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ABSTRACT: Amide hydrogen−deuterium exchange (HDX) has long been used to determine regional flexibility and binding sites
in proteins; however, the data are too sparse for full structural characterization. Experiments that measure HDX rates, such as HDX-
NMR, have far higher throughput compared to structure determination via X-ray crystallography, cryo-EM, or a full suite of NMR
experiments. Data from HDX-NMR experiments encode information on the protein structure, making HDX a prime candidate to be
supplemented by computational algorithms for protein structure prediction. We have developed a methodology to incorporate
HDX-NMR data into ab initio protein structure prediction using the Rosetta software framework to predict structures based on
experimental agreement. To demonstrate the efficacy of our algorithm, we examined 38 proteins with HDX-NMR data available,
comparing the predicted model with and without the incorporation of HDX data into scoring. The root-mean-square deviation
(rmsd, a measure of the average atomic distance between superimposed models) of the predicted model improved by 1.42 Å on
average after incorporating the HDX-NMR data into scoring. The average rmsd improvement for the proteins where the selected
model rmsd changed after incorporating HDX data was 3.63 Å, including one improvement of more than 11 Å and seven proteins
improving by greater than 4 Å, with 12/15 proteins improving overall. Additionally, for independent verification, two proteins that
were not part of the original benchmark were scored including HDX data, with a dramatic improvement of the selected model rmsd
of nearly 9 Å for one of the proteins. Moreover, we have developed a confidence metric allowing us to successfully identify near-
native models in the absence of a native structure. Improvement in model selection with a strong confidence measure demonstrates
that protein structure prediction with HDX-NMR is a powerful tool which can be performed with minimal additional computational
strain and expense.

■ INTRODUCTION

The function of a protein is dictated by its structure; thus, the
understanding of biological processes is significantly facilitated
by the knowledge of the protein structure.1 Despite this, the
gap between the number of known sequences of proteins and
their three-dimensional structures is widening by the day.2

There are many experimental approaches available for
structural and dynamic characterization of proteins. In the
world of dynamic studies, one such method is the monitoring
of hydrogen−deuterium exchange rates via nuclear magnetic
resonance spectroscopy (HDX-NMR). HDX-NMR data are
typically generated to elucidate regional flexibility or binding
sites after a protein’s structure has been fully characterized via
other methods, such as X-ray crystallography, cryo-EM, or a

full suite of NMR structural experiments.3−6 The result of
HDX-NMR experiments is a residue-resolved map of exchange
rates, allowing for extrapolation of regional flexibility and
solvent exposure, two factors that are generally considered to
influence the HDX rate.7 HDX rate determination is not
exclusive to NMR, however, and can be measured using mass
spectrometry (MS) as well.8,9 While HDX-NMR studies yield
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important information on structure and dynamics, these are
still sparse data, generally insufficient for full protein structure
determination or unambiguous dynamics characterization.
Computational methods that can facilitate the structural
interpretation of HDX-NMR data are required.
There have been strides to incorporate experimental

techniques with computation, with efforts spanning back to
the 1980s with NMR and X-ray crystallography and more
recently EPR, MS, and cryo-EM among others.10−30 HDX
experiments, originally probed in the 1970s,31 have been used
to map exchange rates onto atomic-resolution structures to
assign dynamic properties to otherwise static representa-
tions.4,32−37 In the general case, HDX rates have also been
coupled to molecular dynamics simulations to explain variation
in different regions of a protein.14,38−42 Additionally, these data
have been incorporated into protein−protein docking of
complexes with known tertiary structure to elucidate
quaternary structure.43−45 However, importantly, HDX rates
have not yet been used to predict de novo tertiary structure.
Previous implementations for structural characterization rely
on either homology modeling or some starting structures such
as an alternative conformation of a protein or a designed
protein.46−49 While there are multiple software packages with
impressive results that exist for ab initio structure prediction,
such as the co-evolution-dependent neural network Alpha-
Fold,50 the secondary structure assembling BCL,51 or iterative
threading I-TASSER,52 none have been coupled to exper-
imental data as frequently or diversely as the Rosetta Modeling
Software.13,20,21,27,30,53−62 Rosetta ab initio structure prediction
allows for the generation of models from amino acid sequence
alone, assembling fragments generated from short segments
with similar sequences using Monte Carlo sampling combined
with a hybrid classical physics and probabilistic knowledge-
based scoring function in both coarse-grained and full-atom
modeling, similar to other multiscale modeling methods.63,64

