ABSTRACT: Ca\(^{2+}\) binding to cardiac troponin C (cTnC) causes a conformational shift that exposes a hydrophobic patch (cTnCHP) for binding of the cTn switch peptide (cTnISP), ultimately resulting in contraction of the heart. The inhibitory peptide (cTnIIP), attached at the N-terminal end of the cTnISP, serves as a tether for the cTnISP to the rest of the troponin complex. Due to this tethered nature, the cTnISP remains within proximity of the hydrophobic patch region, resulting in the cTnCHP experiencing an elevated “effective concentration” of the cTnISP. Mutations to the cTnIIP region have been hypothesized to cause disease by affecting the ability of the cTnISP to “find” the hydrophobic patch, resulting in alterations to the heart’s ability to contract normally. We tested this hypothesis using molecular dynamics (MD) simulations of the troponin complex using a model that contained all three subunits of troponin: C, I, and T. We developed methods that allowed us to quantitatively measure the effective concentration of the cTnISP from the simulations. A significant reduction in the cTnISP effective concentration was observed when the cTnIIP was removed from the system, showcasing the importance of a tethered cTnISP. Through accelerated MD methods, we proposed the minimum effective concentration of a tethered cTnISP to be approximately 21 mM. Modification of the cTnIIP via PKC-mediated phosphorylation of T143 was shown to significantly increase the estimated effective concentration of cTnISP, help the cTnISP find the cTnCHP more effectively, and maintain the relative shape of the cTnIIP when compared to the native model. All of these data indicate that pT143 may be able to help promote binding of cTnISP to the cTnCHP. We then tested six mutations within the cTnIIP region that are known cTnC Ca\(^{2+}\)-sensitizing mutations and have been linked with cardiomyopathy. We did not observe a significant reduction in the effective concentration upon the introduction of these mutations; however, we did observe increased variability in the flexibility and dynamics of the cTnIIP region when compared to native. Our observations led us to hypothesize that the mechanism by which these cardiomyopathic mutations affect Ca\(^{2+}\) sensitivity is by altering the off rate of cTnISP from the hydrophobic patch.

INTRODUCTION

The cardiac troponin complex (cTn) is responsible for modulating the interaction between myosin and actin necessary for muscle contraction.\(^1\) cTn is made up of three subunits: Ca\(^{2+}\)-binding subunit (cTnC), inhibitory subunit (cTnI), and troponymosin-binding structural subunit (cTnT) that anchors the complex to the thin filament. Although there are four EF-hand Ca\(^{2+}\) binding sites in cTnC, only Ca\(^{2+}\) binding to site II regulates cardiac muscle contraction. When Ca\(^{2+}\) binds to this site, it causes a conformational shift within the N-terminal region of cTnC that exposes a hydrophobic patch (cTnCHP, residues 20, 23, 24, 26, 27, 36, 41, 44, 48, 57, 60, 77, 80, and 81). This patch promotes binding of the cTn switch peptide (cTnISP, residues 149–164), removing the C-terminal end of cTn from its binding site on actin, and allowing myosin to interact with actin for muscle contraction.\(^2\) Differences between the Ca\(^{2+}\) bound and unbound structures can be seen in Figure 1. The sequence directly N-terminal of the cTnISP is the largely unstructured inhibitory peptide (cTnIIP, residues 137–148) that essentially acts as a tether for the cTnISP to the rest of the cTn complex.

Cardiomyopathies are a collection of diseases that can thicken, stiffen, or thin out the heart muscle, which can lead to heart failure or sudden cardiac death.\(^3\) Hypertrophic cardiomyopathy (HCM) is characterized by increased thickness of the interventricular septum and decreased left ventricular chamber volume, leading to the impaired diastolic function of the heart.\(^4\) HCM affects 1 out of 300 people with more than 70% of cases being familial. Restrictive cardiomyopathy (HCM) is characterized by increased thickness of the interventricular septum and decreased left ventricular chamber volume, leading to the impaired diastolic function of the heart.\(^4\) HCM affects 1 out of 300 people with more than 70% of cases being familial. Restrictive cardiomyopathies are a collection of diseases that can thicken, stiffen, or thin out the heart muscle, which can lead to heart failure or sudden cardiac death.\(^3\) The cardiac troponin complex (cTn) is responsible for modulating the interaction between myosin and actin necessary for muscle contraction.\(^1\) cTn is made up of three subunits: Ca\(^{2+}\)-binding subunit (cTnC), inhibitory subunit (cTnI), and troponymosin-binding structural subunit (cTnT) that anchors the complex to the thin filament. Although there are four EF-hand Ca\(^{2+}\) binding sites in cTnC, only Ca\(^{2+}\) binding to site II regulates cardiac muscle contraction. When Ca\(^{2+}\) binds to this site, it causes a conformational shift within the N-terminal region of cTnC that exposes a hydrophobic patch (cTnCHP, residues 20, 23, 24, 26, 27, 36, 41, 44, 48, 57, 60, 77, 80, and 81). This patch promotes binding of the cTn switch peptide (cTnISP, residues 149–164), removing the C-terminal end of cTn from its binding site on actin, and allowing myosin to interact with actin for muscle contraction.\(^2\) Differences between the Ca\(^{2+}\) bound and unbound structures can be seen in Figure 1. The sequence directly N-terminal of the cTnISP is the largely unstructured inhibitory peptide (cTnIIP, residues 137–148) that essentially acts as a tether for the cTnISP to the rest of the cTn complex.

