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SUMMARY
Hydrogen-deuterium exchange (HDX) measured by nuclear magnetic resonance (NMR) provides structural
information for proteins relating to solvent accessibility and flexibility. While this structural information is
beneficial, the data cannot be used exclusively to elucidate structures. However, the structural information
provided by the HDX-NMR data can be supplemented by computational methods. In previous work, we
developed an algorithm in Rosetta to predict structures using qualitative HDX-NMR data (categories of ex-
change rate). Here we expand on the effort, and utilize quantitative protection factors (PFs) from HDX-
NMR for structure prediction. From observed correlations between PFs and solvent accessibility/flexibility
measures, we present a scoring function to quantify the agreement with HDX data. Using a benchmark set
of 10 proteins, an average improvement of 5.13 Å in root-mean-square deviation (RMSD) is observed for
cases of inaccurate Rosetta predictions. Ultimately, seven out of 10 predictions are accurate without
including HDX data, and nine out of 10 are accurate when using our PF-based HDX score.
INTRODUCTION

Protein function is encoded in the structure of the protein, allow-

ing for understanding and manipulation of both mechanisms and

function if the structure can be determined experimentally. How-

ever, experimental structure determination is challenging, partic-

ularly for more complex and disordered proteins, with some pro-

teins eluding high-resolution structure determination due to their

intrinsic properties. As a result, the gap between known protein

sequences, which can be quickly determined, and known protein

structures increases by the day. This gap is fueled by the difficulty

of structural biology experiments, such as X-ray crystallography,

cryogenic electron microscopy (cryo-EM), and 13C-, 15N-edited

nuclear magnetic resonance (NMR) experiments, all of which

have limitations associated with them (Ardenkjaer-Larsen et al.,

2015; Lyumkis, 2019; Srivastava et al., 2018).

While tertiary structure has traditionally been determined using

the aforementioned methodologies, in recent decades the

advent of computational methods has led to potentially far

higher-throughput structure prediction. With these predictions,

however, come limitations such as increased probability of inac-

curate ab initio structure predictions as protein size increases

(Kim et al., 2009). The accuracy of computational methods can

be significantly improved by the inclusion of experimental data

(Seffernick and Lindert, 2020). Inclusion efforts began in the
1980s with NMR and X-ray crystallography, with more recent

studies aiming toward including data from lower-resolution

methods, such as electron paramagnetic resonance (EPR),

mass spectrometry (MS), and cryo-EM (Alexander et al., 2008;

Aprahamian et al., 2018; Aprahamian and Lindert, 2019; Biehn

and Lindert, 2021; Bowers et al., 2000; DiMaio et al., 2015; Har-

vey et al., 2019; Lindert et al., 2012; Pilla et al., 2017; Roberts

et al., 2017; Seffernick et al., 2019a; Srivastava et al., 2018;

van Zundert et al., 2015). Ideally, these types of experimental

data would be high-throughput and require a smaller sam-

ple size.

Biomolecular hydrogen-deuterium exchange (HDX) experi-

ments, originating in the 1970s, have typically been used to

map exchange rates onto atomic-resolution structures, eluci-

dating dynamic properties using static models (Choe et al.,

1998; Hooke et al., 1994; Palmer, 1997; Rosa and Richards,

1979). These studies have probed native-state dynamics on a

diverse set of proteins, and have mapped protein folding path-

ways by performing the experiments as the molecule is (un)

folding (Di Paolo et al., 2010; Rogov et al., 2004; Schulman

et al., 1995). Determination of dynamic properties stem from a

consensus that HDX rates are generally governed by exposure

and flexibility of the amide protons, thus regions of faster ex-

change can be correlated to regions of higher flexibility and/or

solvent exposure. Additionally, a wide variety of studies have
Structure 30, 313–320, February 3, 2022 ª 2021 Elsevier Ltd. 313

mailto:lindert.1@osu.edu
https://doi.org/10.1016/j.str.2021.10.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.str.2021.10.006&domain=pdf


ll
Resource
demonstrated the importance of accounting for dynamic proper-

ties by using sophisticated sampling methods (such as molecu-

lar dynamics simulations) to match structures to experimental

data, as well as using these methods to better understand the

factors influencing HDX (Best and Vendruscolo, 2006; Devaurs

et al., 2017, 2018; Hilser and Freire, 1996; Makarov et al.,

2020; Martens et al., 2019; McAllister and Konermann, 2015;

