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ABSTRACT: Diethylpyrocarbonate (DEPC) labeling analyzed with mass spectrometry ~
can provide important insights into higher order protein structures. It has been previously e
shown that neighboring hydrophobic residues promote a local increase in DEPC
concentration such that serine, threonine, and tyrosine residues are more likely to be
labeled despite low solvent exposure. In this work, we developed a Rosetta algorithm that
used the knowledge of labeled and unlabeled serine, threonine, and tyrosine residues and —
assessed their local hydrophobic environment to improve protein structure prediction. 2 2/, “ Tmen S
Additionally, DEPC-labeled histidine and lysine residues with higher relative solvent ="
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accessible surface area values (i.e, more exposed) were scored favorably. Application of

our score term led to reductions of the root-mean-square deviations (RMSDs) of the lowest scoring models. Additionally, models
that scored well tended to have lower RMSDs. A detailed tutorial describing our protocol and required command lines is included.
Our work demonstrated the considerable potential of DEPC covalent labeling data to be used for accurate higher order structure

determination.

With the aid of various labeling reagents, mass
spectrometry (MS) is emerging as an attractive
technique for investigating protein structures. Techniques
such as hydrogen-deuterium exchange, chemical cross-linking,
and covalent labeling have been successfully employed to
elucidate protein structures and dynamics.'” Covalent
labeling with MS (CL-MS) in which labeling reagents
irreversibly modify protein residues can provide an insight
into relative solvent exposure of labeled residues. Hydroxyl
radical footprinting, radical trifluoromethylation, and carbene
footprinting are promising techniques in covalent labeling mass
spectrometry that rely upon label generation via photolysis or
radiolysis."® Diethylpyrocarbonate (DEPC) is a popular
covalent labeling reagent that is commercially available; it
also does not require additional steps such as radical
generation.”” One advantage of DEPC as a labeling reagent
is the single product generation for labeled residues. DEPC
reacts with six nucleophilic residues (Cys, Lys, His, Ser, Thr,
and Tyr) in addition to the protein N-terminus.”'”"" Labeled
residues are identified by a mass increase of +72.021 Da.'?
Structures of DEPC and DEPC-modified residues are shown in
Supplementary Figure 1. With careful attention to concen-
tration and exposure times to avoid labeling-induced structural
perturbation, cysteine scrambling,"* or hydrolysis leading to
label loss,"* DEPC is a promising covalent labeling reagent to
use for structure elucidation. While DEPC labeling yields
valuable structural information, labeling data are too sparse to
unambiguously determine the protein structure. Computa-
tional methods are necessary in combination with the DEPC
labeling data in order to illuminate additional structural detail.
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MS-guided modeling has previously been successfully
executed for protein structure inves'cigation.3’15_23 One tool
that has been applied is Rosetta, a powerful molecular
modeling software suite.””>> Among its many applications,
structure prediction using sparse data from a variety of
experimental techniques (including mass spectrometry) has
been implemented.”**°™** Rosetta software has structural
modeling applications, such as ab initio modeling that relies
only on an amino acid sequence for structure building and
template-guided homology modeling that can predict the
protein structure.”>*® Additionally, Rosetta is capable of
assessing relative solvent exposure, making it an ideal tool to
predict the protein structure from covalent labeling data.
Functionality to use covalent labeling data to guide protein
tertiary structure prediction has successfully been incorporated
into Rosetta software and has shown to improve the model and
distribution quality.”**”* Overall, there is a growing need for
automated and reliable algorithms that generate protein
structures based on CL-MS data so as to move beyond
reliance on manual interpretation of data in light of crystal
structures and homology models.