Cardiomyopathies are a collection of diseases that can thicken, stiffen, or thin out the heart muscle, which can lead to heart failure or sudden cardiac death.\(^3\) Hypertrophic cardiomyopathy (HCM) is characterized by increased thickness of the interventricular septum and decreased left ventricular chamber volume, leading to the impaired diastolic function of the heart.\(^4\) HCM affects 1 out of 300 people with more than 70% of cases being familial. Restrictive cardiomyo-
opathy (RCM) is a rarer disease state, characterized by impaired ventricular filling and a decreased diastolic volume. The prognosis for RCM is worse than HCM given that of individuals identified with RCM, 10% die by age 19 and 50% die before age 35. HCM and RCM mutations have been identified within all subunits of cTn and have been experimentally shown to cause a shift in the Ca^{2+} sensitivity to site II of cTnC.

How exactly cardiomyopathic mutations outside of the Ca^{2+}-binding site of cTnC can cause a shift in Ca^{2+} sensitivity to this site has been the focus of intense research. A previous study by Siddiqui et al. proposed that the availability of the cTnISP to the cTnCHP may be one explanation to the variability in Ca^{2+} sensitivity. It was suggested that due to the tethered nature of the cTnISP via the cTnIIP, the cTnCHP experiences an elevated effective concentration of cTnISP. During traditional molecular dynamics (MD) simulations of the cTn complex, a study by Dvornikov et al. observed a significant reduction in contacts between the residue cTnI 145 and cTnC residues E56, E59, and E63 when the R145W RCM or T143E cardiomyopathic mutations were present.

Given that cTnC has been shown to have a higher sensitivity for Ca^{2+} when cTnIP is tethered to the complex, in addition to the observed reduction of contacts between cTnIP and cTnC observed in MD simulations, we hypothesized that alterations to the cTnIP region may change the effective concentration, and therefore, the Ca^{2+} sensitivity.

The focus of this study was to quantify how the cTnIP works to help the cTnISP “find” the cTnCCHP and potentially elucidate a mechanism. A recent structure proposed by cryo-EM studies from Yamada et al. was selected as the starting model for MD simulations as it contained cTn within its natural environment of the thin filament. A cartoon representation of this model, created using Illustrate, can be seen in Figure S1 in Supporting Information. We investigated six different mutations within the cTnIP region that have been associated with cardiomyopathy: L141Q, L144P, L144Q, R145G, R145Q, and R145W. The L144Q and R145W mutations have been associated with RCM, while the other four have been associated with HCM. All mutations have been experimentally shown to increase Ca^{2+} sensitivity, with the RCM mutations causing a more drastic increase in Ca^{2+} sensitivity than HCM. In addition to these cardiomyopathic mutations, we also performed simulations with a phosphorylated cTnI pT143. The introduction of this phosphothreonine had conflicting reported evidence on Ca^{2+} sensitivity effects but has been shown to disrupt the cooperativity of activation and decrease the relaxation rate.

We geometrically investigated the cTnISP effective concentration by developing a computational methodology to explicitly measure it from molecular simulations. This method can effectively estimate the volume sampled by atoms within the cTnISP throughout the course of all our simulations. This allowed us to test how alterations to the cTnISP region affected the effective concentration. Our results showed virtually no change in the effective concentration for any of the cardiomyopathic mutations, but we did observe a significant increase in the effective concentration for the phosphothreonine models.