Due to its modular score function, Rosetta is an ideal candidate
to use HDX-NMR data for ab initio structure prediction.
In this work, we have developed methods to account for

residual solvent exposure, through amide neighbor count (NC)
and residual relative solvent accessible surface area, and
flexibility, through hydrogen-bonding energies and order
score (OS), all within the Rosetta framework. While the
Rosetta ab initio sampling approach does not allow for the
determination of realistic folding assembly pathways, the ability
to quantify the flexibility and exposure of residues in a native-
state model means that correlations between HDX of residues
within the protein and the protein structure can be explored.
Using HDX-NMR data for 38 proteins from the Start2Fold
database,65 we have developed a score term for the Rosetta
energy function based upon agreement with experimental data,
while also accounting for local sequence context. Using this
new scoring term, we have scored structures generated using
Rosetta’s ab initio prediction application, improving the root-
mean-square deviation (RSMD, a measure of average atomic
distance between superimposed models) from native of the
best scoring predicted model with negligible additional
computational expense; in several predictions, rmsd improved
by more than 5 Å, including one prediction improving by over
11 Å.

■ MATERIALS AND METHODS
Benchmark Dataset. We assembled a benchmark dataset

of proteins with HDX-NMR data from the Start2Fold

database, a curated database for experimental HDX-NMR
determinations of folding pathways and regional stability.65

The available data were provided in the form of per-residue
classification for stability experiments. The experimental
stability was classified as either strong for residues that were
highly protected from exchange, weak for residues which
exchanged quickly, or medium for residues in between ranges.
Each category was defined by the database in accordance with
the measured experimental data, such as protection factor (a
measure inversely proportional to the exchange rate constant)
or change in peak intensity over time. For example, a strong
residue has a higher protection factor compared to a medium
or weak residue. Due to more strict restrictions on the class,
only data for the strong residues were used in our analysis, as
these were often residues which did not exchange at all,
whereas a weak residue could transiently move and be
exchanged, which would not be relevant to the static model.
Of the 57 proteins available (at the time of search) in the
Start2Fold database, 38 were chosen for the scoring bench-
mark because they contained residues classified into the strong
category, were monomeric in solution, and had an
experimentally determined structure in the Protein Data
Bank (PDB), and models with less than 10 Å rmsd from
native were sampled with Rosetta (protocol described below).
Separately, two proteins were selected from the Start2Fold
database to serve as an independent verification set, to test the
scoring protocol outside of the benchmark set. Protein lengths
ranged from 56 to 179. A summary of the benchmark set is
shown in Table S1.

Model Generation. For each of the 38 proteins in the
benchmark set, 10,000 decoy models were generated using
Rosetta’s standard AbinitioRelax protocol.66−71 For this, files
containing 3-mer and 9-mer residual fragments were generated
using the Robetta Web server.72 These fragments were used as
an input in a Monte Carlo assembly, where structures were
scored using coarse-grain energy functions, followed by all-
atom relaxation and use of the Ref2015 scoring function in the
final full-atom refinement.63 Cα-rmsd from native was
calculated for each of the generated decoys for use in
benchmarking. The rmsd of only ordered secondary structured
elements (SSEs) was calculated using a custom PyMOL script
which aligned a truncated PDB of the native structure
containing only the ordered SSEs to the generated models.73

The number of 10,000 decoy models was chosen because the
AbinitioRelax protocol generally requires the generation of a
large number of models to adequately sample conformational
space. The structure with the lowest (most favorable) Rosetta
score was identified as the predicted structure.

Calculation of Flexibility and Exposure Metrics. There
is a general consensus in the HDX community that HDX rates
are dependent on the local flexibility and solvent exposure at
the amide hydrogen position.7 Thus, we have calculated
parameters which quantify these features on a per-residue basis
for use in the scoring of Rosetta decoy models based on HDX-
NMR data. All calculations were performed using Rosetta
applications. Four parameters were chosen to quantitatively
represent flexibility (hydrogen-bond energy and OS) and
exposure (NC and relative solvent accessible surface area).
To quantify flexibility, the backbone hydrogen-bond energy