Despite its ability to dissolve in aqueous solutions up to 40
mM, DEPC is a hydrophobic molecule with limited water
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solubility.'>*® Recently, it was shown that protein micro-

environments enriched in neighboring hydrophobic residues
led to enhanced labeling efficiency of Ser, Thr, and Tyr (STY)
residues. It was proposed that nearby hydrophobic residues
were facilitating an increased local concentration of DEPC,
thus making STY residues more likely to be labeled.'” Here, we
exploited the connection between the microenvironmental
effect of neighboring hydrophobic residues and labeling of STY
residues from DEPC-based CL-MS for structural modeling.
We developed a score term to assess models based on relative
solvent accessible surface area (SASA) values and hydrophobic
neighbor counts for labeled and unlabeled STY residues.
Additionally, as more exposed residues are more likely to be
covalently labeled, our score term rewarded models with
labeled histidine and lysine residues that exhibited higher
relative SASA values. While covalent labeling data can be
difficult to accurately quantify,””*® we have implemented a
score term that relies only upon the residue DEPC-label status
for structure prediction improvement. This is the first
implementation of DEPC labeling data-guided structure
prediction into the Rosetta software suite. When testing our
algorithm on a benchmark set of six proteins, we found that
inclusion of DEPC data led to lower, improved top scoring
model root-mean-square deviation (RMSD) values and an
improved funnel-like quality of the model distributions.

B MATERIALS AND METHODS

Benchmark Set. The benchmark set comprised six
proteins for which we obtained DEPC labeling data for His,
Lys, Ser, Thr, and Tyr residues. The benchmark set included
carbonic anhydrase (PDB 1V9E, 259 residues), ubiquitin
(PDB 1UBQ, 76 residues), myoglobin (PDB 1DWR, 152
residues), f2-microglobulin (PDB 1JNJ, 100 residues),
lysozyme (PDB 2LYZ, 129 residues), and human growth
hormone (PDB 1HGU, 191 residues).

The DEPC labeling experiments and associated liquid
chromatography (LC)-MS measurements were conducted as
described in previous work.'”'**” For all the DEPC—protein
reactions, conditions were chosen to achieve modification
levels between 1 and 1.5 labels per protein on average to
maintain the structural integrity of the protein.”*’ Each protein
was dissolved at a defined concentration between 10 and 50
UM in a 10 mM 3-(N-morpholino)propanesulfonic acid
(MOPS) buffer at pH 7.4. Then, a 4- or S-molar excess of
DEPC was added and allowed to react for either 1 or S min.
The reactions were performed at 37 °C and were quenched by
the addition of imidazole. Between three and five replicates of
the labeling experiments were carried out for each protein.

To enable identification of the DEPC-modified residues, the
labeled proteins were digested using immobilized trypsin or
chymotrypsin after buffer exchange into a phosphate buffer at
pH 8.0. For proteins with disulfide bonds, reduction and
alkylation with a 40-fold excess of tris(2-carboxyethyl)-
phosphine (TCEP) and an 80-fold excess of iodoacetamide,
respectively, were performed prior to digestion. Further
experimental details about the digestions of ubiquitin,'* 2-
microglobulin,12 human growth hormone,'* carbonic anhy-
drase,”” myoglobin,”” and lysozyme*' can be found elsewhere.

The peptide fragments after protein digestion were
measured by LC/MS on a Thermo Scientific (Waltham,
MA) Orbitrap Fusion mass spectrometer equipped with a
nanoelectrospray ionization source. Online LC separations
were conducted using a Thermo Scientific Easy-NanoLC 1000
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system with a Thermo Scientific Acclaim PepMap CI18
nanocolumn (15 cm X 7S pm ID, 2 um, 100 A). Peptides
were eluted using a gradient of acetonitrile containing 0.1%
formic acid at a flow rate of 0.3 pL/min. The gradient of
acetonitrile was increased from 0 to 50% for 50 or 60 min,
depending on the protein digest, before ramping up the
acetonitrile to 100% for 1S5 additional minutes. The longer
acetonitrile gradient was used for the digests of carbonic
anhydrase, lysozyme, and myoglobin, while the shorter
gradient was used for ubiquitin, A2-microglobulin, and
human growth hormone. Peptides were identified and their
DEPC labeling extents were determined using a custom
software pipeline®” that allows labeling percentages as low as
0.001% to be determined. Residue level DEPC modification
percentages (% labeling) were obtained from chromatographic
peak areas of the unmodified and modified peptides using
approaches described previously.”” In the work described here,
a residue was considered labeled if its labeling percentages
exceeded 0.01%.%

Ab Initio and Homology Model Generation with
Rosetta. Fragment libraries were generated using the Robetta
server for all six benchmark proteins.”* 3mer and 9mer
fragments and FASTA sequences of each benchmark proteins
were used with the Rosetta AblnitioRelax protocol to generate
10,000 models per benchmark protein. The RMSD was
calculated by supplying the respective crystal structures during
scoring with the Rosetta energy function (abbreviated ReflS5).
Models were then ranked by score. The lowest RMSD model
generated was used to determine if homology modeling was
necessary for the particular protein. Proteins whose lowest
RMSD model exhibited an RMSD greater than S A were
further modeled with homology modeling.