Methods

Model Preparation. The starting model representing cTn was extracted from PDB entry 6KN7, a cryo-EM structure, representing a Ca^{2+}-free, cTnIP-unbound, and cTnISP tethered conformation of the complex. Residues extracted from PDB 6KN7 included cTnI 199–272 (chain a), cTnI 41–166 (chain b), and cTnC 2–161 (chain c). To generate a Ca^{2+}-bound model, Ca^{2+} ions were added to site II and the two sites in the C-terminal region of cTnC using AutoDock Vina. The same process was followed to create a Ca^{2+}-bound, cTnISP-bound, and cTnISP-tethered model using the PDB entry 6KN8. The addition of Ca^{2+} ions via AutoDock Vina to these structures was a necessary step as neither 6KN7 nor 6KN8 contained the positions of Ca^{2+} ions. Standard protonation states for residues contained within the Ca^{2+}-binding domains of cTnC were used as it has been shown that these residues are highly resistant to alterations in their protonation state.

A Ca^{2+}-bound model with an unbound and untethered cTnISP was created by deleting the cTnIP residues 137–148 from the Ca^{2+}-bound, cTnIP-unbound, and cTnISP-tethered starting model. Cardiomyopathic mutation models were generated using the Ca^{2+}-bound, cTnIP-unbound, and cTnISP-tethered starting model using the mutagenesis wizard function available in PyMOL. A phosphorylated version of each cTnISP tethered model was then created using the same Ca^{2+}-bound, cTnISP-unbound, and cTnISP-tethered starting model using the PyTM28 plug-in available in PyMOL.

MD Simulations and Enhanced Sampling Methods. For the MD simulations, the models were solvated with explicit TIP3W water molecules, and NaCl counterions were added to neutralize the entire system and bring it to a final salt concentration of 150 mM. This system was restrained, followed by the energy of the water molecules and protein being minimized over two separate subsequent 10,000 step minimizations, with a step size of 2 fs. The restraints were then removed in an initial equilibration of 190,000 steps, with a final equilibration of 10,000 steps occurring production run conditions. All preparation steps and MD simulations were conducted using NAMD 2.13 with the CHARMM36 force field. The MD simulations were conducted using an NPT ensemble at 310 K with Langevin temperature and pressure damping. All bonds with hydrogen were constrained using the ShakeH algorithm which allowed for a 2 fs timestep, with structures being saved every 2 ps. The simulations were carried out on the Owens Cluster of the Ohio Supercomputer Center using 28 processors on one node, for 50,000,000 steps, resulting in 100 ns simulations for each system. After the simulation was completed, the system was stripped of all water molecules and Na^{+}/Cl^{-} ions. Then, each saved structure was...
aligned to the first frame to create a new DCD file. This resulting DCD file was then used for all analysis methods.

All preparation steps for accelerated MD (AMD) mimicked those of the traditional MD preparation steps and were performed using NAMD 2.13 with the CHARMM36 force field. Additional parameters for running AMD included applying the boost energy to the dihedral potential of the system. The threshold energy (E) and acceleration factor (α) were applied after they were determined to be 5437 and 408.8 kcal/mol, respectively, using data from an equilibrated traditional MD simulation of the cTn complex. The resulting DCD files were stripped of waters and aligned, as described above. Brownian dynamics (BD) simulations were performed using BrownDye, with an electrostatic grid input being generated using APBS. Normally, BrownDye is employed to observe the association between two entities, whether it be enzyme–substrate or protein–peptide. BrownDye allows the user to input criteria that would tell the program that a “reaction” has occurred if the substrate/peptide was to occupy a given space. However, we wanted to employ BD for enhanced sampling of the conformational space available to the switch peptide, and thus, we did not want a reaction to occur. Hence, we have chosen a “phantom” atom approach to allow the cTnISP to “escape” during every trajectory. This allowed the cTnISP to essentially sample as much volume as possible throughout the simulation time. This approach was carried out by creating two “phantom” OD1 atoms within the cTnISP and designating that for a reaction to occur, the CA atoms of residues cTnI 149 and 164 must be within 1.0 Å of these phantom atoms. Since this was impossible to occur during the simulation, the cTnISP continued to sample space for the desired steps in the trajectory unless the cTnISP “escaped” the cTn complex. 5000 trajectories were created with 1,000,000 maximum steps per trajectory, and the coordinates of the cTnISP were saved every 10 steps.

Effective Concentration Measurements Using VECA.

