data was found in the
work by Stanford et al.29 PF data for 26 labeled residues were extracted.

Additional proteins examined. While not included in our benchmark set, we also
examined two additional proteins. Cytochrome C (PDB: 2B4Z, 104 residues) data
were obtained from ref. 20. PF values for 14 residues were available. Cofilin (PDB:
1CFY, 143 residues) data were extracted from Guan et al.38 Fragment-resolved data
were available for 11 residues. Each labeled residue identified within the fragment
was assigned the same PF as the fragment.

Definitions of exposure metrics. PF, a metric originally introduced by Huang and
coworkers, was used30. PF relates the experimentally determined labeling rate
constant and amino acid-specific intrinsic reactivity. We have used the natural
logarithm of the PF (lnPF, Eq. (1)) in this work20.

lnPF ¼ ln
Ri

ki
ð1Þ

Ri represents the amino acid intrinsic reactivity for residue i while ki represents the
experimentally determined labeling rate constant for residue i.

Based on the improvement of the neighbor count with the cone method shown
in our previous work, we continued to optimize the conical neighbor count18. The
conical neighbor count was calculated as the sum of the products of the distance
and angle contributions, with the angle contribution, A(Θij), shown in Eq. (2)18.

A
�
Θij

� ¼ 1
1þ expð2π � ðΘij �MÞÞ ð2Þ

Here, 2π is the angle steepness value. M represents the angle midpoint value, which
was optimized in this work. Angle midpoints of π/6, π/4, π/2, and π for conical
neighbor count were calculated with the Rosetta per_residue_solvent_exposure
application and subsequently correlated with lnPF for individual proteins in the
benchmark set and all proteins combined. Normalized root means square error
(NRMSE, Eq. (3)) and regression correlation, R2, were evaluated.

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
diff 2i

n

r

�y

ð3Þ

where diffi represents the absolute difference between the observed neighbor count
and the predicted neighbor count of residue i, while n represents the number of
labeled residues. ȳ is the averaged of the observed neighbor counts.

Determination of residues used in structure prediction. Nineteen of the 20
amino acids can be labeled by HRPF with varying levels of reactivity and relia-
bility30. We eliminated cysteine and methionine from our evaluation because of the
high reactivity of these residues19. In addition, it has been reported that residues
such as serine, threonine, and aspartic acid can have unclear products during
longer exposure, bringing into question their reliability and leading us to exclude
them from consideration16,17. We focused on residues with sequential intrinsic
reactivities, thus including W, Y, F, H, L, I, R, K, V, P, and E in our investigation30.
While we included arginine in our analysis, arginine has previously been shown to
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potentially undergo deguanidination that results in a sizeable mass change16. We
tested residue type combinations of at least three residue types so as to have an
adequate number of data points. The residue combinations we examined included
WYF, WYFH, WYFHL, WYFHLIR, WYFHLIRK, WYFLIRKV, WYFLIRKVP, and
WYFLIRKVP. If a successful residue type combination contained arginine, we
planned to further assess its reliability as a label; however, arginine was not
included in our final residue subset. Conical neighbor counts were calculated for
the benchmark set protein crystal structures. Labeled residues from the residue type
combination tested were used to plot neighbor count versus PF using Matplotlib
3.1.2 and Python 3.7. NRMSE and R2 values were calculated based on the predicted
and measured neighbor counts for the labeled residues of all proteins individually;
values for all proteins together were calculated for all labeled residues in all
proteins.

MD simulations. To sample side-chain flexibility, the proteins in the benchmark
set were prepared for MD simulations with Nanoscale Molecular Dynamics
(NAMD)31. Structures were solvated with explicit TIP3P water molecules in a 14 Å
water box and then neutralized during an ionization step with 0.15M NaCl. With
protein system restraints, the water molecules were minimized for 10,000 steps, and
the proteins subsequently were minimized for 10,000 steps. An initial equilibration
over 190,000 steps removed restraints. A final equilibration was executed for
10,000 steps. The MD simulations were performed using NAMD 2.12 with the
CHARMM36 force field39. The simulations were performed at 310 K in the NPT
ensemble with Langevin temperature and pressure dampening. The SHAKE
algorithm was employed to constrain bonds with hydrogen, providing a 2 fs time
step. Production runs were performed for 200 nanoseconds, or 100,000,000
timesteps, using one node with 28 processors per simulation on the Owens cluster
of the Ohio Supercomputer Center35.

Structures were extracted from each saved simulation frame (every 2 ps).
Conical neighbor counts were calculated for labeled residues of each frame and
were averaged for a total simulation length of 200 ns. Neighbor counts from frames
extracted every 2, 10, 20, 30, 50, 100, 500, or 1000 ps were averaged for the 200 ns
simulation. The NRMSE of lnPF versus neighbor count was determined for each
protein individually and for all proteins together using Python 3.7.

