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ABSTRACT: A variety of techniques involving the use of mass spectrometry (MS) have
been developed to obtain structural information on proteins and protein complexes. One
example of these techniques, surface-induced dissociation (SID), has been used to study
the oligomeric state and connectivity of protein complexes. Recently, we demonstrated
that appearance energies (AE) could be extracted from SID experiments and that they
correlate with structural features of specific protein−protein interfaces. While SID AE
provides some structural information, the AE data alone are not sufficient to determine
the structures of the complexes. For this reason, we sought to supplement the data with
computational modeling, through protein−protein docking. In a previous study, we
demonstrated that the scoring of structures generated from protein−protein docking
could be improved with the inclusion of SID data; however, this work relied on
knowledge of the correct tertiary structure and only built full complexes for a few cases.
Here, we performed docking using input structures that require less prior knowledge,
using homology models, unbound crystal structures, and bound+perturbed crystal structures. Using flexible ensemble docking (to
build primarily subcomplexes from an ensemble of backbone structures), the RMSD100 of all (15/15) predicted structures using the
combined Rosetta, cryo-electron microscopy (cryo-EM), and SID score was less than 4 Å, compared to only 7/15 without SID and
cryo-EM. Symmetric docking (which used symmetry to build full complexes) resulted in predicted structures with RMSD100 less
than 4 Å for 14/15 cases with experimental data, compared to only 5/15 without SID and cryo-EM. Finally, we also developed a
confidence metric for which all (26/26) proteins flagged as high confidence were accurately predicted.

■ INTRODUCTION

Mass spectrometry (MS) can be used to elucidate elements of
protein structure using a variety of techniques. This is of great
significance because the determination of protein structure can
markedly facilitate the development of new therapeutics
through a variety of different approaches.1 Furthermore,
structural knowledge of protein complexes is particularly
important because approximately 86% of proteins interact
with other proteins to form complexes in vivo.2 MS provides
many advantages such as the ability to collect data using small
sample sizes (typically μLs of the sample at low μM
concentrations), on complex mixtures, and on both small
and large protein systems (up to megadalton).3−5 Some
examples of MS-based methods that can provide structural
information for proteins and complexes are surface-induced
dissociation (SID),6−13 chemical cross-linking (XL),14−18

covalent labeling (CL),19−24 and ion mobility (IM).25−28

However, the data collected from MS experiments are
insufficient to fully elucidate protein structure, although the
information gained (masses of the intact complex and its
subunits, post-translational modification [PTM] information,
stoichiometry and topology, ligands bound) can be informative
and can help guide or allow better interpretation of data from
other structural biology tools.

High-resolution experimental protein structure determina-
tion approaches such as X-ray crystallography, nuclear
magnetic resonance (NMR), and cryo-electron microscopy
(cryo-EM) exist; however, each method has significant
shortcomings with current technology. With the exception of
cryo-EM, these methods are especially challenging when
considering large complexes, and thus alternative approaches
such as native MS must frequently be used. As alternatives,
some of the higher resolution approaches can be used at lower
resolutions, such as when cheaper, less extensive NMR
experiments are performed,29−31 when low-resolution density
maps are obtained by cryo-EM,32−36 or when a technique
known to be lower resolution is used, such as small-angle X-ray
scattering (SAXS),37−39 etc. However, the sparse data obtained
from these types of experiments are typically incomplete, noisy,
or sometimes inaccurate.
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While data obtained from these lower resolution methods
are structure-dependent, the provided information is not
enough to fully determine the coordinates of all atoms in the
protein complex. One way to extract more structural
information from these data is to combine them with
computational methods. Many different approaches that use
computational methods to supplement the information
obtained from sparse data for structure prediction have been
developed.13,16−18,20−24,26−44 Computational methods to pre-
dict tertiary structure from sequence have been developed as
have protein−protein docking methods, which can be used to
predict quaternary structure specifically when working with
protein complexes.
As previously stated, MS can be used to obtain structural

information on proteins. While many methods have been
developed to predict structures using XL, CL, and IM, we have
demonstrated that surface-induced dissociation (SID) can be
used to collect structural data as well, specifically for protein

complexes.11,12 In SID, protein complexes are softly ionized in
the gas phase and accelerated toward a surface. Upon collision
with the surface, the complexes can dissociate into monomers
or subcomplexes, breaking the noncovalent interactions of the
interfaces, and the resulting products are analyzed with MS.
The experiment can be repeated over a range of acceleration
energies to obtain an overall pattern of breakage, resulting in
energy-resolved mass spectrometry (ERMS) plots. From these
analyses, SID has been used to extract information on
stoichiometry and connectivity.10,45,46 While SID has been
incorporated into multiple different instrument platforms from
different vendors in work that is ongoing, including quadrupole
time-of-flight, Orbitrap, and FT ICR instruments, this has been
limited previously to in-house modified instruments plus a few
beta test situations.47−50 Recently, SID has become commer-
cially available on a high-resolution ion mobility-quadrupole
time-of-flight instrument (Waters Select Series Cyclic IMS)