For each of the MD and AMD simulations, 50,000 frames were created over the course of 100 ns (1 frame every 2 ps). For analysis purposes, we extracted every fourth frame from the trajectories, totaling 12,500 PDB files, or one frame every 8 ps. For the BD simulations, every 25th frame from the trajectories was extracted for analysis. The effective concentration of the cTnISP was directly measured for all these simulations using a method we refer to as “volume estimation using cube approximation” or VECA. It was implemented as an in-house python script where a sphere with a given radius is generated using 1 Å × 1 Å × 1 Å cubes. The center of this sphere is the average position of the CA atom of cTnI 136, the last residue before the cTnISP region that serves as an anchor for the tether. For all atoms in the cTnISP region (residues 149–164) in every extracted frame of the simulation being measured, the cubes that these atoms occupy are marked within the sphere. To account for the size of the atoms, we marked six additional points within the sphere in the positive and negative x-, y-, z-directions using the following equations for the respective radii: hydrogen (0.31 Å), carbon (0.71 Å), oxygen (0.66 Å), nitrogen (0.71 Å), sulfur (1.05 Å), and phosphorous (1.07 Å). The creation of these additional points helped better account for atom size and sample cubes that may have otherwise been missed with just marking the center position of the atom. After all frames of a simulation had been analyzed, the total number of uniquely sampled cubes was totaled to yield a sampled volume in Å³. This volume was converted into liters and subsequently used to determine an effective concentration assuming one molecule of cTnISP in the volume sampled. A detailed example of this calculation can be seen in the Results and Discussion section.

Trajectory Analysis of Simulations. For each extracted frame of the MD simulations, the distance between the cTnISP and cTnClep was measured by determining the average position of cTnI C-α atoms in residues 149–164 and calculating the distance of the average position of those cTnI atoms to cTnC residues 20, 23, 24, 26, 27, 36, 41, 44, 48, 57, 58, 77, 80, and 81. These cTnC residues were selected to match those in a previous study of the exposure of the hydrophobic patch. The radius of gyration (Rg) for the cTnISP was calculated for each frame and then graphed as a function of time over the course of the simulation. The formula used to calculate the radius of gyration was:

\[R_g = \sqrt{\frac{\sum_{i=1}^{N} m_i r_i^2}{M}} \]

where N = total number of atoms of the cTnISP; Mi = mass of atom i; and ri = distance between center of mass of the cTnISP and atom i.

RESULTS AND DISCUSSION

Geometric Estimation Determined Low-Micromolar Minimum Effective cTnISP Concentration. We first geometrically estimated the maximum volume that a tethered cTnISP could theoretically sample. For infinitely efficient sampling and neglecting any steric hindrance by the remainder of the troponin complex, this would set a lower limit to the effective switch peptide concentration. Based on geometric arguments, we assumed that there will be one molecule of cTnISP within a volume defined by a sphere with a radius equal to the maximum possible length of the stretch of amino acids involved in the cTnISP and cTnClep regions. We further assumed that the cTnISP region (12 residues, 137–148) can take on a fully extended conformation with a contour length per residue of 3.5 Å, and that the cTnISP region (16 residues, 149–164) will remain in a helical configuration with a rise per residue of 1.5 Å, as observed in PDB 6KN7. Under these assumptions, the minimum effective concentration can be calculated as follows:

Max radius = (12 residues × 3.5 Å) + (16 residues × 1.5 Å)

= 66 Å

Max volume = \[\frac{4}{3} \pi (66 Å)^3 = 1,204,260 Å^3 \times \frac{m^3}{10^{30} Å^3} \]

\[\times \frac{1000 L}{1 m^3} = 1.20 \times 10^{-21} L \]

Moles = \[\frac{1cTnISP}{6.02 \times 10^{23} cTnISP/mol} \]

Min. eff. concentration = \[\frac{mole}{max \ volume} \]

= 1.38 mM

Therefore, in the limit of infinitely efficient sampling and neglecting steric hindrance by cTnI, a tethered cTnISP would be able to sample all the available space in a sphere with a 66 Å radius, leading to an effective concentration of 1.38 mM. Our estimated minimum effective concentration for a cTnISP is comparable to the 3 mM estimated effective concentration.
of the total amount of the space available to the cTnIIP and does not account for the volume occupied by the remaining cTn residues in that sphere or for unrealistic backbone torsional angles within the cTnIIP residues that could potentially prevent the cTnIIP from sampling certain parts of space centered around the anchor residue cTnI 136. When creating a sphere of 66 Å radius using the VECA method, the representative sphere comprised 1,204,466 empty cubes, a 206 Å³ (0.02%) difference from the theoretical volume calculated above. Likewise, the volume of the cTn complex without the cTnIIP or cTnISP was determined to be 16,862 Å³. By removing the unsampleable space occupied by the cTn complex, the maximum volume available to the cTnIIP was then 1,187,604 Å³, thus leading to a minimum effective concentration of 1.40 mM.