(H-Bond) was extracted from the Rosetta Energy Function via
the residue_energy_breakdown application, using the follow-
ing hydrogen-bond energy terms: short-range (in sequence)
backbone−backbone interactions (hbond_sr_bb), long-range
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( in sequence) backbone−backbone interac t ions
(hbond_lr_bb), and backbone-side chain interactions
(hbond_bb_sc).63 The term involving hydrogen-bonding
interactions between side chains (hbond_sc) was discarded
for calculations performed herein due to the transient nature of
these interactions caused by side chain flexibility and for the
lack of involvement of the amide proton in these interactions.
The hydrogen-bonding energies were extracted such that the
only energy contribution was from the backbone amide group
rather than a sum of backbone amide and carbonyl oxygen
contributions. To do so, a Rosetta application (ragul_fin-
d_all_hbonds) was used to determine the donor/acceptor pair
for each residue. Using the determined pairing, the energy was
extracted only if the amide hydrogen was involved in the
interaction, rather than the carbonyl oxygen. The energies of
the terms were summed to generate the final residual
hydrogen-bonding energy, though typically, only one energy
term was nonzero. The expected trend of this hydrogen-
bonding energy is that a lower HDX rate would correlate with
a higher magnitude of the energy (i.e. more negative). As a
second measure of flexibility, OS (a measure of residue-
resolved disorder) was calculated using the Rosetta Residue-
Disorder application that calculates a window-averaged Rosetta
score to map per-residue disorder.74,75 We used the Ref2015
scoring function and a window size of 11 to quantify disorder
of residue i, based on a score average spanning from residue i −
5 to residue i + 5. Similar to hydrogen bonding, as the HDX
rate decreases, the OS is expected to become more negative.
With respect to exposure, relative per-residue solvent

accessible surface area (RelSASA) was calculated using Rosetta
scoring classes (SasaCalc). Since RelSASA decreases as
exposure decreases, the expected correlation between the
HDX rate and RelSASA is that as the HDX rate decreases, the
RelSASA is expected to trend toward zero. For NC
calculations, the Rosetta NC application (per_residue_solven-
t_exposure) was modified in order to calculate conical NC
based on the oxygen atoms neighboring the amide proton, as

the oxygen atoms can both sterically and electronically alter
the amide proton environment.16 The angle cutoffs were
chosen such that no atoms behind the amide were counted as
neighbors, with the angle contribution midpoint set at π/2
radians. The distance contribution midpoint was set to 9 Å, as
optimized previously.24 NC increases as exposure decreases;
thus, as the HDX rate decreases, the NC should increase, as
the amide becomes less accessible to deuterated solvents.

HDX Score. For each of the four calculated parameters, the
mean and standard deviations for each strength category for
the 38 native crystal structures were determined to verify
expected trends between the parameters and protection
strength categories. In order to score decoys based on
agreement with HDX data, a scoring function for each
calculated metric was developed to reward or penalize residues
of ab initio models. This was done by scoring residues in the
strong category based on the deviation of calculated metrics
from the distribution observed in the crystal structures. The
strategy was to reward residues that strongly matched
hypothesized features of strong residues and penalize residues
that did not.
If a calculated metric was within a range around the average,

as defined in eq 1 (where μ is the mean of the native
distribution of the parameter, σ is the standard deviation of the
native distribution of the parameter, and f is a scaling factor of
the standard deviation), the residue was scored as zero. Figure
1 (solid black vertical lines) shows an example (for H-bond
energy) of the range where a zero score was applied (average
shown as a dotted black vertical line).
(The value of f changed depending on the range of the

native structure distribution. e.g., the NC distribution ranged
from ∼2 to 18, and the standard deviation of the distribution
was 2.25; due to the size of the range compared to the standard
deviation, the value of f was set to 1.0 for NC, resulting in a
zero-score region of size 4.5, or approximately 28% of the total
range. Conversely, RelSASA’s distribution ranged from 0 to 1,
with a standard deviation of 0.26; if the f value was set to 1.0

Figure 1. (Top) Score function S(V) for the H-bond parameter with (blue) and without (black) an HDX-catalyzing SAP factor incorporated into
score range definition. (Bottom) Score function S(V) for the H-bond parameter with (red) and without (black) an HDX-inhibiting SAP factor
incorporated into the score range definition. Solid vertical lines mark the borders of the nonzero scoring range for their respective colors. Dotted
lines indicate the mean (black) and mean + SAP factor (blue/red).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00077
J. Chem. Theory Comput. 2021, 17, 2619−2629

2621

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00077?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00077?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00077?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00077?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00077?rel=cite-as&ref=PDF&jav=VoR


for RelSASA, the zero-score region would include all values in
a range from 0 to 0.52, which contains approximately 80% of
strong residues. To prevent this, the f value was set to 0.25 for
RelSASA, resulting in only 13% of the distribution being a
zero-score and allowing for residues with very low RelSASA to
be scored. For similar reasons, the f values for H-bond energies
and OS were set to 0.25 and 0.5, respectively.)