Figure 1. Overview of docking approach. (A) Input structures for docking were acquired by building homology models, obtaining unbound crystal
structures, and extracting structures from bound crystal structures (followed by backbone perturbation in panel B). (B) Extra backbone sampling
was performed on all input structures via Rosetta relax, backrub, and normal mode analysis (NMA), respectively. Ensemble docking (left) was
performed by pooling the different backbones and docking with flexibility. Symmetric docking (right) was performed rigidly but with each
backbone structure as a starting point for separate trajectories. (C) Scoring was performed using three terms: Rosetta interface score (Isc, score
without including experimental data), Rosetta cryo-EM score using noisy, low-resolution density maps, and the appearance energy (AE)-dependent
SID score.
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increasing the potential applications of SID for protein
structural studies by a broader range of users.
We have previously demonstrated that weaker interfaces

break more frequently than stronger interfaces at low
acceleration energies.12 By extracting the appearance energy
(AE, lab-frame energy at which specific interfaces begin to
break, defined in our previous work as based on 10% intensity
of the precursor), a link between SID data and protein
structure was determined. (This arbitrary value of 10% [E10]
was used to avoid odd onset behavior associated with
nonuniform distributions of energy in different precursors
prior to surface collision and different onset slopes. We wanted
to avoid use of E50 for our particular application because at
50% dissociation, multiple competitive pathways can overlap
for higher oligomeric states of a given complex.) We
hypothesized that interfaces with more favorable interactions
(i.e., large interface area, more hydrogen bonds, salt bridges,
etc.) would result in higher AE. From this, we developed
models to predict the AE from structure. Using an AE
prediction method, we showed that the information contained
in the model was sufficient to discriminate between nativelike
and non-nativelike structures.13 To do this, we redocked
bound crystal structures to generate a set of complex structures
using RosettaDock, which varied significantly in structural
accuracy. Using a scoring function derived from the difference
between predicted and experimental AE for each structure, we
showed that the SID AE data could indeed facilitate the
discrimination between good and bad poses. While these
previous results were very encouraging, ultimately, there were a
few remaining shortcomings. Examples of shortcomings are as
follows: we used tertiary structures from crystal structures of
the complexes as input into the docking, we performed rigid
docking only, we only attempted to build structures of entire
complexes in 3/9 cases, we identified success based on
obtaining a good structure in the top 3 scoring models, and
finally, accurate structures were only identified in ∼66% of
cases.
In addition to SID, cryo-EM can be used to obtain sparse

data for protein complexes. While it is possible to obtain high-
resolution density maps from cryo-EM, sometimes only low-
resolution density maps are reconstructed, requiring further
supplementation using computational methods. We hypothe-
sized that data obtained from SID and low-resolution cryo-EM
would be complementary for a variety of reasons. For one,
both methods are much higher throughput than full structure
determination using either X-ray crystallography or NMR as
they require relatively small amounts of sample. Additionally,
both methods are compatible with large protein complexes,
while X-ray crystallography and NMR have significant size
limitations, making them incompatible for very large systems.
Finally, we hypothesized that SID and cryo-EM provide
orthogonal structural information. SID AE is dependent on
interface composition, while cryo-EM low-resolution density
maps are dependent on the overall shape of the complex.
In this study, we performed a plethora of docking

simulations to demonstrate the ability of SID to accurately
predict full complex structures in realistic scenarios, essentially
overcoming the noted shortcomings from our previous
docking study. Here, we combined SID AE with simulated
cryo-EM low-resolution density maps to predict structures of
protein complexes using protein−protein docking. Rather than
simply using bound crystal structures, i.e., structures in which
all monomers are bound to form a complex, which required