BD Simulation Verified VECA Method and Determined Minimum Effective Concentrations of cTnIIP. We performed a BD simulation using a Ca²⁺-bound and cTnIIP-unbound and untethered model to test our VECA method for accuracy and to determine a minimum effective concentration of an untethered cTnIIP. If enough trajectories are simulated, theoretically the cTnIIP should be able to sample every cube within the 66 Å radius sphere that does not contain the cTn complex. The results from the BD simulation determined that the cTnIIP sampled a volume of 1,187,604 Å³ within the sphere, which is 100% of the sampleable space available to the cTnIIP, resulting in an estimated effective concentration of 1.40 mM. This value would therefore represent the lowest effective concentration for the cTnIIP given the volume of the cTn complex is unsampleable and restricting the cTnIIP within the 66 Å radius. This evidence shows that our VECA method is efficient at representing the 66 Å sphere, and it can accurately measure sampled volumes during a simulation. If the radius restriction is removed from the BD volume estimation, the cTnIIP is essentially unrestrained within the simulation. Troponin molecules are spaced out approximately 386.4 Å from each other along the thin filaments. When the VECA calculation was performed in a relatively large cube with 300 Å sides to represent this physiological spacing (with a maximum volume of 27,000,000 Å³), we observed a total volume of 12,017,637 Å³ sampled during the BD simulations. This correlated to a 10-fold increase in the volume sampled compared to when the evaluation was limited to a sphere of radius 66 Å. This allowed us to estimate the minimal effective concentration of the untethered cTnIIP to be 0.14 mM. Hence, we estimate that the cTnIIP tether increases the cTnIIP effective concentration by at least an order of magnitude.

MD Simulations Showed Significant Reduction of the Effective Concentration When cTnIIP Tether Is Removed. After using BD and geometric considerations to establish that the VECA method could accurately estimate the cTnIIP effective concentration, we measured the effective concentration of tethered and untethered cTnIIP models (both Ca²⁺ bound) during 100 ns MD simulations. Using the restriction of a 66 Å radius from TnI 136, the average effective concentration for the tethered models was determined to be 29.7 ± 5.5 mM, whereas the effective concentration for the untethered models was determined to be 13.4 ± 8.0 mM. Standard deviations were calculated based on 25 trials for each system. These data correspond to volumes sampled by the cTnIIP of 55,930 and 123,964 Å³, respectively. It is physically impossible for the tethered cTnIIP simulation to have the cTnIIP extend beyond the 66 Å radius; however, it did occur within the simulations with an untethered cTnIIP. When the 66 Å restriction was removed from the VECA method, we determined the untethered cTnIIP to experience an effective concentration of 9.8 ± 9.0 mM, which correlated to an average sampled volume of 169,503 Å³. The large difference between observed tethered and untethered effective concentrations within only 100 ns, a short time compared to that of contraction, quantifies the importance of the cTnIIP tether for the function of the cTn complex. Figure 3 illustrates the difference between the space sampled by each of these models within 100 ns. These figures were generated using the most representative trials, which exhibited the closest measured effective concentration to the model average. Figure 3 shows that the untethered switch peptide was free to sample space all around the cTn complex, whereas the tethered switch peptide...
stayed within the general vicinity of the N-terminal region of cTnC.

AMD Simulations Further Quantitatively Demonstrated Importance of Tethered cTnIISP. To explore the role of limited sampling in our estimations of effective cTnIISP concentration from MD simulations and to probe the minimum effective concentration of a tethered cTnIISP, we performed AMD on the Ca$^{2+}$-bound and cTnIISP-unbound, tethered model of cTn. These simulations were run in triplicate for 100 ns. Using this method, we calculated the effective cTnIISP concentration to be 21.4 ± 1.9 mM, with an average volume of 77,622 Å3. Figure 4 shows volume sampled averaged across the three trials over the course of the simulation. Standard deviation is shown as the shaded region around the average.