Mohammadiarani et al., 2018; Petruk et al., 2013; Vendruscolo

et al., 2003; Wan et al., 2020). Studies to simulate HDX data

(Liu et al., 2012), reweigh model ensembles (Bradshaw et al.,

2020; Craig et al., 2011; Wan et al., 2020), and evaluate pro-

tein-protein interactions (Borysik, 2017) require structural infor-

mation and long, computationally expensive trajectories ob-

tained from molecular dynamics simulations.

In absence of existing structural models, the data can also be

used as restraints in computational protein structure prediction.

Multiple studies have demonstrated that modeling based on

agreement to HDX data measured from MS can be beneficial

to enhance structural understanding of specific systems. For

structure prediction of monomeric proteins from sequence, ap-

proaches using homology modeling along with HDX-MS data

can be successful, even for systems that are difficult to crystal-

lize (Ramsey et al., 2018; Zhang et al., 2014). Protein-protein

docking has also been performed in combination with HDX-MS

data, allowing for the prediction of complex structures in agree-

ment with the data (Borysik, 2017; Roberts et al., 2017; Zhang

et al., 2019).

In previous work, we have demonstrated that structural fea-

tures relating to exposure and flexibility of amide protons are

correlated to experimental HDX rates measured using NMR

(Marzolf et al., 2021). Using a benchmark set of 38 proteins, a

correlation between HDX rate and four calculated parameters

related to exposure and flexibility was established. In brief, expo-

sure was quantified using a calculated amide proton neighbor

count (NC) and relative solvent-accessible surface area (Re-

lSASA) (Aprahamian et al., 2018). Flexibility was estimated using

the order score (OS) (Kim et al., 2018; Seffernick et al., 2019b),

a window-averaged residual Rosetta score, and hydrogen-

bonding energies involving the amide proton. After developing

a score term that evaluated agreement of the four parameters

to experimental HDX rate categories in a large set of decoy struc-

tures, we were able to improve prediction accuracy, reducing

root-mean-square deviation (RMSD) substantially. However,

this scoring term used strength categories that corresponded

to HDX rates rather than the quantitative exchange rates them-

selves, introducing a potential source of uncertainty.

In this report, we extend the methodologies from the previous

work to directly employ quantitative HDX rates during the protein

modeling using a benchmark set of 10 proteins. The quantitative

rates, reported as protection factors (PFs), were used to predict

parameters that related to exposure and flexibility. The predicted

values were then compared with calculated values in models

generated by Rosetta, with the difference in the values incorpo-

rated in a Rosetta scoring term. This method differs from our

previous work (using quantitative PFs rather than categories of

exchange) and other methods in the literature, which are gener-

ally used to match agreement for a single system (monomer or

complex) using HDX-MS. In this report, we directly incorporated

HDX rates measured from NMR experiments into a general
314 Structure 30, 313–320, February 3, 2022
method, available in Rosetta, to predict monomer structure

from sequence alone. Using this new scoring term, protein struc-

ture prediction accuracy increased, moving from 7 out of 10 to 9

out of 10 of the benchmark proteins predicting an accurate

model (<5.5 Å RMSD to the native model) when the HDX data

were included.

RESULTS AND DISCUSSION

Previous work showed HDX-NMR data provide useful
information to structure prediction
Experimental data from HDX measured by NMR provide struc-

tural information on proteins. While this information alone cannot

be used to fully elucidate the structures, it can be utilized as a

supplement to computational prediction methods. Recently,

we developed amethod to use HDX-NMR data to predict tertiary

structure from sequence using Rosetta ab initio structure predic-

tion (Marzolf et al., 2021). In this previous work, the experimental

data were categorized as strong, medium, or weak, correspond-

ing to slow, medium, and fast exchange, respectively. The HDX

score term was dependent on the following four residue-

resolved metrics that were expected to influence the HDX rate:

NC, RelSASA, hydrogen bond score (HB), and Rosetta OS, using

ResidueDisorder (Kim et al., 2018; Seffernick et al., 2019b). In the

previous study, structure prediction results improved when qual-

itative HDX data were included (Marzolf et al., 2021).