knowledge of the complex structure for input into docking, we
obtained input tertiary structures in multiple different ways:
homology models (HM), unbound (monomer or subcomplex)
crystal structures, and bound+perturbed crystal structures. We
then performed docking on these input structures two different
ways. First, we performed ensemble docking using Rosetta-
Dock, which allowed for a flexible backbone during the
docking based on an ensemble of generated input structures.
Next, we performed rigid symmetric docking using Rosetta
SymDock51 with the same ensemble of input structures to
build whole complexes. This symmetric docking approach was
the first docking strategy with SID to routinely build full
complexes. Scoring and model selection were based on scores
from Rosetta, cryo-EM, and SID. An overview of the method is
shown in Figure 1. For ensemble docking, the RMSD100 of all
(15/15) predicted structures using the combined Rosetta,
cryo-EM, and SID score was less than 4 Å, compared to 7/15
without including experimental data. For symmetric docking,
the RMSD100 of the predicted, full complex structures using
the combined score was less than 4 Å for 14/15 cases,
compared to 5/15 without cryo-EM and SID.

■ METHODS
Data Set. The data set used for protein−protein docking

with SID was described previously.13 In short, the data set
contained triose phosphate isomerase (homodimer, 8TIM),
streptavidin (homotetramer, 1SWB), hemoglobin (heterote-
tramer, 1GZX), cholera toxin B (homopentamer, 1FGB), C-
reactive protein (homopentamer, 1GNH), and serum amyloid
P (homopentamer, 1SAC). For the complexes in the data set,
experimental SID AE values for specific interfaces were
extracted from ERMS plots and normalized by the number
of intersubunit protein−protein interfaces as described
previously.12,13 Simulation of the 14 Å resolution density
maps with noise is described in the SI.

Input Structures for Docking. Rather than solely
redocking crystal structures for full complexes, here, we
obtained docking input structures three different ways, which
are visually depicted in Figure 1A and described in further
detail in the SI. In short, when possible, we built homology
models, used unbound crystal structures, and extracted bound
crystal structures.
Rather than performing completely rigid docking simu-

lations with single input structures, we performed extra
backbone sampling for all inputs prior to docking. For each
input structure, 10 models were built using Rosetta relax,
normal mode analysis (NMA), and backrub, resulting in a total
of 30 models with slightly different backbones. These
structures were input into docking as described in the
following sections.

Ensemble Docking. Using a somewhat similar approach
to our previous rigid docking method with SID,13 we
performed docking in order to build (sub)complexes
corresponding to each interface where AE was extracted.
However, here we performed ensemble docking, where
backbones were allowed to swap during the simulation from
a pool of inputs. As described in the SI, these docking
simulations were performed for all of the different types of
input structures: 5 for HM, 2 for unbound, and 8 for bound
+perturbed. A list of the specific interfaces and partners built
for each input structure type is provided in Table S1.
Additionally, for each input structure, the 30 extra backbone
structures were pooled prior to docking. The orientation of the
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mobile chain was randomized using the -randomize2 flag.
Ensemble docking in RosettaDock52 was performed where the
prepacked monomers were allowed to swap during the
simulation, allowing for backbone flexibility based on the
sampled tertiary structures. For each input structure, 10,000
docked structures were built. The workflow for ensemble
docking is shown in Figure 1B (left).
Symmetric Docking. In addition to ensemble docking,

symmetric docking was also performed to build full complexes
in all cases based on the symmetry derived from stoichiometry
provided by SID data. De novo symmetry was used when
possible; however, due to poor observed sampling when using
D2 symmetry, complexes for streptavidin (1SWB and 5N8T)
were docked using noncrystallographic point symmetry. A list
of applied symmetries for each input structure is provided in
Table S2. Note that for hemoglobin (1GZX, dimer of
heterodimers) in both HM and bound+perturbed, the input
heterodimer was the predicted structure from the ensemble
docking (using the combined score described in the following
section) and was subsequently docked with C2 symmetry to
form the heterotetramer. A definition of C2 symmetry was also
used in all other cases where dimers were used to build
tetramers (2HBC, 1GZX_dimers, and 1SWB_dimers). For
symmetric docking, backbones of input structures were not
allowed to swap during the simulations; therefore, separate
trajectories of 500 structures for each of the 30 inputs were
performed for a total of 15,000 docked structures. The
workflow for symmetric docking is shown in Figure 1B (right).
Scoring Strategy. Structures from both the ensemble and