The cumulative volume sampled seemed to be plateauing by the end of the 100 ns simulations, indicating that 21.4 mM may be a near-convergent estimation of the actual effective concentration for a tethered switch peptide. This quantitatively demonstrated that the existence of the tether precludes sampling of large parts of the volume that would be accessible if the cTnIISP was not being tethered to the cTn complex via the cTnIISP.

cTnIIP Cardiomyopathic Mutations Showed No Significant Change to the Estimated Effective Concentration. With the importance of a tether being established, the effects of altering the natural state of this tether were tested. First, the effective concentration of a tethered cTnIIP during 100 ns MD simulations was measured for six cardiomyopathic mutations in the cTnIIP region: R141Q, L144P, L144Q, R145G, R145Q, and R145W. The calculated effective concentrations are listed in Table 1, with the standard deviations calculated based on three trials for each model. We did not observe any significant difference in effective concentrations for the cardiomyopathic mutations. To analyze differences in cTnIISP–cTnC interactions, we calculated the distance between the cTnIISP and cTnC$_{HLE}$, as described in the Methods section, as a function of time over the simulation (Figure 5). Both panels of Figure 5 contain data for the trials that simulated a model of Ca$^{2+}$-bound, cTnIISP-tethered, and cTnIISP-bound cTn complex made from PDB 6KN8. These simulations were performed to establish a baseline minimum distance of these two regions for a cTnIISP that was bound to the cTnC$_{HLE}$. This helped put into perspective the relative distances calculated for the cTnIISP-unbound models. We observed that although there was no significant difference in the amount of volume sampled over time, three HCM mutations (R141Q, L144P, and R145G) preferentially sampled space distant from the N-terminal region of cTnC compared to the native 6KN7 model. The other three mutations (R145Q, L144Q, and R145W) did not impact the distance of the cTnIISP to the N-terminal region of cTnC compared to the native.

Interhelical Angle Analysis Revealed No Significant Opening Events during MD Simulations. The interhelical angle between cTnC helices A and B has been shown to be a good indicator of when the cTnC$_{HLE}$ is exposed or "open." Using a cutoff of 105°, where above this cutoff would indicate a closed conformation and below would indicate an open conformation, during the Ca$^{2+}$-bound, cTnIISP-unbound, cTnIISP-tethered MD simulations, we were unable to see any significant opening events. Given the relatively short timescale of these simulations compared to the estimated timescale of hydrophobic patch opening, this was not unexpected, but it did inhibit our ability to see a complete shift from an unbound cTnIISP closed patch model to a cTnIISP-bound, open patch model. The apparent asymtote in the cTnIISP–cTnC$_{HLE}$ distance graphs (Figure 5A) around 14 Å arose from the inability of the cTnIISP in the unbound models to bind to the cTnIISP since it never opened throughout the MD simulations. Without this opening event, 14 Å was the closest possible distance of the cTnIISP to the cTnC$_{HLE}$. A model of the cTnIISP bound to a closed cTnC$_{HLE}$ can be seen in Figure S2 of Supporting Information. During the time in MD simulations where the distance is shown to be in this asymptotic range (for R145Q), the cTnIISP was essentially just interacting with the N-terminal region of cTnC, potentially primed to bind to the cTnC$_{HLE}$ if it were to open.

Analysis of Distance between cTnI 145 and cTnC E56/E59/E63. To discern differences in interactions between the cTnIISP and the N-terminal domain of cTnC, we evaluated the distance between the residue cTnI 145 and cTnC residues E56, E59, and E63. A previous study observed a decrease in the interaction between these residue pairs when comparing native and R145W models during MD simulations. The results can be seen in Table 2. The only model to experience a notable increase in residue–residue distance across all three pairings was the R145G mutation. We observed slight decreases in residue–residue distances across all three pairings for the L144P mutation. However, in both cases the ranges of the standard deviations overlapped with that of the native data, preventing us from concluding that these differences were significant enough to investigate further.

Table 1. Effective Concentration for Native and Mutated Models

<table>
<thead>
<tr>
<th>cTn model</th>
<th>Effective concentration (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>native</td>
<td>29.7 ± 5.5</td>
</tr>
<tr>
<td>R141Q</td>
<td>26.0 ± 5.1</td>
</tr>
<tr>
<td>L144P</td>
<td>29.7 ± 4.4</td>
</tr>
<tr>
<td>L144Q</td>
<td>28.3 ± 4.3</td>
</tr>
<tr>
<td>R145G</td>
<td>22.8 ± 5.3</td>
</tr>
<tr>
<td>R145Q</td>
<td>30.0 ± 5.6</td>
</tr>
<tr>
<td>R145W</td>
<td>30.2 ± 4.3</td>
</tr>
</tbody>
</table>

Figure 4. Volume sampled by AMD trajectories averaged across the three trials over the course of the simulation. Standard deviation is shown as the shaded region around the average.

