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ABSTRACT: Covalent labeling mass spectrometry allows for
protein structure elucidation via covalent modification and
identification of exposed residues. Diethylpyrocarbonate (DEPC)
is a commonly used covalent labeling reagent that provides insight
into structure through the labeling of lysine, histidine, serine,
threonine, and tyrosine residues. We recently implemented a
Rosetta algorithm that used binary DEPC labeling data to improve
protein structure prediction efforts. In this work, we improved on
our modeling efforts by accounting for the level of hydrophobicity
of neighboring residues in the microenvironment of serine,
threonine, and tyrosine residues to obtain a more accurate
estimate of the hydrophobic neighbor count. This was incorpo-
rated into Rosetta functionality, along with considerations for
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solvent-exposed histidine and lysine residues. Overall, our new Rosetta score term successfully identified best scoring models with
less than 2 A root-mean-squared deviations (RMSDs) for five of the seven benchmark proteins tested. We additionally developed a
confidence metric to measure prediction success for situations in which a native structure is unavailable.

B INTRODUCTION

Knowledge of protein structure can enable understanding and
manipulation of protein function. While techniques exist to
explicitly determine protein structure, experimental limitations
can impede structure elucidation. With low-sample-amount
requirements, no size limitations, and no crystallization
requirement, structural mass spectrometry (MS) is a valuable
experimental technique that can provide insight into protein
structure in the absence of higher-resolution information.' ™
Covalent labeling MS (CL-MS) employs reagents that
covalently modify proteins in solution to glean structural and
topological information, particularly solvent exposure for
modified residues." Some CL-MS experiments include
hydroxyl radical protein footprinting, trifluoromethylation,
carbenes, and diethylpyrocarbonate (DEPC) labeling.">**
DEPC is a commercially available labeling reagent that
produces a single product with a +72.021 Da mass addition
during the covalent modification of the protein N-terminus,
Cys, Lys, His, Ser, Thr, and Tyr.4’6_8 Knowledge of DEPC-
labeled and unlabeled residues coupled with computational
methods can be used for protein structure elucidation.”
Computational methods in combination with MS and other
experimental data have been previously shown to support
protein structure prediction efforts across different modeling
platforms.”~*° Hydrogen—deuterium exchange (HDX) data
from MS and nuclear magnetic resonance and chemical cross-
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linking (XL) data have been used for successful protein
modeling.”' 7> XL data provides insight into the spatial
proximity of residues, while HDX data can be used to infer
solvent exposure of modified resides.' CL-MS data provide
several advantages for structural modeling over XL and HDX
data due to inherent advantages in the data. CL-MS employs
irreversible labeling with reagents to target a variety of residue
types that can be more precisely confirmed at the residue level
during data analysis. Identifying cross-linked sites in XL is
more challenging, and the surface distance restraints provided
by XL are associated with high uncertainty. As commonly
applied, HDX does not provide residue-level information and
is prone to back exchange during MS analysis, often resulting
in the loss of structural information.” Rosetta is a molecular
modeling suite that can be used to examine structure
prediction via generation of ab initio and homology
models.""””~*° Functionality within Rosetta also exists to
examine solvent exposure of protein models, which can be
used to aid in structure prediction.”"”* Additionally, Rosetta
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has been a successful venue for incorporation of MS data,
including CL-MS data, into protein structure prediction efforts,
allowing sparse experimental data to guide modeling when
atomic-resolution structure elucidation methods fall
short, 210,12,13,24-26,30-35

Previously, we incorporated the first DEPC-guided Rosetta
score term based on the labeling sensitivity of Ser, Thr, and
Tyr (STY) residues to a hydrophobic microenvironment and
based on the solvent exposure of His and Lys residues.’
Labeled and unlabeled STY residues with low relative solvent
accessible surface area (SASA) were rewarded based on the
number of hydrophobic neighbors. Labeled residues with more
hydrophobic neighbors and unlabeled residues with fewer
hydrophobic residues were rewarded based on our previous
work that indicated neighboring hydrophobic residues
promoted an increased local concentration of DEPC and
thus facilitated labeling.8 Overall, we demonstrated that
modeling guided by DEPC led to improved structure
prediction with both ab initio and homology modeling, as
the best scoring model root-mean-square deviation (RMSD)
improved with score term usage. Here, we sought to build
upon this previous work by accounting for the level of
hydrophobicity of neighboring residues within the micro-
environment. By using the normalized hydrophobicity of
residues to dictate their contribution to the hydrophobic
neighbor count (HNC), we have identified a more distinct
difference in HNC distributions for labeled and unlabeled
residues. This guided the development of a label status-based
score term, depc_hydrophobicity, that combined the solvent
exposure rewards for labeled His and Lys residues with the
HNC rewards for STY residues based on the proximity of
hydrophobic neighbors within the residue microenvironment.
In a benchmark test of our algorithm, we used DEPC data for
seven proteins of known structure to guide modeling. We
identified accurate atomic detail in the best scoring models of
five of the seven proteins using both ab initio and homology
model sets.