Homology models for carbonic anhydrase, lysozyme, and
human growth hormone were generated with the Rosetta
Comparative Modeling protocol.”> For each protein, seven
templates (Supplementary Table 1) with varying sequence
coverage (60—100%) and identity (24—99%) were used during
modeling. Each template was used for the generation of 500
models for a total of 3500 models built for each protein. Upon
generation, models were relaxed with Rosetta’s Relax
application ﬁrior to scoring with the ReflS and RMSD
calculations.™

Identification of Hydrophobic Neighbor Count and
Relative SASA Parameters. In order to derive the values
used in the score term, we developed a custom Python script
to identify the hydrophobic neighboring residues of labeled
and unlabeled STY residues using the benchmark crystal
structures. Crystal structures were only used for the initial
derivation of score term parameters. Labeling data for STY
residues is included in Supplementary Table 2. Distance (dist;)
was calculated between the hydroxyl group oxygen atom in
labeled and unlabeled STY residues (i) and the beta carbon in
the side chain of hydrophobic residues (j). Hydrophobic
neighboring residues were considered to be residue types Phe,
Ile, Trp, Leu, Val, Met, Tyr, Ala, and Pro, as used previously.12
The total contribution to the neighbor count was calculated as
shown in eq 1.

#hydrophobic residues
veror 1.0

1 + exp(2 X (dist; — 8 A)

hnc, =

(1

A midpoint value of 8.0 A and a steepness value of 2.0 were
chosen to give a full neighbor contribution up to distances of 6

i#j
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A, the molecular dimensions of the DEPC molecule."* The
relative SASA, the SASA of the residue sidechain normalized
by the free residue SASA of the side chain, was calculated for
the crystal structures using Rosetta RelSASA. Relative SASA
values ranged from 0% indicating complete burial to 100%
implying full exposure. A relative SASA range of 5—35%
demonstrated ~1 residue difference in the average neighbor
count between 24 labeled and 22 unlabeled residues. Labeled
HK residues are listed in Supplementary Table 3. The relative
SASA for labeled HK residues was calculated using the Rosetta
RelSASA application, and crystal structures of benchmark
proteins were used as input structures. A relative SASA range
of 65—100% was pursued as residues within this range are very
solvent-exposed.

To assess the noisiness of the exposure data, we investigated
the number of false negatives in our data sets. False negatives
were defined as unlabeled residues with high solvent exposure,
and it has been shown that data sets can accommodate up to
35% false negative data and still meaningfully guide protein
structure prediction.”® Unlabeled STY residues with a 5—35%
relative SASA and a high hydrophobic neighbor count were
considered false negatives. We defined a high hydrophobic
neighbor count as greater than 3.91, which is the midpoint
between the average labeled hydrophobic neighbor count
(4.42) and the average unlabeled hydrophobic neighbor count
(3.39). False negatives within the 65—100% SASA HK residues
were defined as unlabeled HK residues with greater than 80%
SASA, the midpoint between the average labeled SASA and the
averaged unlabeled SASA of HK residues. False positives were
also calculated by assessing the number of labeled STY
residues with hydrophobic neighbor counts less than 3.91 and
labeled HK residues with relative SASA values less than 80%.
The percentage of false negatives and false positives for each
residue type set was calculated using a custom Python script.