symmetric docking were scored using the Rosetta interface
score (Isc). Then, cryo-EM and SID scores were subsequently
included in the overall scoring. The components correspond-
ing to the score terms are visually depicted in Figure 1C.
Rosetta Isc represents the Rosetta energy of the interface, and
the model with the lowest Isc represents the predicted model
using Rosetta without experimental data. The Rosetta cryo-EM
score (elec_dens_fast) was calculated based on the generated
low-resolution density maps with noise.36,53,54 Calculation of
SID scores was described in-depth previously.13 In short, for
each docked structure, the AE was predicted using the model
(with rigidity factor [RF]12 specifically calculated and averaged
for the ensemble of input structures) and compared to the
experimental AE. Structures were scored based on this
difference using a fade function, with no penalty assigned to
structures for which the predicted AE was within 100 eV of the
experimental lab frame energy. If multiple AEs were available
for a complex where all interfaces corresponding to the
aforementioned AEs were built, the SID score used was the
average SID score for those AEs. For the combined scores (Isc
+cryo-EM and Isc+cryo-EM+SID), each individual score was
first normalized based on the maximum observed absolute
value for the score of the docked structures for that protein.
The total score was a weighted sum of the three normalized
terms, as shown in eq 1. The weights (wIsc, wcryo‑EM, and wSID)
used for ensemble and symmetric docking are provided in
Table S3. We always chose the lowest scoring model as the
predicted structure.

= + +‐ ‐Score w Isc w Score w ScoreIsc ryo EM cryo EM SID SIDc (1)

Confidence Metric. A confidence metric was calculated in
order to classify the prediction for each protein as either high
or low confidence without the knowledge of the native
structure. To derive the confidence metric, we first calculated

RMSD (all atom, refined, and aligned) of each model with
respect to the top overall scoring model for each protein. The
confidence metric was defined as the Pnear (λ = 10.0 and kBT =
2.0, using the RMSD values with respect to the top scoring
model). We hypothesized that when accurate predictions
(RMSD100 of top scoring model less than 4 Å) were made, a
larger number of favorably scoring models would be more
similar to the top scoring model and superior funneling would
be observed, thus Pnear (with respect to the top scoring model)
would be high. Proteins for which Pnear was greater than 0.1
were identified as high confidence.

■ RESULTS AND DISCUSSION
Previous Work Showed SID AE Could Improve Model

Selection. While SID has typically been used to determine
stoichiometry and connectivity for protein complexes, we
established previously that a structurally dependent measure,
appearance energy (AE), for protein−protein interfaces could
be extracted from SID.12 We observed correlations between
AE and interface features such as size and other measures
relating to interface energy in Rosetta. From these correlations,
methods to predict AE from the structure were developed. AE
prediction methods were then used to score sets of docked
structures based on the agreement between predicted and
observed AE for each structure.13 We showed that the
structural information contained in the prediction model was
sufficient to facilitate the discrimination between nativelike and
non-nativelike poses. When the SID scoring function was used,
for 3/9 cases, the RMSD of the selected model improved by
more than 18 Å with respect to when no experimental data
were included, and the inclusion of SID was never detrimental.
We observed that the SID scoring function generally scored a
variety of structures equally well (notably including many of
the top models) but penalized the majority of bad structures.
While this study laid the foundation of SID usage in protein
complex structure prediction, showing for the first time that
SID data could facilitate model selection for a diverse set of
docked poses, there were a few shortcomings in our initial
implementation that we addressed here. Originally, the tertiary
structure obtained from crystal structures of the complexes was
used as input into the rigid docking. Additionally, for the
majority of our docking simulations (6/9), we predicted
structures of subcomplexes rather than entire complexes. For
these reasons, we sought to perform a set of docking
simulations that was much more realistic, by modifying the
input structures to decrease the amount of knowledge required
and also building structures of the entire complexes in more
cases.

Different Strategies for Obtaining Input Structures
for Docking Require Less Prior Knowledge. To perform
more realistic docking simulations and thus reduce the
necessary prior knowledge for docking by not relying on the
bound structures, we performed docking using alternative
input structures. First, when possible, we built homology
models of monomers. The monomer building blocks were
accurately built (RMSD < 2 Å) using RosettaCM multi-
template modeling for the following five proteins: 1GNH
(RMSD of 1.36 Å), 1GZX (chain A: 1.70 Å, chain B: 1.74 Å),
1SAC (1.10 Å), 1SWB (0.59 Å), and 8TIM (1.12 Å). Next, we
used unbound structures for the following two proteins:
hemoglobin (heterodimer, 2HBC, corresponding to a sub-
structure of 1GZX) and streptavidin (monomer, 5N8T,
corresponding to a subunit of 1SWB). Unbound input