B METHODS

Benchmark Set of Proteins with DEPC Labeling Data.
Our benchmark set consisted of seven proteins, including
myoglobin (PDB 1DWR, 152 residues), human growth
hormone (HGH, PDB 1HGU, 191 residues), f2-micro-
globulin (f2m, PDB 1JNJ, 100 residues), ubiquitin (PDB
1UBQ, 76 residues), carbonic anhydrase (PDB 1V9E, 259
residues), superfolder green fluorescent protein (sfGFP, PDB
2B3P, 244 residues), and lysozyme (PDB 2LYZ, 129 residues).
Experimental data collection for myoglobin,® #2m,* ubiquitin,”®
lysozyme,”® HGH,® and carbonic anhydrase®” has been
described and published previously, with DEPC labeling status
data for His, Lys, Ser, Thr, and Tyr residues for each protein.9
Experimental data for sfGFP has been included in Table SI.

Benchmark Protein Ab Initio and Homology Model
Generation. For all seven benchmark proteins, 3mer and
9mer fragments were generated using the Robetta fragment
server based on the amino acid sequence of the proteins
deposited in the Protein Data Bank.”® Ab initio sets of 10000
models per benchmark protein were generated with the
Rosetta AbinitioRelax protocol using the fragment libraries and
FASTA sequences. Models were scored with the Rosetta
Energy Function 15 (ReflS) and ranked by score. a-Carbon
root-mean-square deviation (RMSD) values were calculated in
Rosetta during scoring by providing the crystal structure. As
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such, residues that were not resolved in the crystal structure
were not modeled and not included in RMSD calculations.
The crystal structures were used exclusively for RMSD
calculations. The best RMSD model generation was considered
as a metric for homology modeling: if a model set’s best
RMSD model generated had an RMSD of larger than S A,
homology modeling was pursued for model distribution
generation.

Rosetta’s Comparative Modeling protocol was employed for
homology model production for carbonic anhydrase, lysozyme,
HGH, and sfGFP.”® Five templates (Table S2) per benchmark
protein with different sequence identities (23—91%) and
coverages (52—100%) were used for generation of 3500
models per template. Homology models were relaxed with the
Rosetta Relax application prior to scoring with ReflS and
calculating RMSDs.*”

Hydrophobicity Contribution in Hydrophobic Neigh-
bor Counts. Hydrophobic neighbor count (HNC) was
calculated for labeled and unlabeled STY residues from
benchmark protein crystal structures by a custom Python
script that utilized previously published normalized hydro-
phobicity values.”” The HNC used a gradual contribution
method, meaning that the contribution to the HNC increased
as the distance between the STY residue of interest and the
hydrophobic neighbor decreased. The distances (dist;)
between the f-carbons of hydrophobic residues (j) and the
hydroxyl oxygens of STY residues (i) were determined and
factored into the HNC, as shown in eq 1.

#hydrophobic neighbor residues

1
HNC, =

— X 1.XX
1+ exp(2 X (dist; — 8 A))

(1)

The contribution of a particular hydrophobic neighbor was
multiplied by a factor of 1.XX, in which XX represented the
normalized hydrophobicity of the residue.*” The multiplication
factors were 2.00 for Phe, 1.99 for Ile, 1.97 for Trp and Leu,
1.63 for Tyr, and 1.41 for Ala. Based on DEPC molecule
dimensions, an HNC midpoint value (8 A) and steepness
(2.0) were employed to maximize the HNC of hydrophobic
residues within 6 A.® The total contribution was calculated by
summing all the hydrophobic neighbor contributions relevant
to the STY residue. Additionally, we previously explored data
accuracy and the tolerance toward false negatives in a covalent
labeling data set. We found that such data sets can
accommodate 35% false negative data points without losing
their ability to meaningfully guide structural modeling, and our
data set for this work fell within that range.”"”

Determination and Employment of SASA. Relative
SASA calculations were performed with the Rosetta RelSASA
application. Relative SASA was defined as the determined
residue side chain SASA divided by the residue side chain
SASA from a Gly—X—Gly tripeptide.