Rosetta relaxation ensemble. A combination of Rosetta movers was employed to
mimic the side chain flexibility sampled with MDs. A Rosetta XML script was
implemented that combined the NormalModeRelax and FastRelax movers for the
generation of 10, 20, 30, 40, 50, 100, 150, or 200 structures per protein in the
benchmark set32,33.

The NormalModeRelax mover, which attempts multiple normal modes, was
used with the Ref15 cartesian score function to relax and score poses. Cartesian
normal mode was implemented. Five normal modes were explored with a mixture
of modes used on 20 structures. A 2.0 Å perturbation was applied to backbone
atoms, then a FastRelax was performed. The FastRelax mover was subsequently
employed again with the Ref15 cartesian score function and with 25 FastRelax
repeats performed per structure.

Conical neighbor counts were calculated for labeled residues of each generated
structure, then the neighbor counts were averaged per labeled residue over all
generated structures. The average neighbor count was correlated with PF, and the
NRMSE value was assessed for 10, 20, 30, 40, 50, 100, 150, and 200 models per
protein generated with the relaxation ensemble.

Ab initio model generation. The Rosetta AbInitio Relax protocol was used to
generate 20,000 models of each benchmark protein40. The protocol requires inputs
of fragment libraries and native FASTA sequences41. The FASTA sequence of each
protein was obtained from the respective PDB files and subsequently used by the
Robetta server to extract fragment libraries for each protein42. No HRPF data were
used during the fragment generation and ab initio model building. The models
were scored with the Rosetta energy function (Ref15), and the crystal structure of
each protein was supplied for RMSD calculations to the models. The Rosetta score
was used to rank the generated models by their predicted agreement to the native
protein structure.

In addition, some of the ab initio models generated were used to test the neighbor
count prediction equation obtained from the relationship between lnPF and conical
neighbor count averaged over 30 mover models. The top ten scoring ab initio models
with RMSD values to the crystal structure greater than 10 Å for each benchmark
protein were assembled, along with 10 top-scoring models with RMSD less than 5 Å
from the best RMSD model generated. The observed conical neighbor counts were
calculated using the per_residue_solvent_exposure application with an angle
midpoint value of π/2. The predicted conical neighbor counts were calculated by
substituting the experimental lnPF value of each labeled residue into the prediction
equation determined from the Rosetta mover ensemble, as shown in Eq. (4).

Predicted neighbor count ¼ 0:88 lnPFð Þ þ 4:42 ð4Þ

The resulting neighbor count is henceforth referred to as the predicted neighbor
count. Delta values ranging from 0.5 to 4.5 (with an interval of 0.1) were used to
determine the agreement of predicted values with observed values. The percentage

and number of labeled residues that fell within the delta region were compared
between top-scoring low RMSD models and top-scoring high RMSD models.

Rescoring with hrf_dynamics and evaluation of ab initio models. Based on the
dynamics-driven agreement between HRPF data and neighbor counts, a Rosetta
score term, hrf_dynamics, was implemented to restore models. Each labeled resi-
due’s predicted neighbor count was calculated by substituting lnPF into the
equation relating neighbor count to experimental PF (Eq. (4)). The observed
neighbor count was determined from the structure based on the product of the
distance and angle contributions18,20. The absolute difference between the pre-
dicted and the observed neighbor count, |diffi|, was calculated for each labeled
residue i. Based on the absolute value of the difference between observed and
predicted neighbor counts, the hrf_dynamics score was calculated by summing up
the per-residue contributions, as shown in Eq. (5)

hrf dynamics ¼
Xn
i

�1:0
1:0þ exp 2:0 diff ij j � 3:5ð Þð Þ ð5Þ

in which n represents the number of labeled residues, 2.0 is the steepness, and 3.5 is
the delta value. By design, the per-residue hrf_dynamics score for a labeled residue i
resulted in a value ranging from 0, complete disagreement with the predicted
neighbor count, to −1, complete agreement.

The hrf_dynamics score term was used to score the 20,000 ab initio models
generated per benchmark protein. The Rosetta total score was determined from a
weighted sum of the hrf_dynamics term and the original Ref15 score

Total Rosetta score ¼ 12:0 � hrf dynamicsð Þ þ Ref15 score ð6Þ
Weight values from 1 through 20 were examined. Weight values larger or equal to
12.0 were found to consistently maximize improvement for the four benchmark
proteins. An in-depth tutorial describing this process, along with necessary
command lines, and an example data set can be found in Supplementary Note 1
and Supplementary Data 1. Ab initio models were ranked by score, with lower
scores having a better ranking.