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.0c05468
Anal. Chem. 2021, 93, 7596−7605

7599

https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.0c05468/suppl_file/ac0c05468_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.0c05468/suppl_file/ac0c05468_si_001.pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.0c05468?rel=cite-as&ref=PDF&jav=VoR


structures were not available for the remaining proteins in the
benchmark set. Unsurprisingly, the RMSD of both unbound
input structures (with respect to bound) was small (1.48 Å for
2HBC to 1GZX and 0.51 Å for 5N8T to 1SWB). Finally, for
all proteins in the data set, we perturbed the backbones of the
bound structures using several backbone-altering methods so
as to not run the simulation with the tertiary structure that
exactly matched the bound crystal structures. In addition to
adjusting the backbones of bound structures, the same
approach was used for all HM and unbound input structures
with the purpose of adding flexibility into all docking as well.
For each input structure, different backbones were sampled by

generating 10 models each using Rosetta relax, backrub, and
normal mode analysis (NMA), for a total of 30 models.
Overall, when using these sampling methods, the structures did
not change drastically, with RMSDs comparing inputs and
outputs of typically ∼0.5 Å and rarely above 1.5 Å, as shown in
Figure S1. These ensembles of structures with slightly different
backbone conformations were input into docking as described
in the following sections.

Scoring Strategy Combines SID and Cryo-EM. In
addition to using data from SID to score structures, here,
simulated low-resolution cryo-EM density maps with noise
were also included in scoring. To evaluate the complex

Figure 2. (A) All atom, aligned RMSD100 of the top scoring models for ensemble docking when including no experimental data (Isc, gray), using
cryo-EM data (blue), and when including both SID and cryo-EM (red). Cartoon complexes are shown for each, with the portions built in each
simulation depicted in color. The bottom of the solid gray lines indicates the overall best model built. Gray points are always on top of the vertical
gray lines. In all cases, RMSD100 of the predicted structure using the combined score was less than 4 Å (only 7/15 without experimental data). (B)
Dependence on input structure category. Metrics shown are fnat, LRMSD, iRMSD, and DockQ score. Overall, the results were best with all
experimental data. In general, bound+perturbed performed the best followed by unbound and HM, respectively. (C) Predicted structures for three
cases (1GZX, HM; 5N8T, unbound; 1SAC, bound+perturbed) without (gray) and with (red) experimental data (native shown in green).
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structure prediction when including experimental data, scoring
was performed using three different scoring functions: Rosetta
interface score (Isc, i.e., score with no experimental data
included), Isc with Rosetta cryo-EM score, and a combined
Isc, cryo-EM, and SID score. The combined score was a linear
combination of the three normalized terms and represented
the score when cryo-EM and SID data were both included.

The weights used for Isc, cryo-EM, and SID were the same for
each protein; however, different sets of weights were used for
ensemble and symmetric docking (HM and crystal). The
predicted structure for each scoring function was identified as
the top scoring model. The ensemble and symmetric docking
are described in detail in the following sections, but we also
compared the score vs RMSD plots for the SID scores

Figure 3. (A) All atom, aligned RMSD100 of the top scoring models for symmetric docking when including no experimental data (Isc, gray), using
cryo-EM data (blue), and when including both SID and cryo-EM (red). Input structures were obtained from ensemble docking for two cases
(indicated with an asterisk). Cartoon complexes are shown for each. All symmetric docking simulations resulted in full complexes. The bottom of
the solid gray lines indicates the overall best model built. Gray points are always on top of the vertical gray lines. In 14/15 cases, RMSD100 of the
predicted structure using the combined score was less than 4 Å (only 5/15 without experimental data). (B) Dependence on input structure
category. Metrics shown are f nat, LRMSD, iRMSD, and DockQ score. Typically, the average results were best with all experimental data. In general,
bound+perturbed performed the best followed by unbound and HM, respectively. (C) Predicted structures for three cases (1GNH, HM; 2HBC,
unbound; 1FGB, bound+perturbed) without (gray) and with (red) experimental data (native shown in green).
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individually to previous work. Example SID score vs RMSD
plots for 1SWB are shown in Figure S2 for bound rigid
redocking (previous work),13 HM ensemble docking, unbound
(5N8T) ensemble docking, bound+perturbed ensemble
docking, HM symmetric docking, unbound (5N8T) symmetric
docking, and bound+perturbed symmetric docking. We note
that while SID scores were not normalized in previous work
and RMSD values were calculated differently (they were
essentially ligand RMSD [LRMSD] values), the results are
generally comparable. In all cases, the general trend that most
accurate (low RMSD) structures were scored favorably and
most inaccurate structures (high RMSD) were scored
unfavorably continued to be observed. Although the SID
scores are not enough to predict structures, they can be
beneficial when combined with other scores (such as Isc and
cryo-EM scores described here), when structures are scored
slightly incorrectly. This example demonstrates that the
relationship between SID AE and interface composition was
similar here to previous work.
Ensemble Docking Resulted in Accurate Modeling of