PFs provided more information for modeling and trends
followed expected structural hypotheses
While results from previous work were promising and showed

that a very small amount of experimental data can meaningfully

improve prediction results, there was a potential to include more

information from HDX-NMR experiments into structure predic-

tion. In this study, rather than using qualitative data (where

measured exchange rates were categorized into strong, me-

dium, and weak), we used quantitative PFs measured from

HDX-NMR experiments. PFs are defined as the ratio of the

sequence-dependent intrinsic HDX rate constant to observed

exchange rate constant. Residues (specifically backbone amide

hydrogens) with higher PF (corresponding to lower relative ex-

change rate) are expected to be less flexible (i.e., participate

strongly in hydrogen bonding) and/or have less exposure to

the solvent. Similar to previous work, here we used HB and OS

to quantify flexibility, and NC and RelSASA to quantify solvent

exposure, but have done so using PFs.

Quantitative PFs were not as readily available as qualitative

exchange rate categories for a large number of proteins. Our

benchmark dataset contained 10 proteins (ranging from 76 to

223 residues; summarized in Table S1) for which experimental

PFs were provided in the literature. For this dataset, we first

sought to test our hypotheses (high exposure and high flexibility

leading to increased exchange) by examining the correlations

between the calculated residue-resolved parameters and PF.

Figure 1 shows the NC, RelSASA, HB, and OS as a function of

log(PF) for residues in all 10 proteins (a total of 431 residues).

The values of slopes and intercepts for each correlation are pro-

vided in Table S3. While the individual correlations did not

appear to be exceptionally strong (R2 of 0.12, 0.05, 0.05, and

0.04 respectively), the hypothesized trends were observed for



Figure 1. Experimental data correlations to structure

Correlations between the calculated structural parameters (NC, RelSASA, HB, and OS) with the log base 10 of HDX PF. Linear regression lines are shown in red

along with the R2 values. All trends matched structural hypotheses.
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all four parameters. The relatively weak correlations were unsur-

prising because no individual parameter can be expected to

govern exchange in a complex process such as HDX. Nonethe-

less, based on these native distributions, we developed a

scoring function to be used to quantify the quality of a predicted

protein structure based on its agreement with the NMR-

HDX data.

Inclusion of HDX-NMR PF was beneficial for structure
prediction
Rosetta ab initio structure prediction was used to predict struc-

tures from sequence for the majority of proteins in the dataset (8

out of 10). However, due to poor observed sampling, homology

models were instead generated for 1SNO and 2ETL using Roset-

taCM. Regardless of method, 10,000models were generated for

each protein in the dataset and scored using the Rosetta

REF2015 scoring function. For each protein, within the respec-

tive pool of models, structures with RMSD (with respect to the

crystal structures) of less than 4 Å were sampled. The predicted

structure without using HDX-NMR data was the lowest scoring

model by Rosetta score. The accuracy of the predicted struc-

tures varied, with the RMSDs ranging from 0.67 Å to 14.75 Å,

with 7 out of 10 less than 5.5 Å (see Figure 2).

To test the ability of HDX-NMR PFs to facilitate protein

structure prediction, structures were also scored based on

agreement with PF from HDX-NMR in addition to scoring with
Rosetta (HDX score). A detailed summary of the score is pro-

vided in the STAR Methods, but, in short, for each residue

with a measured experimental PF, observed regression lines

from Figure 1 (Table S3) were used to predict a value for all

exposure and flexibility parameters respectively (NC, RelSASA,

HB, and OS). Next, each predicted parameter was compared

with the calculated parameter using the structure of the model.