DEPC-Guided Scoring and Model Evaluation. Based
on the observed differences in Ser, Thr, and Tyr labeled and
unlabeled hydrophobic neighbor counts, a score term was
developed to harness these variations for structure prediction.
The labeled portion of the term, STY labeled, was calculated
using eq 2:

STY_labeled = )

i

1.0
1 + exp(8 X (hnc, — 4.42)) !
)
in which n represents the number of labeled Ser, Thr, and Tyr
residues, hnc; is the hydrophobic neighbor count (see eq 1;
calculated within the Rosetta score term) of the labeled Ser,
Thr, or Tyr residue i, 8 is the steepness value, and 4.42 is the
average hydrophobic neighbor count value calculated from the
number of hydrophobic neighboring residues of labeled Ser,
Thr, and Tyr residues according to the initial derivation. The
per-residue STY_labeled value ranged from —1, representing
agreement with the labeled residue having a hydrophobic
environment, to 0, indicating disagreement because the labeled
residue did not exhibit a hydrophobic environment. The
unlabeled portion of the term, STY unlabeled, was calculated
as shown in eq 3:

n

STY unlabeled = Z —1.0

1 + exp(8 x (hnc; — 3.39))

()

in which n is the number of unlabeled Ser, Thr, and Tyr
residues, hnc; is the hydrophobic neighbor count (calculated
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within Rosetta) of the particular unlabeled Ser, Thr, or Tyr
residue i, 8 is the steepness value, and 3.39 is the average
hydrophobic neighbor count value of unlabeled Ser, Thr, and
Tyr residues in the benchmark protein crystal structures. The
per-residue values also ranged from —1, indicating that the
unlabeled residue had fewer hydrophobic neighbors, to 0,
implying that the unlabeled residue had more hydrophobic
neighboring residues and disagreed with the expected trends.

Labeled His and Lys residues were rewarded based on their
relative SASA value, as shown in the HK_labeled term in eq 4:

n

HK _labeled = ).

i

|

in which n is the number of labeled His and Lys residues,
relSASA, is the relative SASA value of the labeled His or Lys
residue i, 2 is the steepness value, and 0.65 is the midpoint
value of the score. The midpoint value was set as the lower end
of the investigated SASA range, 65—100%, which demon-
strated a measurable difference in the average relative SASA
value between labeled and unlabeled residues.

Finally, the labeled and the unlabeled scores for Ser, Thr,
and Tyr residues along with the portion from labeled His and
Lys residues were aggregated to determine depc_ms, as shown
in eq S.

1.0
1 + exp(2 X (relSASA, — 0.65))

(4)

depc_ms = STY_labeled + STY_unlabeled + HK_labeled
()

The depc ms term was used to score 10,000 ab initio
models (for each of the benchmark proteins 52-microglobulin,
ubiquitin, and myoglobin) and 3500 homology models (for
each of the benchmark proteins carbonic anhydrase, lysozyme,
and human growth hormone). The total score was calculated
as a weighted superposition of the initial Rosetta score and the
depc_ms score (as shown in eq 6).

total score = (9.0 X depc_ms score) + Rosetta Refl5
(6)

A weight of 9.0 was used, similar to those reported in
previous work.””** A tutorial describing how to use DEPC
data to predict the protein structure in Rosetta is included in
the Supporting Information.

A comparison of Rosetta scoring and scoring with depc_ms
was executed using several evaluation metrics. The top scoring
model RMSD value was compared before and after rescoring.
Additionally, the funnel-like quality, or the shape of the score
versus RMSD distributions, was assessed with P, ... The metric
P,.r provided an insight into whether the score versus RMSD
distributions featured distinctive low-energy conformations
that were similar to the crystal structure. We used a funnel
depth of 1.0 as proposed by Bhardwaj et al. and employed in

score

our previous score term implementations.27’29’46 P cir Was
calculated according to eq 7:
n rmsd?, score,,
Znen()e ()
near ™ n score,,
Zoen(-55) )
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in which 7 represents the number of models generated, score,
is the score of the model, and rmsd,, is the RMSD of the
particular model to the crystal structure. The A value was
maintained at 2.0 A to specify which models were considered
nativelike. kgT, the effect of funnel depth, was maintained at a
value of 1.0. A P,,, value of 0 indicated no funnel-like quality,
while a value of 1 signified a perfect funnel-like distribution.

B RESULTS AND DISCUSSION

Identification of Relative SASA Ranges to Maximize
Differences in Labeled and Unlabeled Residues. Based
on the proposition that DEPC labeling for STY residues is
sensitive to neighboring hydrophobic residues in the micro-
environment,'”> we aimed to use Rosetta to elucidate a notable
difference in the hydrophobic neighbor count between the
labeled and unlabeled STY residues.