Subcomplexes, Strengthened by SID Data. To increase
the conformational space sampled during docking, we
performed flexible ensemble docking (as opposed to rigid
docking) using RosettaDock. This docking was performed for
all input structures (5 for HM, 2 for unbound, and 8 for bound
+perturbed; see Table S1) and was used to build complexes
across all interfaces with measured experimental AE. Figure 2A
shows the RMSD100 of the top scoring model using each
scoring function. When no experimental data were included
(Isc, gray), the RMSD100 of the predicted model was less than
4 Å for only a few cases (2/5 for HM, 1/2 for unbound, and 4/
8 for bound+perturbed). When cryo-EM data were included in
scoring (Isc+cryo-EM), the RMSD100 of the predicted
structure was less than 4 Å for 12/15 cases. After the inclusion
of SID data (Isc+cryo-EM+SID), all (15/15) cases resulted in
accurate prediction. For predictions with this level of accuracy,
the method was able to identify the correct complex topology.
Remarkably, for five cases, the lowest RMSD model was also
the top scoring model for the combined Rosetta, cryo-EM, and
SID score. Predicted structures (and RMSD100) are shown in
Figure 2C (aligned to native shown in green) for 1GZX (HM),
5N8T (unbound), and 1SAC (bound+perturbed). Agreement
with the native crystal structure improved significantly when all
experimental data were included.
The average model quality of the predicted structure

generally improved with the inclusion of additional exper-
imental data (both cryo-EM and then SID) when considering
the CAPRI (Critical Assessment of PRediction of Interactions)
metrics, as shown in Table S4 (left) and Figure 2B. For
example, the average DockQ score,55 a quantitative measure of
model quality inspired by CAPRI categories, improved from
0.30 when no experimental data were included to 0.48 when
cryo-EM was included and further improved to 0.58 when SID
data were also included. The same trend was observed for
average RMSD (all atom, aligned), RMSD100, f nat, fnon‑nat,
iRMSD, and LRMSD. Using CAPRI model quality desig-
nations, 9/15 predicted structures using the combined score
were identified as medium or high quality, with no cases
identified as incorrect (i.e., all were at least acceptable quality),
compared to 9/15 incorrect when scoring without exper-
imental data. Improvement of funneling for the score vs RMSD
distributions was also observed when experimental data were
included, with the Pnear improving by an average of 0.27 (on a

scale of 0 to 1). The RMSD for the top 50 scoring models
improved by an average of 2.8 Å when SID and cryo-EM data
were included as well. While much of the improvement when
experimental data were included was due to the inclusion of
the cryo-EM score, the SID score did play a significant role in a
few cases, namely 1GNH (HM), 1GZX (HM), and 5N8T
(unbound). Furthermore, accurate structures were predicted in
all cases.

Symmetric Docking Resulted in Accurate Modeling
Overall. In order to predict structures of entire complexes,
rather than building only across interfaces identified with AE,
we performed symmetric docking using Rosetta SymDock. In
comparison to our previous docking studies, the symmetric
docking was new and extensively increased the breadth of SID-
guided modeling. In addition to each input structure (5 for
HM, 2 for unbound, and 8 for perturbed bound; see Table S2),
as the dimer of heterodimers could not be directly built with
the structures of the monomers and symmetric docking, input
structures for two cases were obtained from the output of the
ensemble docking (1GZX HM and bound+perturbed, with
RMSD100s of 1.36 and 0.33 Å, respectively). Figure 3A shows
RMSD100 of the top scoring model using each scoring function.
When no experimental data were included (Isc, gray), the
RMSD100 of the predicted model was less than 4 Å for only 5/
15 cases (0/5 for HM, 1/2 for unbound, and 4/8 for bound
+perturbed). When data from both SID and cryo-EM were
included, the RMSD100 of the predicted structure was less than
4 Å for 14/15 cases (4/5 for HM, 2/2 for unbound, and 8/8
for perturbed bound). Predicted structures are shown in Figure
3C (aligned to native shown in green) for 1GNH (HM),
2HBC (unbound), and 1FGB (bound+perturbed). Agreement
with the native crystal structure improved significantly when all
experimental data were included for these cases.
When considering the CAPRI metrics, as shown in Table S4