The performance of both Ref15 and the hrf_dynamics re-scored total score were
analyzed by several metrics. First, since more native-like structures should have
lower scores, the total Rosetta score was plotted against model RMSD, and the
resulting distribution was analyzed. In an ideal scenario, the lowest-scoring model
should have the lowest RMSD to the native. Best-scoring models were aligned to
the native and visualized using PyMOL 2.0.6. We investigated the best-scoring
model’s RMSD to the native structure to judge the effectiveness of the scoring
methods. Secondly, we used the metric Pnear as defined by Bhardwaj et al. and used
it in our previous works18,20,37. The Pnear was calculated using Eq. (7):

Pnear ¼
PN

m¼1 exp � rmsd2m
λ2

� �
exp � scorem

kBT

� �

PN
m¼1 exp � scorem

kBT

� � ð7Þ

where N is the total number of models, scorem is the Rosetta score and rmsdm is the
RMSD of a particular model, m. kBT, which determines the funnel depth effect on
Pnear, was used with a value of 1.018,20,37. λ, a value that specifies which models are
considered similar to the native, was retained at a value of 2.0 Å18,20. A Pnear value
of 1 indicates a perfect funnel-like shape, while a value of 0 indicates the lack of any
funnel-like distribution. Pnear was calculated using Python 3.7. Furthermore, we
analyzed the RMSD over SSEs for each of the top scoring-models by extracting the
residues involved in SSEs from the PDB file. We truncated the structural files to
only include these residues, then calculated the RMSDSSE of the SSE models to the
crystal structure with only SSE residues. Finally, we compared the number of top
1000 scoring models with RMSD below 10.0 Å. This comparison was performed to
determine how well hrf_dynamics improved model quality over Rosetta Ref15.

Generation and evaluation of mover models from top-scoring ab initio
structures. In an attempt to further improve structure prediction by explicitly
modeling side-chain flexibility, the top 20 scoring ab initio structures from each
benchmark protein were then used to generate models using the Rosetta mover
ensemble. The mover ensemble used the same settings as reported in the Rosetta
Relaxation Ensemble section, in which the NormalModeRelax mover was used with
the Ref15 cartesian score function to relax and score poses. Using cartesian normal
mode, five normal modes were explored with a mixture of modes used on
20 structures. After a 2.0 Å perturbation was applied to backbone atoms, FastRelax
was performed. The FastRelax mover using the Ref15 cartesian score function was
used to perform 25 FastRelax repeats per structure. 30 mover models were gen-
erated for each of the 20 top scoring structures. The 600 resulting models per
protein were scored with both Ref15 and hrf_dynamics (Eq. (5)) to obtain a total
score (Eq. (6)). The 600 mover models were added to the 20,000 ab initio models,
and the resulting 20,600 models were scored with Rosetta and hrf_dynamics. The
same metrics used to evaluate performance, including the RMSD of the best
scoring model, the RMSD over SSEs (RMSDSSE) of the best scoring model, the Pnear
(Eq. (7)), and the percentage of the top 1,000 scoring models under 10.0 Å, were
used to determine if there was an improvement in model quality over both Rosetta
and rescoring with hrf_dynamics.
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Rosetta homology model generation and evaluation with hrf_dynamics and
mover models from top-scoring structures. Homology models for myoglobin
and lysozyme were generated using the Rosetta Comparative Modeling protocol43.
Multiple templates (Supplementary Fig. 8C) with high sequence coverage
(95–100%) and varying sequence identities, ranging from 99 to 29% for myoglobin
and from 99 to 37% for lysozyme, were used for model generation. Three thousand
models were generated for each protein. Homology models were relaxed with the
Rosetta Relax application and then scored with the Rosetta Ref15 scoring func-
tion33. RMSD values were calculated for the respective crystal structures. Models
were rescored with the hrf_dynamics score term. After ranking the models by score,
the top 20 scoring models were used as inputs for the Rosetta mover ensemble,
using the same settings as reported in the Rosetta Relaxation Ensemble section and
the previous section32,33. Thirty models were generated for each top-scoring
structure. The 600 mover models were included in the ab initio model distribution,
and the best scoring model RMSD was identified.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available within
the paper and its Supplementary Information. The utilized protection factors can be
found in refs. 19,28,29 for benchmark proteins and refs. 20,38 for additional proteins
examined. Crystal structures for the four benchmark proteins are available on the Protein
Data Bank with accession codes 1YMB, 1PRW, 2LYZ, and 5JNS. The accession codes for
the additional proteins analyzed are 2B4Z and 1CFY. An example data set containing
2000 ab initio models and 600 mover models for myoglobin is provided in
Supplementary Data 1.

Code availability
The hrf_dynamics score term and Rosetta mover ensemble are available for free to
academic users through the Rosetta software suite at https://www.rosettacommons.org/
software/.
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