μ σ= ± *fRange (1)

However, outside of this range, residues of a decoy model
were rewarded or penalized based on the level of (dis)-
agreement with the distribution of the calculated parameters of
the native structure and our structural hypotheses. (The
specific function will be described in more detail at the end of
this section.) For example, following the hypothesis that a
residue within the strong category should be less flexible, if a
strong residue in a generated model had a high H-bond energy
(outside of the zero-score region), it resulted in a penalty for
that model which increases as the H-bond energy increases.
This penalty function is shown in Figure 1 (at high H-bond
energies). Conversely, a strong residue with a low (more
negative) H-bond energy (outside of the zero-score region)
would be rewarded. Figure 1 (at low H-bond energies) shows
the function used for the reward.

HDX has been shown experimentally to be sequence
dependent as well, where the level of exchange depends on
the identity of side chains adjacent to the amide in sequence.76

Thus, another feature, coined “side chain amide protection
(SAP)”, was used to influence scoring, altering the scoring
range based on sequence context. To generate the SAP factor,
the relative literature exchange rates in an acid catalyzed
environment, which were derived from the residue identity,
were added together for the i and i − 1 residues, as the side
chains for the those residues affect the HDX rate.76 For
example, the 28th residue of 1BDD, a strong residue, is an
arginine with a SAP value of −0.59, and the 27th residue is
glutamine with a SAP value of −0.27; thus, the SAP factor for
R28 in 1BDD was −0.86. This sequence-specific score range
adaptation allowed us to account for the intrinsic HDX
protection or catalysis from a local sequence when scoring
individual residues. All residual SAP values are provided in a
separate supplemental file. With the implementation of the
SAP factor, the scoring range was defined by eq 2, where SAP
is the residual SAP value, P is the SAP scaling factor (P = 0.2
for RelSASA, 3.0 for H-bond, and not applied to OS and NC),
and other terms follow the naming conventions vide supra.

μ σ= ± * + *f PRange SAP (2)

Figure 2. Distributions of calculated parameters for native structures with widths proportional to the dataset size. Horizontal line in the center of
each distribution marks the mean of the dataset.
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The scoring function outside of the zero-score region was
implemented as a set of two fade functions as qualitatively
described previously (function shown in eq 3), graphically
depicted in Figure 1 for H-bond with examples of HDX-
catalyzing SAP (top) and HDX-inhibiting SAP (bottom, where
V is the calculated parameter value (NC, OS, RelSASA, or H-
bond energies), C is the nearest range cutoff value (μ ± σ*f +
SAP), and M is the nearest extreme value of the distribution. If
the SAP factor indicated that neighboring side chains were
HDX-catalyzing groups, the nonzero scoring cutoffs would
shift such that the penalty region expanded (Figure 1, top,
vertical blue lines), while HDX-inhibiting groups would
expand the reward region (Figure 1, bottom, vertical red lines).
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The HDX score was defined as a weighted sum of the
Rosetta score and the score components for solvent
accessibility (NC, RelSASA) and flexibility (OS, H-bond) as
shown in eq 4, where RS is the Rosetta score, S(V) is the score
derived from each category, and all other variables follow
naming conventions from above. The results of this scoring
were relatively stable with respect to different combinations of
weights.

= + * + * +

* + *

S S

S S

HDX score RS 1 (NC) 5 (RelSASA) 5

(OS) 30 (Hbond) (4)

Pnear (a measurement of how funnel-like a score vs rmsd
distribution is) was calculated for each of the distributions
using the Rosetta score without HDX data incorporated and
using the HDX score (eq 4).77 Pnear values can range from 0
(indicating a poor funnel with several low-energy models at a
range of RSMDs from native) to 1 (a perfect funnel with a
unique low-energy conformation in the near-native state). For
the calculation of Pnear, λ was set equal to 2.0 and KBT was set
equal to 1.0.
Confidence Metric. To determine confidence in model

selection, a confidence metric was developed based upon
knowledge independent of the native structure. The confidence
metric was defined as the average rmsd of the top 100 scoring
models to the top scoring model. This was chosen because a
low average rmsd indicated high structural similarity for the
top scoring models. We hypothesized that this would suggest a
favorable energy landscape and thus better scoring of native-
like structures. Therefore, if the confidence metric was less
than 5 Å, predictions were identified as high confidence, and if
the metric was above 5 Å, predictions were identified as low
confidence.