Based on the difference between observed and predicted pa-

rameters, each residue was scored in the range of �1 (good

agreement, fully rewarded) and 0 (bad agreement, not re-

warded). Using this function on all 100,000 generated models,

�20% of residues were fully rewarded (score of �1), �35%

were intermediately rewarded (score between �1 and 0), and

�45% of residues were not rewarded (score of 0). This distribu-

tion was similar to the distributions of the proteins individually,

showing no strong bias for any one protein in the benchmark

set. The HDX component of the scores for full protein struc-

tures was then derived by aggregating the agreement scores

(referring to Equation 4) for each residue (with PF) and each

parameter (NC, RelSASA, OS, and HB). While the scoring re-

sults using all four computational parameters are described in

detail in the following paragraphs, we note that scoring with in-

dividual scoring terms was not as successful. This was not sur-

prising, since single features were not expected to govern the

complicated process of HDX. The scoring with individual terms

was similar to or slightly worse than scoring with Rosetta only
Structure 30, 313–320, February 3, 2022 315



Figure 2. Comparison of prediction accuracy with and without

HDX data
(A) RMSD of top scoring models with (y axis) and without (x axis) HDX data.

Circles indicate structures predicted with ab initio and triangles indicate

homology models.
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(average RMSD of Rosetta only, 5.4 Å; average RMSD range

using individual terms, 5.1–7.7 Å).

Ultimately, structures were scored using a combined score

including both the Rosetta score and HDX component scores

(based on agreement with HDX-NMR data) to get a consensus

between the Rosetta energy function and experimental data

(HDX score, referring to Equation 5). However, the HDX-depen-

dent component of the HDX score performed remarkably well by

itself as well (referring to the sumof HDX terms in Equation 5). For

the majority of proteins in the dataset (7 out of 10), the top

scoring model using only the HDX-dependent component of

the HDX score was less than 5.5 Å, the same number as when

scoring with Rosetta only (although a different set of seven).

When using the HDX score, the RMSDs of all (10 out of 10) pre-

dicted structures were improved or were within 0.75 Å of the

result obtained by scoring without experimental data. We also

note that the results based on the relative weights between the

four terms (NC, RelSASA , OS, and HB) in Equation 5 were rela-

tively stable with respect to small changes in weights. Figure 2A

shows the RMSD of the predicted structures with and without

including HDX data. Overall, the number of predicted structures

with less than 5.5 Å RMSD improved to 9 out of 10 when HDX

PFs were included (7 out of 10 without PF). The top scoring

models were rewarded more by the individual HDX components

of the score compared with the complete set of decoys: 27%

fully rewarded, 40% intermediately rewarded, and 33% not

rewarded.

Furthermore, two important features were observed: (1) for the

seven proteinswhere Rosetta alone predicted an accurate struc-

ture (<5.5 Å RMSD), inclusion of HDX data did not significantly

change prediction results (selected model RMSD changed by

an average of 0.07 Å), and (2) for the three proteins where Ro-

setta alone predicted an inaccurate structure (1AYI, 1FS3, and

3BLG with RMSDs of 12.72 Å, 10.63 Å, and 14.75 Å, respec-

tively), the inclusion of HDX data markedly improved the predic-

tion results. The RMSD of the predicted model for each of these

proteins improved by more than 3 Å with an average improve-

ment of 5.13 Å when HDX data were included. This improvement

compared favorably with our previous work (Marzolf et al., 2021),

which used qualitative HDX-NMR data to predict structures

(3.63 Å).We acknowledge that the dataset is too small (only three

proteins met this criterion) to draw any universal conclusions.

However, we hypothesize that more structural information is en-

coded in the quantitative HDX PF used in this work than the qual-

itative categories of exchange rates used in previous work. The

additional information provided in the data may have contributed

to the improved results. For two of these improved predictions

(1AYI and 1FS3), accurate structures were predicted when using

HDX data; i.e., the RMSD of the final predicted structure was less

than 5.5 Å. Figures 2B and 2D show the scores as a function of

RMSD without (red) and with (blue) HDX data used for scoring

1AYI and 1FS3, respectively. The predicted structures (i.e.,
(B and D) Score versus RMSD plots for 1AYI and 1FS3 for Rosetta (red) and

HDX score (blue). The predicted structure (lowest scoring model) is repre-

sented as a black star and 100 relaxed native structures are represented by

gray circles.

(C and E) Predicted structures (Rosetta score, red; HDX score, blue) aligned to

native (shown in gray).