Figure 5. Distance between cTnI 145 and cTnC residues E56, E59, and E63. A previous study observed a decrease in the interaction between these residue pairs when comparing native and R145W models during MD simulations. The results can be seen in Table 2. The only model to experience a notable increase in residue–residue distance across all three pairings was the R145G mutation. We observed slight decreases in residue–residue distances across all three pairings for the L144P mutation. However, in both cases the ranges of the standard deviations overlapped with that of the native data, preventing us from concluding that these differences were significant enough to investigate further.
with our effective concentration evaluation, would suggest the mechanism by which the cTnIIP aids the cTnISP in finding the hydrophobic patch involves more than one residue within the cTnIIP region, and that a singular mutation may not be enough to significantly disrupt this process. The only mutation that caused a notable impact, as measured by these two metrics, was R145G.

Radius of Gyration Calculation Showed Increased Variability in cTnIIP in Most Cardiomyopathic Models. We further analyzed the dynamics of the cTnIIP region by measuring its radius of gyration (R_g) as a function of time throughout the cTnIIP-unbound, cTnIIP-tethered MD simulations (Figure S2). Given that there was no significant change in the estimated effective concentration, we did not expect to observe a higher R_g for the mutated models. However, we did observe an increased variability in R_g in the RCM mutations, indicating that the mutated cTnIIP region was less stable than the native sequence. A similar observation was made for the HCM mutations, except for the R145Q mutant, which exhibited a native-like trend. The R145G mutation experienced the largest variability in radius of gyration, as well as the largest observed R_g values for any of the models. This was not surprising as this mutation was shown to have sampled the most space throughout the simulations (Table 1). Interestingly, the 6KN8 model that contained a cTnISP bound to an open cTnCHP exhibited the largest R_g values for any of the models.

Table 2. Average Distance between cTnC 56/59/63 and cTnI 145

<table>
<thead>
<tr>
<th>cTnC residue</th>
<th>metric</th>
<th>native</th>
<th>R141Q</th>
<th>L144P</th>
<th>R144Q</th>
<th>R145G</th>
<th>R145Q</th>
<th>R145W</th>
</tr>
</thead>
<tbody>
<tr>
<td>E56</td>
<td>avg. distance (Å)</td>
<td>15.7 ± 3.2</td>
<td>15.2 ± 4.5</td>
<td>12.7 ± 4.0</td>
<td>17.2 ± 1.6</td>
<td>21.1 ± 4.9</td>
<td>16.7 ± 1.3</td>
<td>17.7 ± 5.1</td>
</tr>
<tr>
<td>E59</td>
<td>avg. distance (Å)</td>
<td>19.4 ± 3.7</td>
<td>18.4 ± 4.5</td>
<td>16.8 ± 4.7</td>
<td>21.4 ± 1.6</td>
<td>23.6 ± 5.6</td>
<td>21.3 ± 1.4</td>
<td>21.6 ± 4.8</td>
</tr>
<tr>
<td>E63</td>
<td>avg. distance (Å)</td>
<td>24.5 ± 3.3</td>
<td>24.1 ± 4.5</td>
<td>22.3 ± 4.5</td>
<td>26.5 ± 1.3</td>
<td>27.0 ± 6.5</td>
<td>25.5 ± 1.5</td>
<td>25.5 ± 3.3</td>
</tr>
</tbody>
</table>

“All averages and standard deviations are calculated over all trials performed for each system.

cTn Phosphothreonine 143 Stabilized the cTnIIP Region Causing an Increased Effective Concentration. Shifting the focus from mutations to post-translational modifications, we measured the sampled volume and hence the effective concentration, for the cTnI phosphothreonine 143 (pT143) cTnIIP-tethered, cTnIIP-unbound model. pT143 has conflicting experimental evidence on its mechanism but is generally thought to decouple the activation of cardiac muscle and decrease the relaxation rate. A previous computational study used a phosphomimic mutation, T143E, and noticed decreased contacts between cTn 145 and cTnC residues 56, 59, and 63, which would suggest a decrease in cooperativity. Using the same analytical techniques as described for the cardiomyopathic mutations, we observed a significant increase in the effective concentration, an improved ability to find the cTnC, and similar R_g data when compared to the native simulations. pT143 simulations were determined to have an estimated cTnIIP effective concentration of 40.8 ± 4.6 mM, where the standard deviation was calculated from three trials. This effective concentration correlated to an average sampled volume of 40,714 Å³. This was a significant decrease in the sampled volume and increase in the effective concentration from the 29.7 mM average for wild-type cTn. Figure S3 illustrates the data collected for the cTnIIP distance to the cTnCIP and R_g calculations. The pT143 modification facilitated the cTnIIP experience a shorter distance to the cTnCIP than the native unbound model. Furthermore, the R_g data mostly aligned with that of the native, leading us to conclude that the structure of this region remained largely unperturbed. Figure S5 shows a comparison between the conformations sampled by the native and pT143 simulations. During the pT143 simulation, the cTnIIP was more often in the position to bind the cTnCIP and mimicked the 6KN8 Ca²⁺-bound, cTnIIP-bound structure (Figure 1B).
Interestingly, we observed zero interactions between cTnI R145 and cTnC E56/E59/E63 throughout any of the three trials, an observation that aligned with previous experiments on the phenomenon, albeit with a T143E phosphomimetic model rather than an actual phosphothreonine. All this evidence suggested that pT143 does not induce any large structural changes to the cTnIIP region but does promote binding of the cTnIIP to the cTnCIP.