■ RESULTS AND DISCUSSION
Experimental Data from Native Structures Follow

Hypothesized Exposure and Flexibility Trends. Given the
consensus in the HDX community of the influence of both
exposure and flexibility on HDX rates, the parameters to
quantify these residual properties were calculated from the
native crystal structures for each of the 38 benchmark proteins
to determine if the relationship between strength categories
matched our hypotheses.7 Figure 2 depicts the distributions of

all calculated parameters (NC, RelSASA, OS, and H-bond) as
a function of residual HDX protection. Each of the averages of
the distributions followed the hypothesized trends, where the
strong category corresponded to the lowest exposure and
flexibility. The averages for the strong category for the
parameters were 11.41 (NC), 0.23 (RelSASA), −2.39 (OS),
and −1.36 (H-bond).
Scoring using HDX was performed solely using residues

within the strong category for three reasons. First, the size of
the dataset for the strong category was significantly larger than
other strength categories, with 678 residues in the strong
category compared to 165 and 267 residues in the weak and
medium categories, respectively. Additionally, while a weak
residue could be in a highly dynamic region where the residue
could change from exposed to buried via random motion, a
strong residue must be resistant to exchange for the majority of
the experiment, resulting in a more reliable metric to generate
HDX restraints for modeling. Finally, we observed minimal
overlap between the strong category and the weaker categories,
especially in the extremes of the distribution, which were used
in the scoring algorithm; this provided a higher confidence that
the distribution which the scoring is based upon is unique to
the strong category rather than one where a value of a
parameter could be weak or strong.

Initial Rosetta Model Generation Yielded a Large
Distribution of High and Low RMSD Models. For each of
the 38 proteins selected from the Start2Fold database,65

10,000 models were generated using Rosetta’s standard
AbinitioRelax protocol.66−70 While near-native structures
(rmsd < 3 Å) were predicted using the Rosetta score without
HDX data incorporated for 11 proteins, the average rmsd of
the predicted structure was 6.68 Å (Table S1). The rmsd of the
predicted structure was greater than 5 Å for 18 benchmark
proteins and greater than 10 Å for 8 proteins. However, for 32
of the 38 proteins, at least one model with rmsd less than 5 Å
was sampled with Rosetta ab initio, and for 22/38, at least one
model with rmsd less than 3 Å was sampled. This indicated
that near-native structure selection was possible for a majority
of the benchmark set if an additional score was used. Pnear (a
measurement of how funnel-like a score vs rmsd distribution
is) values were generally low, indicating that models of high
and low rmsd had similar energies, with an average Pnear of
0.136.

Individual HDX Parameter-Based Scoring Improved
Model Selection Accuracy. We developed the HDX scoring
function as a linear combination between the Rosetta Ref2015
scoring function and our newly developed terms that quantify
the agreement with HDX data based on exposure and
flexibility parameters. If, in a generated model, the exposure
or flexibility parameters of residue agreed with the distribution
of the parameters in the X-ray crystal structures, and the
residue was rewarded, with those opposite penalized. The
score was dependent upon the level of (dis)agreement to the
distribution. Additionally, the nonzero scoring range was
modulated by the SAP factor, which accounted for sequence
context by biasing scoring toward reward or penalty depending
on the side chains immediately neighboring the amide proton.
Before incorporation into the linear combination, each of the
individual parameters was used to score based on HDX rate
agreement. In doing so, each of the parameters was analyzed to
determine whether scores based on the hypothesized trends
could be used to improve model selection alone, as well as give
insights into which, if any, of the parameters were the most
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beneficial. Moreover, the parameters needed to be tested to
determine which would benefit from the inclusion of the SAP
factor.
Results of each scoring method are listed in Table 1. Scoring

using a static scoring range cutoff based solely upon the mean

and standard deviation of the distribution of the parameters in
the native structures (without the SAP factor) were somewhat
unimpressive. We hypothesized this to be due to the lack of
sequence context, where an amide neighboring two glycine
side chains would be treated the same as one surrounded by a
phenylalanine and tyrosine, neglecting the differences in the
steric and electronic environment between side chains. Thus,
the SAP factor was introduced to create a sequence dependent
scoring range that would account for a residue with minimal
neighbors being sterically or electronically hindered from HDX
due to its neighboring side chains in sequence rather than the
full environment measured by the parameters.
Each parameter was tested with (eq 2) and without (eq 1)