Figure 3. Confidence metric for analyzing

prediction results

RMSD of predicted structure using HDX data for

each protein shown along with the confidence

metric (average RMSD of top 10 scoring models to

top scoring model). Circles indicate structures pre-

dicted with ab initio and triangles indicate homology

models. Vertical line shows separation between

confidence regions: high confidence (less than 6 Å)

and low confidence (greater than 6 Å). The confi-

dence metric separated predictions well without

knowledge of the native structure.
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models with the lowest score, corresponding to Figure 2A) are

indicated with a star and those structures are shown aligned to

the native crystal structures in Figures 2C and 2E. Similar score

versus RMSDplots for the remaining eight proteins in the dataset

are shown in Figure S1. From the ab initio sampling, the best

RMSD structures were typically in the range of 2–5 Å (depending

on the system). To demonstrate that the HDX score also ranked

native-like structures well, we calculated the scores for 100

relaxed native structures (shown in the plots as gray circles).

These data show that the HDX score did indeed identify these

�1-Å RMSD structures as native-like.

Confidence metric separated most native-like
predictions from others
We sought to define a metric to assess the confidence of a pre-

diction in the absence of a crystal structure. The confidence

metric was defined as the average RMSD of the top 10 scoring

models to the top scoring model. We hypothesized that this

value would be lower when accurate predictions were made

because a larger number of structures similar to the predicted

structure would also score well. Using this metric, we were

able to categorize our predictions as high confidence (<6 Å), or

low confidence (>6 Å), as shown in Figure 3. Thismetric identified

the top six predictions (all with RMSD less than 3 Å) as high con-

fidence, while identifying the only prediction with RMSD >5.5 Å

as low confidence. For high-confidence models, the average

RMSD of the predicted structure was 2.06 Å, compared with

6.21 Å for low-confidence models.

Conclusion
HDX rates of backbone amide hydrogens measured by NMR

provide structural information such as flexibility and solvent

accessibility of backbone amide protons. In previous work, we

developed a scoring function to utilize qualitative HDX-NMR
S

data for protein structure prediction. In

this study, we extended this methodology

to HDX-NMR data containing quantitative

PFs. We demonstrated that these PFs

correlated with structural features of pro-

teins exhibiting the expected trends when

modeled onto native crystal structures.

We then used these observed correla-

tions of each parameter to develop a

scoring function to quantify agreement be-

tween modeled structures and PF. When
predicting tertiary structures of proteins using Rosetta, accurate

structures (<5.5 Å RMSD of the predicted model) were predicted

in 7 out of 10 cases. However, when quantitative PFs from HDX

were included, 9 out of 10 of these benchmark cases were pre-

dicted accurately. For two cases, the RMSD of the predicted

model improved by more than 6.5 Å when experimental data

were included, and none of the accurate predictions were

adversely affected by the HDX data (only changed by an average

of 0.07 Å RMSD). Finally, we developed a confidence metric to

identify the cases where our predicted structure was most likely

to be native-like in the absence of knowledge of the crystal struc-

ture. This confidence metric correctly flagged the top six predic-

tions as high confidence.

This work is an important extension of our previously devel-

oped HDX-NMR algorithm for protein structure prediction.

These two algorithms now enable researchers to extract data

from HDX-NMR as either qualitative categories or quantitative

PFs to elucidate structures of proteins. Based on the relative

ease of data collection for HDX-NMR, this computational

method is beneficial. In this benchmark set, for all predictions

where an inaccurate structure was predicted using Rosetta,

the scoring based on HDX-NMR data improved the accuracy

of the predicted structure. Based on our data, we speculate

that the PFs from HDX-NMR provide information that can

discriminate between correct and incorrect topology but do

not contain enough information to refine near-atomic-resolution

models. A tutorial on how to perform qualitative and quantita-

tive HDX scoring with our algorithm in Rosetta has been

included in the supplemental information (Method S1). In future

work, we will extend our HDX methodology to study protein

complexes. Additionally, we aim to utilize HDX data measured

from MS (which has become more popular in recent years) and

incorporate multiple types of experimental data to make more

accurate predictions.
tructure 30, 313–320, February 3, 2022 317
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Structure of barnase (Martin et al., 1999) PDB: 1A2P