(right) and Figure 3B, the results were generally best when
cryo-EM and SID data were included. The averages for all
RMSD-based metrics improved when more data were
included. The average results appeared slightly worse for fnat,
f non‑nat, and DockQ score upon the inclusion of SID
(comparing Isc+cryo-EM to Isc+cryo-EM+SID); however,
this was due to a single case, 8TIM (average DockQ score
improves slightly from 0.54 to 0.55 for the other proteins). To
illustrate this minor, nondeleterious difference in the structure
for 8TIM, the structures predicted from Isc+cryo-EM and Isc
+cryo-EM+SID are shown in Figure S3. Noticeably, there are
very few differences in the accuracy of the predicted structure.
When assessing model quality using DockQ score, 10/15
models were identified as inaccurate without experimental
data. However, when the combined score including SID was
used, 7/15 were identified as medium or high quality (only
two inaccurate). For symmetric docking, improvement in
funneling was observed when SID and cryo-EM data were
included. Pnear, goodness of funneling in score vs RMSD
distributions, improved over Isc by an average of 0.37 (on a
scale of 0 to 1). Improvement of the average RMSD of 7.3 Å
for the top 50 scoring models was also observed when SID and
cryo-EM data were included. In summary, the symmetric
docking results were slightly improved by SID, but the
inclusion of both cryo-EM and SID produced the best results.
Importantly, for the first time, all full complexes were built
using SID data, and input structures required much less
knowledge than previous work.
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Dependence of Prediction Accuracy on Input
Structure Followed Expected Trends. Due to the differ-
ence in accuracy of the input structures (with respect to their
structures in the complex), the overall docking results were
expected to depend on the method used to obtain them. While
Table S4 shows average metrics over all proteins for ensemble
and symmetric docking, we also examined averages of each
type of input structure (HM, unbound, and bound+perturbed)
separately. The category-dependent results of f nat, iRMSD,
LRMSD, and DockQ score are shown in Figures 2B and 3B for
ensemble and symmetric docking, respectively. First, similar to
the total average results, the accuracy of the predicted
structures was generally best when using all experimental
data (cryo-EM and SID). When considering the difference
between input structure categories, we expected the structures
built from bound+perturbed to be the best followed by
unbound and HM based on accuracy of input structures prior
to docking. The results typically followed the expected trend
for both ensemble and symmetric docking. The results were
best for bound+perturbed, followed by unbound and HM,
respectively. We also note that there were no cases where the
inclusion of SID improved the prediction results for the bound
+perturbed docking simulations (Isc+cryo-EM+SID compared
to Isc+cryo-EM), which is indicated by the very similar results
when comparing Isc+cryo-EM and Isc+cryo-EM+SID for
bound+perturbed. However, this did not indicate poor
performance from the SID score, rather this occurred because
the scoring was already excellent. On the other hand, SID
improvements were much more common for the docking
simulations using homology models since the scoring was
slightly off without SID. To summarize, whether SID can
improve prediction results depends on the scoring before
including SID (in that the SID score is most beneficial when
the scoring was close to being accurate).

Confidence Metric Effectively Separated Nativelike
and Non-Nativelike Structures. As not all predictions
resulted in accurate structures (RMSD100 less than 4 Å), we
sought to quantify a prediction confidence metric that could be
calculated without knowledge of the native structure. For the
confidence metric (applied to both ensemble and symmetric
docking), Pnear of the score vs RMSD distribution with respect
to the top scoring model was calculated. We hypothesized that
when accurate predictions were made, a larger quantity of
similar structures would score well and thus the funneling of
the score vs RMSD distribution would be stronger (as
quantified by a higher Pnear).

22 Figure 4 shows the RMSD100
of the top scoring model as a function of the confidence metric.
Proteins for which the Pnear was greater than 0.1 were identified
as high confidence, as indicated by the vertical solid line. The
prediction was accurate for all proteins identified as high
confidence (26/26), as indicated by the dotted horizontal line.
All inaccurate predictions were flagged as low confidence (1/
1), with only three accurate predictions flagged as low
confidence. All ensemble docking predictions (black, all
accurate) were identified as high confidence (15/15). Overall,
this confidence metric served as an effective indicator of
prediction accuracy.