including sequence context to modify the scoring range cutoffs,
as shown in Table 1. Model selection was improved when SAP
was included in the RelSASA and H-bond-based scoring.
Conversely, NC and OS methods did not benefit from
including the SAP factor.
The ineffectiveness of the SAP factor for NC- and OS-based

scoring was initially surprising and contrary to our hypothesis
that a sequence dependent scoring range would improve model
selection. However, this effect can be explained by elements
that determine NC and OS compared to H-bond and
RelSASA. NC is dependent on the location of oxygen atoms
within a hemisphere surrounding the amide proton, with the
contribution to the NC degrading with respect to the distance
and angle to the amide NH vector. Similarly, OS is calculated
by a window-averaged Rosetta per-residue score, dependent on

the five residues on the N- and C-terminal sides of the scored
amide and each of their local environments. However, SAP is
based solely on the i and i − 1 side chains, far closer in both
space and sequence than the NC and OS determinants. Thus,
the inclusion of SAP to these terms did not benefit scoring.
Conversely, H-bond and RelSASA are inherently dependent on
the local environment in the location of i and i − 1 residues.
This is supported by the improvement in the RelSASA- and H-
bond-based scoring when the SAP factor was included, as these
parameters are determined by the scored residue alone and the
amide proton’s H-bond partner, respectively. Thus, for all
HDX scoring methods, the SAP factor was excluded from OS-
and NC-based scoring methods, while it was included in H-
bond- and RelSASA-based scoring, as indicated in Table 1.
Further comparison of the results of SAP inclusion can be
found in the Supporting Information.
Figure 3 shows the results of scoring using the individual

parameter-based score compared to using the Rosetta score

without HDX data incorporated. In general, model selection
improved for each of the scoring methods, with an average
improvement of 0.71 Å. Importantly, while some parameter-
based scoring resulted in an increase in selected model rmsd,
this deficiency was not shared by other parameters. For
example, if the rmsd of the selected model was higher when the
NC scoring term was used, the selected model had the same or
better rmsd when scored based on another parameter. The
individual parameters were categorized based on whether they
quantified flexibility (OS and H-bond) or solvent exposure
(NC or RelSASA). The scoring results of the combination of
these terms are discussed in the Supporting Information,
Figure S1, and Table S2. In general, these paired terms
performed slightly better than the terms separately.

Combination of All Four Score Terms Produced the
Largest Improvement in Model Selection. The final HDX

Table 1. Summary of Results following Scoring for the
Neighbor Count (NC)-, Relative Solvent Accessible Surface
Area (RelSASA)-, Order Score (OS)-, and Hydrogen Bond
Energy (H-Bond)-Based HDX Scoring, with and without
the Inclusion of the SAP Factor in the Definition of the
Score Range (eqs 1 and 2)a

without SAP

weight
applied
to

Rosetta
score

average
Δrmsd
of all

proteins
(Å)

average
Δrmsd of

proteins with
changes in
rmsd (Å)

number of
proteins
with rmsd
improved

number of
proteins
with rmsd
increased

NC 10 −0.73 −2.90 10 0
RelSASA 5 −0.74 −1.41 8 5
OS 6 −0.22 −1.92 4 0
H-bond 10 −0.02 −0.11 6 3

with SAP

weight
applied
to

Rosetta
score

average
Δrmsd
of all

proteins
(Å)

average
Δrmsd of

proteins with
changes in
rmsd (Å)

number of
proteins
with rmsd
improved

number of
proteins
with rmsd
increased

NC 10 −0.63 −2.22 9 2
RelSASA 5 −0.93 −1.61 9 4
OS 6 −0.20 −1.39 5 0
H-bond 10 −0.94 −4.00 9 0

aA change in rmsd is defined as the magnitude of selected model
rmsd change by greater than 0.5 Å.