Introducing cTnI Phosphothreonine 143 to cTnIIP Cardiomyopathic Models Did Not Increase the Effective Concentration. To see whether phosphorylation had a similar effect on the cardiomyopathic mutation models, we introduced pT143 to each of the mutated models and ran the same analyses previously described. We saw virtually no change in the effective concentration between the mutated phosphorylated and unphosphorylated models except a slight increase in the R141Q model (Figure 6). Previous experimental research has shown that pT143 is vastly reduced or does not occur when the R145W mutation is present, possibly due to the binding motif required for PKC-mediated phosphorylation being disrupted by a mutation only two residues downstream of the target residue. This observation, coupled with our data, may suggest that pT143 is not possible for any of the tested cardiomyopathic mutations. Disruption of this phosphorylation process could therefore be a mechanism of disease caused by these mutations.

CONCLUSIONS

Through our MD simulations, we were able to quantify the effect of a tethered switch peptide in the cTn complex by using the in-house VECA method. As hypothesized, removing the tether vastly decreased the measured effective concentration of cTnIIP by allowing it to sample space that is not within the proximity of the cTnCIP. This effect was observed in both classical MD and BD simulations. Through AMD simulations with a tethered cTnIIP, we observed a plateauing of sampled space toward the end of the simulations, indicating that 21.4 mM may be a reliable estimate of the actual effective concentration of a tethered cTnIIP. Modification of the cTnIIP via PKC-mediated phosphorylation of T143 was shown to significantly increase the estimated effective concentration of cTnIIP, help the cTnIIP find the cTnCIP more effectively, and maintain the relative shape of the cTnIIP when compared to the native model. All of these data indicate that pT143 may be able to help promote binding of cTnIIP to the cTnCIP.

The mechanism by which cardiomyopathic mutations in the cTnIIP region cause disease remains unclear. Our studies indicated that they likely do not impact the effective switch peptide concentration meaningfully. R145G was the only studied mutation that caused a noticeable decrease in the measured cTnIIP effective concentration. R145-E56 contacts were unaffected by R141Q, slightly increased in L144 mutations, and significantly dampened by all R145 mutations. R145-E59 contacts were essentially knocked out by all mutations; however, these contacts were only observed around 5% of the time in native simulations. R145Q, L144Q, and R145W all showed an increased ability to help the cTnIIP “find” the cTnCIP. R145Q was also observed to have the most native-like Rg throughout the simulations, whereas the other mutations had increased Rg or varying Rg. Our data do not support the hypothesis that the mechanism of disease caused by these mutations is predominantly based on altering the effective concentration of the cTnIIP to the cTnCIP.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcb.1c03844.

Cartoon representation of the cardiac thin filament, distance between cTnIIP and cTnCIP, radius of gyration data for HCM/RCM mutations, data for distance between cTnIIP and cTnCIP, Rg for the pT143 models, and ribbon representations of conformations assumed by native and pT143 troponin models (PDF)

AUTHOR INFORMATION

Corresponding Author

Steffen Lindert — Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States; orcid.org/0000-0002-3976-3473; Phone: 614-292-8284; Email: lindert.1@osu.edu; Fax: 614-292-1685

Author

Austin M. Cool — Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpcb.1c03844

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors would like to thank members of the Lindert Laboratory for helpful discussions relating to this work. Additionally, we would like to thank the Ohio Supercomputer Center for valuable computational resources. This work was supported by the NIH (R01 HL137015 to S.L.).

REFERENCES

(33) Covalent and Ionic Radii. https://doi.org/10.1021/acs.jpcb.1c03844.