The six proteins in our benchmark set for which we obtained
DEPC-based CL-MS data were carbonic anhydrase, ubiquitin,
myoglobin, A2-microglobulin, lysozyme, and human growth
hormone. We used the crystal structures of the benchmark
proteins during the score development in order to identify the
number of hydrophobic neighbors in the microenvironment
and relative solvent exposures of the STY residues.

We identified all STY residues with a relative SASA ranging
from S to 35%. Within the benchmark set, this encompassed
24 labeled STY residues and 22 unlabeled STY residues. This
SASA range captured low-exposure STY residues, similar to
those which were noted to be relevant to hydrophobic
microenvironmental effects. Subsequently, we assessed the
hydrophobic microenvironment for all 46 low-exposure STY
residues by measuring the hydrophobic neighbor counts.

To maintain the 6 A distance similar to DEPC molecular
dimensions'” while still accounting for neighbors likely to have
a microenvironmental effect on labeling, we used a gradual
neighbor count contribution method. We calculated the per-
residue neighbor count by determining the contribution of
neighboring hydrophobic residues based on the distance from
the STY hydroxyl group. The average labeled STY hydro-
phobic neighbor count was determined to be 4.42, while the
average unlabeled STY hydrophobic neighbor count was 3.39,
as shown in Figure 1. The violin plot in Figure 1 shows the
relative frequency of hydrophobic neighbor count values for
labeled and unlabeled STY residues. There were less than four
hydrophobic neighbors for 46% of labeled STY residues versus
68% of unlabeled STY residues while only 25% of labeled

12

-
o

@

I

N

Hydrophobic Neighbor Count
(=]

Labeled STY Unlabeled STY

Figure 1. Violin plot demonstrating the relative frequency of different
hydrophobic neighbor count values for labeled STY (blue, includes 24
residues) and unlabeled STY (orange, includes 22 residues) residues
with relative SASA values of 5—35% from benchmark protein crystal
structures. Mean and extrema are shown on the plot.
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residues and 14% of unlabeled residues had a hydrophobic
neighbor count greater than five. Labeled STY residues
exhibited more hydrophobic neighbors than unlabeled STY
residues, corroborating that STY labeling is sensitive to
neighboring hydrophobic residues within the microenviron-
ment.

Using the observed trends, we developed a Rosetta score
term that rewarded models containing labeled STY residues
with higher hydrophobic neighbor counts and also rewarded
models containing unlabeled STY residues with lower
hydrophobic neighbor counts.

Additionally, since exposed His and Lys residues are more
likely to be labeled by DEPC,"” we developed a score that
rewarded labeled His and Lys residues with high exposure
(independent of their hydrophobic neighbor count). We used
a relative SASA range of 65—100% to reward labeled His and
Lys residues with high solvent exposure. The violin plot
distribution for labeled and unlabeled HK relative SASA values
is shown in Supplementary Figure 2, which demonstrated the
expected trend that labeled HK residues were more likely to be
strongly solvent-exposed. The average relative SASA for
labeled residues was 0.09, higher than those of unlabeled
residues. None of the unlabeled HK residues had relative SASA
values greater than 0.9, while 37.5% of labeled HK residues had
a relative SASA higher than 0.9.

We sought to examine the noise level of DEPC labeling data
by investigating false negative data points. False negative data
points within covalently labeling data sets have been previously
examined; it has been suggested that 35% of exposed residues
can be tolerated as false negatives while still being useful for
protein structure prediction.”® We defined false negatives in
this work as unlabeled STY residues with a hydrophobic
neighbor count greater than 3.91 and unlabeled HK residues
with relative SASAs greater than 80%. We found that 26% of
the subset of STY residues with a 5—35% SASA were false
negatives and 16% of the unlabeled HK residues within a 65—
100% SASA were false negatives. Both residue subsets fell well
below the 35% tolerance cutoff, demonstrating that while some
noise existed in our data sets, it did not impact our ability to
predict accurate structures. False positive data points were
defined as labeled STY residues with a hydrophobic neighbor
count less than 3.91 and labeled HK residues with relative
SASAs less than 80%. We determined that 15% of labeled STY
residues with a 5—35% relative SASA were false positives and
16% of labeled HK residues with a 65—100% relative SASA
were false positives. Subsequently, we sought to utilize the
observed exposure and microenvironment trends for STY and
HK residues in Rosetta protein structure prediction.