Different SASA ranges were used for both STY residues and
labeled His and Lys (HK) residues. Labeled and unlabeled
STY residues with 30—60% relative SASAs and labeled HK
residues with greater than 50% relative SASAs were examined.
Within these ranges, 23 labeled STY residues, 44 unlabeled
STY residues, and 44 HK residues were included across the 7
benchmark proteins.

Scoring Model Agreement with DEPC Labeling Data.
The ab initio and homology models were scored with
depc_hydrophobicity, our newly implemented score term.
Our score term rewarded models based on agreement with the
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labeling data, resulting in models that demonstrated stronger
agreement with the data receiving more favorable scores. The
DEPC-guided score term was calculated based on contribu-
tions from labeled STY residues, unlabeled STY residues, and
labeled HK residues, as shown in eq 2.

depc_hydrophobicity

# Labeled _STY 1
-1
i Labeg sty 1+ @xp(1 X (hne; 1 peeq sty — 529))

#Unlabeled _STY .
+
i Unlabered_sTy 1 T+ exp(1 X (hnc; yoppered sty — 3-81))

# Labeled _"HK
+ [ ! - 1}
i Labele ik 1T exp(12 X (relSASA; | aeq x — 0-50))
2)
For the labeled and unlabeled STY portions of the equation,
the HNC of the labeled or unlabeled STY residue, respectively,
was calculated within the Rosetta score term according to eq 1.
The labeled STY midpoint, 5.29, was the average labeled HNC
value as calculated using the benchmark protein crystal
structures. Labeled STY residues were rewarded for having a
higher-than-average HNC, while unlabeled STY residues were
rewarded for having a lower-than-average HNC. The unlabeled
STY midpoint, 3.81, was the average unlabeled HNC as
calculated using benchmark protein crystal structures. The
labeled HK midpoint, 0.50, represented a relative SASA of
50%. Labeled HK residues were rewarded for having higher
relative SASA values. The depc hydrophobicity score was
weighted and added to the initial Rosetta score, as
demonstrated in eq 3

total model score = (11.0 X depc_hydrophobicity score)
(3)

where a weight of 11.0 was used. Improvements from the
depc_hydrophobicity scoring protocol were evaluated by
examining the best scoring model RMSD compared to scoring
with just Rosetta ReflS. Best, or lowest, scoring models were
examined, because the best scoring model is thought to be the
most native-like, so improvements in the best scoring model
RMSD would indicate better model selection.

Confidence Metric. In order to assess the confidence in
our modeling results, we implemented a size-normalized score
confidence metric. Rosetta with DEPC data scores were
isolated for the best scoring models. Scores were divided by the
number of residues in the respective benchmark protein to
obtain a size-normalized score. A lower size-normalized score
corresponded to a higher-confidence prediction.

+ Rosetta ReflS score

B RESULTS AND DISCUSSION

Incorporation of Level of Hydrophobicity Contribu-
tion and Parametrization of Score Term. The hydro-
phobic residue microenvironment has previously been shown
to impact DEPC labeling of STY residues, as more
hydrophobic residues were observed in the microenvironment
of labeled STY residues than unlabeled STY residues.” In
earlier efforts, we modeled protein structure based on DEPC
labeling data, but we did not account for varying levels of
hydrophobicity of neighboring residues. Here, we hypothesized
that residues with higher levels of hydrophobicity would
further facilitate DEPC labeling. We thus sought to determine
whether accounting for the level of hydrophobicity of
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neighboring residues in the microenvironment could lead to
improvements in protein structure prediction. To do this, we
examined the residue microenvironment of seven proteins for
which DEPC labeling data was available: f2m, carbonic
anhydrase, HGH, lysozyme, myoglobin, sfGFP, and ubiquitin.
We calculated the HNC of each labeled and unlabeled STY
residue by implementing a gradual neighbor contribution
method, in which the contribution of hydrophobic neighbors
to the HNC was scaled based on their distance to the STY
residue. The HNC was weighted by the actual normalized
hydrophobicity of the neighboring residue. When comparing
the HNC distributions between labeled and unlabeled STY
residues (Figure 1), labeled STY residues exhibited higher
HNCs than unlabeled STY residues.

-
S [} [e ] o

Hydrophobic Neighbor Count
N

Labeled STY

UnlgbeledgTY

Figure 1. Comparison of relative frequencies of hydrophobic
neighbor count values for labeled and unlabeled Ser, Thr, and Tyr
residues with low to moderate exposure. Labeled residues (23) and
unlabeled residues (44) from the 7 benchmark proteins are included
in the violin plot. Average, minimum, and maximum HNCs are
shown.