■ CONCLUSION

Surface-induced dissociation has typically been used on protein
complexes to determine stoichiometry and intersubunit
connectivity. We recently demonstrated that an appearance
energy (AE) extracted from SID data also provides information
on interface composition and developed models to predict AE
from structure.13 Using this predictive model, we showed that
SID AE data were able to distinguish between nativelike and
non-nativelike models of subcomplexes generated with rigid
protein−protein docking in Rosetta using bound crystal
structures as inputs. While previous work laid the foundation

Figure 4. All atom, aligned RMSD100 of the top scoring models as a function of the confidence metric (Pnear with respect to the top scoring model)
for both ensemble (black) and symmetric (green) docking. The solid vertical line (Pnear = 0.1) indicates the separation between high (right) and
low confidence (left). The dotted horizontal line indicates the cutoff for accurate predicted models (4 Å). All (26/26) high confidence structures
were accurate. All (1/1) inaccurate predictions were low confidence.
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of SID usage in protein complex structure prediction, there
were a few shortcomings that we sought to address in this
work, primarily to make the docking more realistic. The most
notable shortcomings of previous work that were overcome
here were the exclusive use of the exact tertiary structure from
bound crystal structures, rigid docking, and only predicting full
complexes in a few cases. To limit and frequently completely
obviate required prior knowledge, we used three different types
of input structures in the present work: homology models,
unbound crystal structures, and bound+perturbed crystal
structures. For each input structure, we generated an ensemble
of backbones to encode flexibility. Additionally, we performed
two types of docking: ensemble docking (with flexibility) and
symmetric docking (which predicted full complexes in all
cases). Finally, we included simulated low-resolution density
maps from cryo-EM into scoring as well.
When ensemble docking was performed on all input

structures, the RMSD100 of the predicted structure without
including experimental data was less than 4 Å for only 7/15
cases but was less than 4 Å in all (15/15) cases when both
cryo-EM and SID data were included. Furthermore, when SID
and cryo-EM data were included, all calculated CAPRI metrics
improved on average. For the ensemble docking, there were
both cryo-EM- and SID-driven cases. For the symmetric
docking, the RMSD100 of the predicted model was less than 4
Å for only 5/15 cases without including experimental data and
also when cryo-EM density maps were incorporated. However,
when SID and cryo-EM data were included, the RMSD100 of
the predicted model was less than 4 Å for 14/15 cases.
Additionally, typically CAPRI metrics were the best when all
experimental data were included.
In this study, we were able to overcome many shortcomings

of previous docking studies with SID data. Full complex
structures were built without the knowledge of the exact
tertiary structure. To do this, we combined data in the forms of
SID AE and noisy, low-resolution cryo-EM density maps to
build full structures of protein complexes. This work
demonstrates the potential of SID as a tool to facilitate the
modeling of protein complexes. We hypothesized that SID AE
and low-resolution cryo-EM density maps would provide
complementary information for the scoring of complexes. The
experimental methods are also compatible, with cryo-EM
becoming more accessible as it grows in popularity and with
SID commercialization underway.
However, in this study, we generally observed that scoring

with cryo-EM may be too accurate to reap the full benefits of
scoring with SID. While the final prediction results were
excellent, we only observed a few cases where the inclusion of
SID appeared strongly beneficial if cryo-EM data were already
applied (Isc+cryo-EM+SID over Isc+cryo-EM). However,
since we have consistently observed that the SID scoring
function scores most accurate structures favorably and
penalizes most inaccurate structures (see Figure S2), we
believe that the lack of consistent SID benefit here was simply
because of the cryo-EM accuracy, even for low-resolution
density maps. For this reason, the results of this work motivate
the potential of modeling with SID and data that provide less
structural information than cryo-EM density maps. There are
multiple examples of MS methods that may fit this category,
namely ion mobility, covalent labeling, and chemical cross-
linking and non-MS methods such as SAXS. We hope to find
the optimal amount of additional information to include with
SID for the best results in these realistic docking simulations.

While we hoped that SID and cryo-EM would be the most
compatible, the MS methods are easier to perform and thus
offer even more potential for experimental ease. Based on the
scoring strategy presented here, different types of experimental
data can be easily combined with SID. Ultimately, future work
will focus on determining the optimal use of SID data with
other methods that provide additional orthogonal structural
information.
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