Ab initio models scored with the DEPC-guided score term
showed improvement in best scoring model RMSDs and
funnel-like distributions. Based on differences in hydrophobic
neighbor counts for labeled and unlabeled STY residues
(Figure 1) and differences in the SASA for labeled and
unlabeled HK residues (Supplementary Figure 2), we
proceeded to develop a score term that rewarded the desired
trends. An overview of the score term is shown in Figure 2. We
mapped the label status of labeled and unlabeled residues onto
protein models using the DEPC-based CL-MS data. Figure 2a
depicts the inputs of the score term, which included labeling
data as the label status (L for labeled and U for unlabeled) and
appropriate residue number along with ab initio or homology
protein models. Additional details can be found in the tutorials
in Supplementary Note 1. We calculated the relative SASA for
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Figure 2. Overview of the DEPC score term (depc_ms) algorithm. The DEPC score term required CL-MS labeling data (residue numbers and
label status) as the input, along with input structures, which were either generated with homology or ab initio modeling (a). The relative SASA was
calculated for all residues listed in the input file (b). If the residue was STY, additionally the hydrophobic neighbor count was calculated for
residues with relative SASAs between S and 35% (c). Labeled HK residues with higher relative SASAs were rewarded (d). Labeled STY residues
with more hydrophobic neighbors and unlabeled residues with less hydrophobic neighbors were rewarded as well (e).

all mapped residues (Figure 2b) and hydrophobic neighbor
counts for buried STY residues (Figure 2c). The score term
included components that rewarded labeled STY residues with
high numbers of hydrophobic neighbors (Figure 2e), rewarded
unlabeled STY residues with low numbers of hydrophobic
neighbors (Figure 2e), and rewarded labeled HK residues with
high solvent exposure (Figure 2d). While our initial analysis of
hydrophobic neighbor counts and relative SASA ranges relied
on crystal structures, no crystal structures were used in model
generation or score term evaluation. To test the DEPC-guided
scoring, we generated 10,000 ab initio models for each protein
within our benchmark set. Upon examination of the ab initio
models, we noticed that three of the benchmark protein model
sets did not contain any models under a S A RMSD to the
crystal structure. The DEPC score was designed to distinguish
nativelike models (RMSD < 5 A) from incorrect models
(RMSD > 10 A). In order to have higher quality models
present in all of the benchmark cases, homology models were
generated for these three benchmark proteins. The results of
scoring these homology models will be discussed in the next
section.

For the three proteins whose ab initio model distributions
included nativelike models (ubiquitin, myoglobin, and f2-
microglobulin), we tested our score term, depc_ms, by adding
the DEPC score to the total Rosetta score. As seen in Figure 3,
the best scoring model RMSD values improved from Rosetta
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scoring (Figure 3a) to scoring with Rosetta and depc_ms, our
DEPC-guided score term (Figure 3b). The RMSD of the best
scoring model for f2-microglobulin improved from an RMSD
of 3.14 to 2.13 A, while ubiquitin improved from an RMSD of
3.16 to 1.97 A. Myoglobin saw a notable improvement from an
RMSD of 7.11 to 1.36 A when scoring with the depc_ms term.

Additionally, the funnel-like quality of the distributions was
quantified by the P, value, with a higher P,,,, value (near 1)
indicating more funnel-like quality and a lower P, value
(near 0) indicating lack of any funnel-like quality. We noticed
that all distributions became more funnel-like, i.e., an increased
P value, with DEPC labeling data included in scoring,
indicating that we were selecting lower-energy conformations
that were more similar to the native. For f2-microglobulin,
P, ... values increased from 0.22 with Rosetta to 0.31 with
depc_ms; ubiquitin improved from 0.08 to 0.32. Myoglobin
exhibited the largest improvement in the P, value, increasing
from 0.07 to 0.33 with depc_ms scoring.