The average HNC for a labeled STY was 5.29, and for an
unlabeled STY it was 3.81, meaning that on average every
labeled STY residue had 1.5 additional hydrophobic
neighboring residues as compared to unlabeled STY residues.
Of the unlabeled residues, 73% had an HNC of less than S. In
contrast, 60% of labeled residues had an HNC greater than 4.
Overall, this demonstrated that the hydrophobicity contribu-
tion incorporated into the HNC calculation led to a notable
HNC difference between labeled and unlabeled STY residues
while capturing the effect of the neighboring residue identity in
the microenvironment.

In addition to STY residues, we aimed to account for
labeling of His and Lys residues. Since residues with higher
solvent exposure are more likely to be exposed to a labeling
reagent, we examined the differences in relative SASAs
between labeled and unlabeled HK residues. Figure S1
demonstrates the comparison of relative SASA values between
labeled and unlabeled HK residues. Of 58 HK residues with
50—100% SASA in the benchmark proteins, 44 residues were
labeled, while only 14 were unlabeled. Labeled HK residues
had an average SASA of 73%, which was higher than the
unlabeled average SASA (66%). Consequently, we pursued
rewarding labeled HK residues with higher SASA values.

Implementation of DEPC-Guided Term Led to
Improvements in Best Scoring Model RMSD. We
developed a Rosetta score term in which label status, residue
microenvironment hydrophobicity, solvent exposure, and
residue type guided model scoring. HNC was calculated for
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Figure 2. (a) Rosetta score versus RMSD plots for 10 000 ab initio models of ubiquitin (orange), f2m (lime), and myoglobin (gold). Best scoring
models are denoted by a star (%). (b) Best scoring Rosetta models (color) aligned with respective crystal structures (dark gray). RMSDs are listed
below the alignments. (c) Rosetta and DEPC score versus RMSD plots for benchmark protein model sets. Best scoring models are denoted by a
star (%). (d) Best scoring Rosetta and DEPC models (color) aligned with respective crystal structures (dark gray). RMSDs are listed below the

alignments.

labeled and unlabeled STY residues using the level of
hydrophobicity of the immediate microenvironment. Labeled
STY residues were rewarded for having a large number of
hydrophobic neighbors, while unlabeled STY residues were
rewarded for having a small number of hydrophobic neighbors.
Relative SASA was calculated for labeled HK residues, which
was used to reward those HK residues with high solvent
exposure. We generated 10000 ab initio models of all seven
benchmark proteins in order to evaluate our new term.
However, for four of the benchmark proteins, the best RMSD
model generated was larger than S A, indicating that native-like
models were not present within the model set. For those four
proteins (carbonic anhydrase, HGH, lysozyme, and sfGFP), we
pursued homology modeling using multiple templates with
varying sequence identity and coverage.

Both ab initio and homology model sets were scored with
Rosetta and the new depc_hydrophobicity term to determine a
total score. Score versus RMSD plots and best scoring models

587

aligned with the crystal structures for each benchmark protein
are shown in Figure 2 for ab initio models and Figure 3 for
homology models.

Overall, scoring with the depc_hydrophobicity term
consistently improved the best scoring model RMSD from
scoring with Rosetta for ab initio model sets. The best scoring
model RMSD of ubiquitin improved from 2.24 A with Rosetta
to 1.58 A with Rosetta and DEPC-guided scoring. Because of
the possible flexibility of the C-terminal loop of ubiquitin, it
was impossible to confirm that the best scoring model from
Rosetta and DEPC-guided scoring indeed had better C-
terminal agreement. Improvements were also noted for f2m
(from 243 to 1.66 A). Myoglobin demonstrated notable
changes, improving from 7.11 A with Rosetta scoring to 1.78 A
with Rosetta and DEPC scoring.

Of the homology modeling sets, consistent best scoring
RMSD improvements were also observed. HGH exhibited
improvements, with the best scoring model RMSD changing
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Figure 3. (a) Rosetta score versus RMSD plots for homology models of carbonic anhydrase (deep pink), HGH (light purple), lysozyme (teal), and
sfGFP (light coral). Best scoring models are denoted by a star (%). (b) Best scoring Rosetta models (color) aligned with respective crystal
structures (dark gray). RMSDs are listed below the alignments. (c) Rosetta and DEPC score versus RMSD plots for benchmark protein model sets.
Best scoring models are denoted by a star (). (d) Best scoring Rosetta and DEPC models (color) aligned with respective crystal structures (dark
gray). RMSDs are listed below the alignments. The disconnected point clouds observed for carbonic anhydrase, lysozyme, and sfGFP are a result of
using multiple templates for homology modeling. These point clouds represent similarity with particular templates employed in the homology

modeling process.

from 4.35 to 3.82 A. The carbonic anhydrase best scoring
model RMSD decreased from 1.10 to 1.01 A. sfGFP had an
improvement from 3.79 A with Rosetta to 3.57 A with Rosetta
including DEPC data. Finally, lysozyme improved from 0.73 to
0.59 A. Since the crystallographic resolution for lysozyme
(PDB 2LYZ) was 2 A, both of these models were considered
perfect predictions.