Structure of colicin E immunity protein 7 (Dennis et al., 1998) PDB: 1AYI

Structure of barstar (Lubienski et al., 1994) PDB: 1BTA

Structure of che Y (Santoro et al., 1995) PDB: 1CYE

Structure of bovine pancreatic ribonuclease A (Chatani et al., 2002) PDB: 1FS3

Structure of staphylococcal nuclease (Truckses et al., 1996) PDB: 1SNO

Structure of chymotrypsin inhibitor 2 (Radisky et al., 2004) PDB: 1TM1

Structure of ubiquitin (Vijay-Kumar et al., 1987) PDB: 1UBQ

Structure of ubiquitin carboxyl-terminal hydrolase

isozyme L1

(Das et al., 2006) PDB: 2ETL

Structure of beta-lactoglobulin (Qin et al., 1998) PDB: 3BLG

Software and algorithms

Rosetta (Leman et al., 2020) https://www.rosettacommons.org/software/

academic

Rosetta AbinitioRelax (Bradley et al., 2005) https://www.rosettacommons.org/docs/latest/

application_documentation/structure_prediction/

abinitio-relax

RosettaCM (Song et al., 2013) https://www.rosettacommons.org/docs/latest/

application_documentation/structure_prediction/

RosettaCM

Robetta web server (Kim et al., 2004) http://old.robetta.org/

Standard Protein BLAST (Johnson et al., 2008) https://blast.ncbi.nlm.nih.gov/Blast.cgi

Clustal Omega (Sievers and Higgins, 2018) https://www.ebi.ac.uk/Tools/msa/clustalo/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Steffen Lindert (lindert.

1@osu.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The HDXEnergy application has been contributed to Rosetta software, and a tutorial for running the application is available in the

supplemental information (Method S1). All model generation and residual property calculations were performed within the Rosetta

software framework, available free for educational purposes at https://www.rosettacommons.org/software. All protein structure and

sequence files are available in the Protein Data Bank (PDB) at https://www.rcsb.org/. Residual protection factors can be found in the

Excel file provided in the supplemental information (Data S1). All software and algorithms used in this paper are available and listed in

the key resources table. Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All data were generated from the datasets provided in the KRT.
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METHOD DETAILS

Benchmark dataset
In this work, we used HDX-NMR protection factors (PFs), which are dependent on solvent accessibility and structural flexibility of

specific residues (Bai et al., 1993). For a residue, protection factor is defined as a ratio between the intrinsic HDX rate constant

(kint) and the observed HDX rate constant (kex) as shown in Equation 1 (Bai et al., 1993; Perrett et al., 1995):

PF =
kint
kex

(Equation 1)

The benchmark dataset for this study contained ten proteins with reported residue-resolved HDX-NMR protection factors which

were all consistent with the definition in Equation 1. While a detailed summary of the benchmark set is shown in Table S1, in short, the

proteins used in this study were barnase (PDB: 1A2P), colicin E immunity protein 7 (PDB: 1AYI), barstar (PDB: 1BTA), che Y (PDB:

1CYE), bovine pancreatic ribonuclease A (PDB: 1FS3), staphylococcal nuclease (PDB: 1SNO), chymotrypsin inhibitor 2 (PDB:

1TM1), ubiquitin (PDB: 1UBQ), ubiquitin carboxyl-terminal hydrolase isozyme L1 (PDB: 2ETL), and beta-lactoglobulin

(PDB: 3BLG). All ten proteins were monomers and experimentally determined structures were available in the Protein Data Bank

(PDB). The total number of residues of these proteins ranged from 64 to 223 (Table S1). For 1A2P, 1FS3, and 2ETL, the HDX exper-

iments were conducted at various pHs. The protection factors for the most acidic pH were selected for each protein [pH = 6.5 for

1A2P (Perrett et al., 1995), pH = 6.5 for 1FS3 (Wang et al., 1995), and pH = 7.6 for 2ETL (Lou et al., 2016)]. In our benchmark dataset,

five proteins were reported with the raw protection factors [1A2P (Perrett et al., 1995), 1BTA (Bhuyan and Udgaonkar, 1998), 1FS3