Homology Model Predictions Also Improved upon
Scoring with DEPC Data. For carbonic anhydrase, human
growth hormone, and lysozyme, the best model generated with
ab initio modeling had an RMSD value greater than S A to the
crystal structure. We thus sought to generate additional models
with Rosetta’s comparative modeling protocol. The homology
modeling templates with their respective sequence identities
and similarities are shown in Supplementary Table 1. By
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Figure 3. Score versus the RMSD to the crystal structure for 10,000
ab initio models for (a) Rosetta without DEPC labeling data and (b)
Rosetta with DEPC labeling data. Best scoring models are marked by
a black star and shown in color aligned to the crystal structure (gray).
P,..r values are listed.

near

generating 500 models per template and using multiple
templates per protein, we were able to generate a distribution
of models with varying RMSD values. We scored all models
with depc_ms and subsequently added the score to the Rosetta
score. The total score versus RMSD plots along with the best
scoring model aligned with the crystal structure are shown in
Figure 4. While the models identified by Rosetta were already
significantly better for homology models (as compared to the
ab initio models in the last section), scoring with DEPC data
further improved model selection consistently. The human
growth hormone best scoring model RMSD improved from
431 A with Rosetta without labeling data to 3.85 A with
Rosetta with DEPC labeling data by way of depc_ms. The
lysozyme best scoring model RMSD (0.78 A) stayed constant
from Rosetta to scoring with DEPC data at already accurate
atomic detail. Finally, the carbonic anhydrase best scoring
model RMSD improved from 1.33 to 1.22 A.

Improvements in the funnel-like quality of the distributions,
P..v were also noted for both human growth hormone and
carbonic anhydrase. The P,,, value of lysozyme for which the
best scoring model had a sub-angstrom RMSD, stayed at 0.83,
an already near-perfect value. Human growth hormone P,
slightly improved from 0.01 to 0.02, while carbonic anhydrase
P, improved from 0.65 to 0.69 with DEPC scoring. Overall,
our scoring methodology with DEPC labeling data successfully
improved the best scoring model quality and distribution
funnel-like quality.

B CONCLUSIONS

To employ DEPC labeling MS data in protein structure
prediction, we analyzed the difference in hydrophobic neighbor
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Figure 4. Score versus the RMSD to the crystal structure for 3500
homology models for (a) Rosetta without DEPC labeling data and
(b) Rosetta with DEPC labeling data. Best scoring models are marked
by a black star and shown in color aligned to the crystal structure
(gray). P, values are listed.

counts between labeled and unlabeled STY residues and used
labeled HK residues with high solvent exposure. Our
benchmark set, consisting of DEPC-labeled ubiquitin, f2-
microglobulin, myoglobin, human growth hormone, carbonic
anhydrase, and lysozyme, was used to explore the utility of
DEPC labeling in protein structure elucidation. We developed
a novel Rosetta score term which rewarded STY residues
known to be DEPC-labeled if those residues exhibited a
hydrophobic microenvironment and rewarded unlabeled STY
residues that lacked such hydrophobic microenvironment.
Additionally, the term rewarded labeled HK residues with high
solvent exposure. In a test of our algorithm, we noted that
usage of DEPC data improved the best scoring model RMSD
and the funnel-like quality of the model distribution. For the
six benchmark proteins, we saw improvement in the prediction
quality for both ab initio and homology models. Notably, we
elucidated accurate atomic detail for all six proteins upon
employment of DEPC labeling data. The advantageous
qualities of the DEPC label, such as single product generation
and ease of commercial availability, along with our DEPC-
guided Rosetta modeling that is solely based on the label status
and computationally determined exposure metrics underscore
the huge potential of DEPC labeling for protein structure
determination.

While our work was primarily focused on DEPC labeling,
different modeling strategies for other types of labels have
previously been developed. The nature of the label generally
dictates the modeling strategies warranted. For instance,
hydroxyl radical protein footprinting is sufficiently modeled
with solvent exposure alone.”” Modeling HDX labeling
benefits from accounting for both residue exposure and
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flexibility.” Other labels with microenvironmental effects
would benefit from further analysis regarding modeling
strategies to employ. Future work will continue to pursue
covalent labeling data implementation into model generation
protocols. Additionally, we aim to test this methodology on
larger (500—1000 residues) proteins. We plan to examine the
accuracy of our scoring function when utilizing DEPC data as
the labeling extent. Further studies will also emphasize the role
of dynamics and microenvironmental effects in covalent

labeling.
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