Confidence in Modeling Efforts Was Established via
Size-Normalized Score Metric. Scoring with DEPC data
improved predictions for all benchmark proteins and led to the
identification of near-native-like (<2 A RMSD) models for five
of the seven benchmark proteins pursued. We developed a
confidence metric as a method to establish confidence in
results when RMSD cannot be calculated. In the absence of a
native model, generally the lowest scoring model is identified
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as the predicted structure, as a lower Rosetta score indicates a
more energetically favorable conformation that is thought to be
the most native-like model. In the absence of experimental data
in model generation based on Monte Carlo sampling, these
best scoring models may constitute outliers such as the
myoglobin best scoring model with Rosetta ReflS scoring. In
order to independently evaluate models predicted by our
DEPC-guided scoring approach, we implemented a confidence
metric, the size-normalized score, to test prediction accuracy in
the absence of a solved structure. Depending on the system,
confidence can be inferred from the steepness of the point
funnel from score versus RMSD plots, where deeper funnels
correspond to higher confidence. However, a metric such as
the size-normalized score contributed an additional layer of
confidence for when funnels could not be attained due to lack
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of a native structure for RMSD calculations. The size-
normalized score was determined using the top scoring
model when scored with Rosetta and DEPC data. Each
model’s score was divided by the number of residues in the
respective protein. A lower size-normalized score was
considered more native-like, thus establishing more confidence
in the prediction. Figure 4 illustrates the top scoring model
RMSD versus its size-normalized score when scoring with
Rosetta including DEPC data.

8
sfGFP ©
® -3.4
T
Q
N
T _
£ 3.6
S
s HGH @
_g -3.8
B [
3
o -4.0 @ Lysozyme
£ © Myoglobin
o
i= P
g 4.2 Ublqm""%ﬁzm
b
-
g’, 441 @ Carbonic anhydrase
@ "0 05 10 15 20 25 30 35 40

Best scoring model RMSD (4)

Figure 4. RMSD versus size-normalized score for best scoring
benchmark protein models when scored with Rosetta + DEPC data.
Points are labeled by protein. Models of high confidence fall below
the dotted line, and models of lower confidence appear above the
dotted line.

A size-normalized score value of —3.85 was established as
the cutoff between high- and low-confidence modeling,
reinforced by the five perfectly predicted benchmark proteins
all having size-normalized score values less than —3.85. Two
proteins, HGH and sfGFP, were of lower confidence than the
remaining proteins in the benchmark set. Their best models
generated in the set had RMSDs of 3.46 and 2.92 A,
respectively, and thus were correctly labeled as less accurate.
The absence of near-native, high-confidence models for HGH
and sfGFP was a direct consequence of a lack of high-quality
templates available for homology modeling. Overall, the
confidence metric effectively confirmed the prediction accuracy
with DEPC-MS data and can be applied to systems in which
RMSD calculations are unattainable.

B CONCLUSION

In an effort to further account for the effect of the residue
microenvironment in DEPC labeling, we incorporated an
attribute into our hydrophobic neighbor count calculation that
accounts for the normalized hydrophobicity of the neighboring
residue. HNCs were calculated for both labeled and unlabeled
STY residues and were subsequently used to guide scoring.
Labeled STY residues with higher HNC and unlabeled STY
residues with a lower HNC were rewarded. Additionally,
exposed HK residues were rewarded. Our score term was
tested on a benchmark set of seven proteins, including f2m,
carbonic anhydrase, HGH, lysozyme, myoglobin, sfGFP, and
ubiquitin. Implementation of our DEPC data-guided score
term improved the best scoring model RMSD for all
benchmark protein model sets, demonstrating the score
term’s success with both ab initio and homology model sets.
Additionally, five of the seven benchmark proteins had best
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scoring model RMSDs less than 2 A. Our work further
demonstrates the power of DEPC labeling data in combination
with computational modeling efforts, as accounting for the
level of hydrophobicity led to improvements with structural
modeling. As such, we conclude that more hydrophobic
microenvironments facilitate DEPC labeling of STY residues.

Future work will emphasize dynamics involved in DEPC
labeling. Additionally, we aim to incorporate DEPC labeling
data into structure prediction for protein complexes.
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