Figure 3. Selected model rmsd for the Rosetta prediction and scoring
that incorporated HDX data, using NC (top, left), RelSASA (relative
solvent accessible surface area) (top, right), OS (order score)
(bottom, left), or H-Bond (amide hydrogen bonding energy)
(bottom, right) as the parameters used to determine agreement.
The SAP factor was included in only the RelSASA and H-bond
scoring (right). Markers below the y = x line indicate a protein with
an improvement in the selected model rmsd with those above
indicating the worsening.
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score (eq 4) was composed of a weighted sum of the individual
terms that measure exposure and flexibility. The weighting of
the terms skewed highly toward the hydrogen bonding
component, one of the measurements of residual flexibility.
This is to be expected due to the mechanism of HDX; if the
amide proton is engaged in an energetically favorable hydrogen
bond, it is less likely to undergo reactions requiring electron
transfer. Thus, the presence of a highly stabilizing hydrogen
bond is known to correlate strongly to the exchange rate and
thus the experimental HDX category.78

Figure 4A shows the selected model rmsd when using the
Rosetta score compared to the HDX score. The average
improvement of the rmsd of the best scoring model was 1.42
Å, with seven proteins improving by over 4 Å. The selected
models for four of these proteins using the Rosetta score and
the HDX score are overlaid with the native structure in Figure
4B. When using the HDX score, for proteins with greater than
0.5 Å rmsd difference between selected model with and
without HDX data, 12/15 improved, with an average
improvement of 3.63 Å. For two proteins, the top scoring
model using the HDX score was the best possible model from
the decoy pool (lowest rmsd), including one case where the
rmsd of the predicted structure improved from 14.93 to 3.77 Å
(Table S1) when HDX data was included. Additionally, while
the overall selected model rmsd improved by 1.42 Å, the
average rmsd of residues within ordered secondary structure
elements improved by 0.92 Å, with a maximal improvement of
10.48 Å, indicating that the improvement in rmsd was not
solely in disordered regions. These regions are important to
protein function yet highly dynamic compared to core regions
which are less likely to have major disruptions in solution and
are vital to the protein structure as well.79−81 However, ideally,
incorporating the HDX data would improve the model
selection for every protein, such a result would require far
less sparse experimental data, removing the benefit of pairing
high-throughput computation and experimentation. However,
this sparse HDX NMR dataset was able to improve prediction
in cases when the score distribution from the initial prediction
without experimental data was close to accurate.

Not only did the top scoring model improve when HDX
data were included, the average rmsd of the top 10 scoring
models also improved from 6.97 Å using the Rosetta score to
6.30 Å, shown in Figure S2 for all proteins. While only one of
the average rmsds increased by greater than 0.5 Å, the average
rmsd of the top 10 scoring models improved by more than 0.5
Å for sixteen proteins, indicating strong model selection
improvement. Figure S3 shows the rmsd distribution for the
top 10 scoring models for all proteins in the dataset. When
using the HDX score, the rmsd distribution shifted toward a
lower rmsd compared to using the Rosetta score without HDX
data incorporated, with a marked improvement in the number
of models in the sub-5 Å range. Figure 4C shows the score
versus rmsd distributions for three proteins for which we
observed significant improvement in rmsd of the top 10
scoring models upon application of the HDX score. Among all
distributions in the benchmark set, Pnear improved by 7% when
the HDX score was used compared to when the Rosetta score
was used, another indication that model selection improve-
ment was not limited to only the top scoring model.
While the native structures and thus rmsds were known for

the models generated within the benchmark dataset, this
knowledge is unavailable for true ab initio prediction,
motivating the establishment of a confidence metric which
can be used as a marker of a probable near-native model
generation. To this end, we developed a confidence metric, the
average rmsd of the top 100 scoring models to the top scoring
model when using the HDX score. Figure 5 shows the selected
model rmsd as a function of our confidence measure. If the
average rmsd to the top scoring model was less than 5.0 Å
(indicating strong funneling and thus high confidence), the
average selected model rmsd was 2.54 Å. The rmsd of the
selected model for all 18 proteins identified by the metric as
high confidence was less than 5 Å. Additionally, all proteins
with a selected model rmsd below 2.5 Å were identified as high
confidence. Contrasting this, the average rmsd of proteins in
the low confidence region was 7.70 Å, with 14 of the 20
proteins selecting a model with an rmsd of 5 Å or above. The
distinct difference in model selection quality between the high
and low confidence regions indicates that the confidence

Figure 4. Results of the 38 protein benchmark set using the HDX score. (A) Selected model rmsd for the Rosetta prediction and when scoring with
the HDX score. Markers below the y = x line indicate a protein with an improvement in selected model rmsd with those above indicating the
worsening. Points in gold are represented in (B,C). (B) Lowest scoring models (red) using the Rosetta (left) and HDX (right) scores overlaid with
the X-ray crystal structure (blue). (C) Rosetta (left) and HDX (right) score vs rmsd plots of three proteins that benefited by use of the HDX score.
The lowest scoring model is marked by a black star.
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measure is a powerful tool for enabling positive identification
of near-native models, even in the absence of a known native
structure.
HDX Score Improved Model Selection for Proteins