(Wang et al., 1995), 1UBQ (Pan and Briggs, 1992), and 3BLG (Forge et al., 2000)], three proteins were reported with the logarithmic

base 10 of protection factors [1CYE (Lacroix et al., 1997), 1SNO (Devaurs et al., 2017; Skinner et al., 2012), and 2ETL (Lou et al.,

2016)], and two proteins were reported with the natural logarithm of protection factors [1AYI (Devaurs et al., 2017) and 1TM1 (Devaurs

et al., 2017)]. Thus, to standardize protection factors and calculations, all the valueswere converted into logarithmwith base 10 of raw

protection factors (log[PF]).

Model generation
To assess the competence of the developedHDX scoring function to distinguishing near-nativemodels from other decoymodels, the

decoy set must have a wide distribution of RMSDs (root-mean square deviation to crystal structures), ranging from near-native

models (<4 Å RMSD) to models with incorrect topology (>8 Å RMSD). For the majority of proteins in the benchmark dataset, to

achieve this purpose, we generated 10,000 decoy models using the standard Rosetta AbinitioRelax protocol (Leaver-Fay et al.,

2011; Simons et al., 1997). The Robetta Web server was used to generate the 3-mer and 9-mer fragment files (Kim et al., 2004).

The REF2015 scoring function (Alford et al., 2017) was used to score each model for its conformational stability, and the RMSD

to the relaxed native structure was calculated for each of the generated models. For 1BTA, 1CYE, 1TM1, 1UBQ, and 3BLG, we

used the fragment files generated by excluding homologs. However, for 1A2P, 1AYI, and 1FS3, due to poor model sampling,

(none of the models generated were considered near-native) fragment files were generated by including homologs.

Likewise, because of poor observed sampling of the Rosetta AbinitioRelax protocol (both with and without homologous frag-

ments), for 1SNO and 2ETL, the RosettaCM protocol was applied to generate 10,000 decoy homology models of the target proteins

(Song et al., 2013). The Standard Protein BLAST server (using the Position-Specific Iterated BLAST) was used to search for different

protein sequences with various query coverage and percent identity to the target protein (Johnson et al., 2008). For 1SNO, 3SK6 and

2W8U were selected as templates, while for 2ETL, the templates were 1UCH and 3IHR. Percent identity, coverage, and similarity for

each template are shown in Table S2. The templates were aligned with the targets (1SNO and 2ETL) using the Clustal Omega server

(Sievers and Higgins, 2018). From the alignment, the sequence of the target was threaded onto each template. Finally, 10,000 decoy

models were generated by hybridizing the threaded target sequence on templates with different weights (Table S2).

Calculations of HDX-dependent metrics
The HDX rate for each residue was expected to correlate with flexibility and solvent exposure (Vadas and Burke, 2015). Neighbor

count (NC) and relative solvent accessible surface area (RelSASA) were used to quantify solvent accessibility, and order score

(OS) and hydrogen bond energy (HB) were used to quantify flexibility. Calculations of each of these four metrics were thoroughly

described in our previous work (Marzolf et al., 2021). In short, NC was based on the number of oxygen atoms in the proximity of

the amide protons (based on distance and angular cutoffs). RelSASA quantified the solvent accessibility of the side-chain atoms

by calculating the ratio between the measured SASA and the theoretical maximum SASA. OS was a window averaged Rosetta res-

idue score, representing the disorder of a residue (Kim et al., 2018; Seffernick et al., 2019b). Finally, HB was the hydrogen bonding

energy of interactions between the amide proton and other residues. All four metrics were calculated using Rosetta applications.

HDX agreement scores
Similar to the previous work, we developed the HDX agreement score based on the observed correlation between the flexibility and

solvent exposure metrics and the experimental HDX-NMR protection factors (Marzolf et al., 2021). However, here, the quantitative

protection factors were incorporated directly into the scoring function. From the crystal structures of the ten proteins, for each residue
e2 Structure 30, 313–320.e1–e3, February 3, 2022
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with experimental PF (total of 431), four different parameters (NC, RelSASA, OS, and HB) were calculated. For each metric, the cor-

relation between the parameters and PF of ten proteins was examined with linear regression lines as shown in Equation 2.