Outside of the Benchmark Set. To ensure broader
applicability, two proteins were selected from the Start2Fold
database for independent verification separately from the
benchmark set. These proteins (PDB IDs: 1A2P and 1HRC)
matched the requirements of the benchmark set (monomeric
in solution, had an experimentally determined structure in the
PDB, and models with less than 10 Å rmsd from native were
sampled with Rosetta). The HDX score was calculated for the
proteins as stated above. When using the Rosetta score, the
selected model rmsd from native for 1A2P was 12.87 Å and for
1HRC was 13.34 Å. However, using the HDX score, 1A2P
remained approximately the same, selecting a model with an
rmsd from native of 13.09 Å, while 1HRC improved to 4.41 Å,
selecting the best model generated in the pool. The selected
models for 1HRC using the Rosetta score and HDX score
overlaid with the X-ray crystal structure are shown in Figure 6.
Score versus rmsd distributions are shown in Figure S4.

■ CONCLUSIONS
HDX rates have been studied for decades, primarily to
characterize the dynamics of proteins which had already been
structurally elucidated experimentally. Though ab initio protein
structure prediction has made major strides in a similar time-
frame, moving from computing small peptides to deep-learning
structural prediction, this too often requires a broadly
inaccessible amount of computational power or conjunction
with expensive and difficult experimentation.2,82,83 We sought
to eliminate this burden by utilizing data from high-
throughput, broadly accessible HDX experiments that are too
sparse for structure determination themselves, but, as we have
demonstrated, highly useful when incorporated into computa-
tional analysis and structural prediction.
To our knowledge, we are the first to incorporate sparse

HDX-NMR data into computational ab initio protein structure
prediction. By incorporating HDX data into Rosetta scoring,
the rmsd of the selected model improved by 1.42 Å on average;
of the 15 proteins whose rmsd changed by greater than 0.5 Å,
12 improved with an average improvement of 3.63 Å. The
rmsd of the selected model also improved for core residues in
ordered secondary structure elements by 0.92 Å, with an
improvement as high as 10.48 Å. Additionally, a confidence
metric was developed to determine the confidence of
identifying native-like predicted structure. The rmsd of the
selected model for all 18 proteins in the high-confidence region
was less than 5 Å. Improvement in model selection with a
strong confidence measure demonstrates that protein structure
prediction with HDX-NMR is a powerful tool in facilitating
protein structure determination.
While HDX-MS has recently gained popularity as a method

of HDX rate determination, the large dataset available via the
Start2Fold database made HDX-NMR ideal for the develop-
ment of a scoring system. Importantly, the scoring algorithm
developed from this database paves the way for expansion to
HDX-MS data as well as multimeric structural prediction.
While HDX-MS typically generates fragment-resolved (as
opposed to residue-resolved) data, the HDX principles are
maintained regardless of the experiment, making HDX-MS a
prime target for adaptation of the scoring algorithm. Mass
spectrometry is typically far higher throughput than NMR
experimentation, which would increase the overall speed of this
prediction method. Moreover, MS experiments are not as
stringently bound to protein size limitations as NMR
experiments, which tend to be unviable for proteins larger
than 50 kDa unless specialized sampling is used, which has its
own set of limitations.84 Removing the size limitation allows
for studies of complex structures via differential HDX-MS
experiments. Future work may focus on expanding our scoring
algorithm to HDX-MS for monomeric structure prediction and
protein complex structure prediction which are crucial to the
vast majority of biological processes.
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The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00077.

Performance of individual and paired components of the
final score term; a summary of the proteins in the
benchmark set; and results for the top 10 selected
models using the HDX score and the independent
verification test (PDF)

Figure 5. Plot of the confidence metric (the average rmsd of the top
100 scoring models to the selected model using the HDX score) vs
rmsd of the selected model following scoring using the HDX score,
where the solid line indicates the confidence cutoff of 5.0 Å such that
proteins with an average rmsd to the left of the line have a high
confidence for increased model selection accuracy.

Figure 6. Selected models (red) using the Rosetta score (left) and
HDX score (right) overlaid with the X-ray crystal structure (blue).
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