Predicted parameter = logðPFÞ � a+ b (Equation 2)

The trends between each parameter and log(PF) matched our hypotheses (sign of slope, a), thus they were used to score predicted

structures based on HDX agreement. To score sampled structures from Rosetta ab initio or RosettaCM, we first used Rosetta to

calculate the four parameters (NC, RelSASA, OS, and HB) for each of the residues with HDX PF. Next, the values of the parameters

were predicted based on the PF (using Equation 2). The slopes and y-intercepts of the linear regressions for the four metrics are re-

ported in Table S3. The HDX agreement score was developed to score residues by quantifying the absolute differences (Di) between

the Rosetta calculated values and the predicted values of a residue i using the corresponding PF. In short, residues with a poor agree-

ment were scored as 0, residues with strong agreement were scored as -1, and a linear function was used for those between. The

specific form of the score function is shown in Equation 3.

Score per residuei =

8>>><
>>>:

�1;Di % c1

Di

2
�
�c1 + c2

4

�
� 0:5; c1<Di % c2

0; c2 < Di

(Equation 3)

For each metric, there were two cutoffs used to determine whether the residue followed the HDX agreement. Cutoff 1 (c1) was the

rewarding cutoff. Specifically, the residue was fully rewarded with -1, if Di was less than c1, which showed that the observed param-

eters were consistent with the predicted parameters. Values of c1 for each different metric were determined based on the range of

numerical values of each metric (c1 = 1.0 for NC, c1 = 0.1 for RelSASA, c1 = 0.2 for OS, and c1 = 0.2 for HB). Cutoff 2 (c2) was the non-

rewarding cutoff. IfDi was greater than c2, the calculated parameters were inconsistent with the predicted values. Hence, the residue

would not be rewarded (0). From the standard deviations of native models of 10 proteins for NC, RelSASA, OS, and HB (2.31 for NC,

0.278 for RelSASA, 0.623 for OS, and 0.836 for HB), values of c2 were determined (c2 = 2.0 for NC, c2 = 0.3 for RelSASA, c2 = 0.6 for

OS, and c2 = 0.8 for HB). If Di fell between c1 and c2, the residue would be linearly rewarded based on Di as shown in Equation 3.

Using this scoring algorithm, the score per residue for each parameter would range between -1 for a fully rewarded residue to 0 for

a non-rewarded residue. For a model, the HDX component score (S) for each individual parameter was defined as the sum of the

residue scores for all residues with experimental PF, as shown in Equation 4.

S =
X# residues with PF

i

Score per residuei (Equation 4)

By including the HDX agreement score, the HDX score was defined as the linear combination of the REF2015 Rosetta score (RS)

and model score (S) of each metric, as showed in Equation 5. The HDX terms in Equation 5 are defined as the HDX component of

the score.

HDX Score = RS+ 2 � SðNCÞ+ 3 � SðRelSASAÞ+ 4 � SðOSÞ+ 3 � SðHBÞ (Equation 5)

Confidence metric
A confidencemetric was developed to assess the extent of confidence in near-native model generation without knowledge of a crys-

tal structure. The confidence metric was defined as the average RMSD of the top 10 scoring models to the top scoring model. If the

confidence metric was less than 6 Å, the prediction was considered to be the high confidence. For these proteins, the predicted

model had a high probability to be a near-native model. On the other hand, if the confidence metric was greater than 6 Å, the pre-

diction was considered low confidence, such that a near-native model was not expected to be predicted.

QUANTIFICATION AND STATISTICAL ANALYSIS

The correlation between the flexibility and solvent exposure metrics and the experimental HDX-NMR protection factors of 431 res-

idues, for which we had protection factors, were examined using linear regression (Figure 1). The R2 values were reported in Figure 1,

while the slopes and y-intercepts were reported in Table S3. The standard deviations of native models of 10 proteins for NC, Re-

lSASA, OS, and HB of 431 residues were calculated and reported in the method details section. All calculations and statistical anal-

ysis were performed using Python v3.8.
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