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Abstract

Knowledge of protein structure is crucial to our understanding of biologi-
cal function and is routinely used in drug discovery. High-resolution tech-
niques to determine the three-dimensional atomic coordinates of proteins
are available. However, such methods are frequently limited by experimen-
tal challenges such as sample quantity, target size, and efficiency. Structural
mass spectrometry (MS) is a technique in which structural features of pro-
teins are elucidated quickly and relatively easily. Computational techniques
that convert sparse MS data into protein models that demonstrate agree-
ment with the data are needed. This review features cutting-edge computa-
tional methods that predict protein structure fromMS data such as chemical
cross-linking, hydrogen–deuterium exchange, hydroxyl radical protein foot-
printing, limited proteolysis, ion mobility, and surface-induced dissociation.
Additionally, we address future directions for protein structure prediction
with sparse MS data.
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INTRODUCTION

Proteins are involved in nearly every life process,making them important subjects for studying the
molecular basis of disease. Additionally, protein structures can be harnessed for structure-based
drug discovery with existing and designed drug-like molecules (1). However, a disparity currently
exists between the number of known protein sequences and the number of determined structures.
Methodologies to elucidate protein structure are vital to our understanding of molecular biology
and for continued use in drug discovery.

Multiple experimental techniques exist to determine high-resolution protein structure. In the
popular X-ray crystallography method, a high concentration of a protein target is first crystalized.
Then, the crystals are struck with an X-ray beam to elucidate a diffraction pattern from which
atomic protein coordinates can be determined (2).While powerful, crystallography is rate-limited
by the crystallization process, as ascertaining experimental conditions ideal for crystal growth can
be a tedious, if not impossible, process. X-ray crystallography has historically been more success-
ful for ordered and monomeric proteins. Nuclear magnetic resonance (NMR) spectroscopy is
another high-resolution technique that uses the chemical shifts of protein atoms for structure de-
termination (3). In most cases, this technique is limited to smaller proteins to avoid overlapping
peaks. Cryo-electron microscopy (cryo-EM) has recently emerged as a promising structure de-
termination technique that can elucidate larger, more complex proteins while bypassing the need
for crystallization, probing the protein in more physiological conditions (4). However, further
optimization of cryo-EM methodologies is required to consistently determine higher-resolution
density maps.

Due to the limitations of these techniques,many proteins or protein complexes currently evade
high-resolution structure determination. Thus, additional experimental methods are needed to
provide insight into structural features. Structural mass spectrometry (MS) is a powerful com-
plementary approach that can overcome the limitations of the above-mentioned methods with
its high sensitivity, theoretically unlimited size constraint, and speed. Although the data provided
by MS are too sparse for full high-resolution structure elucidation, structural MS can be used to
examine the size, solvent accessibility, and topography of proteins (5–7). Several MS techniques
exist that can elucidate elements of protein tertiary and quaternary structure, including chemical
cross-linking (XL-MS) (8, 9), hydrogen–deuterium exchange (HDX-MS) (10), covalent labeling
(CL-MS) (11, 12), limited proteolysis (13), ion mobility (IM-MS) (14), and surface-induced disso-
ciation (SID-MS) (15), reviewed here (Figure 1). In XL-MS, residuemodifications provide insight
into the spatial proximity of modified residues. HDX-MS, CL-MS, and limited proteolysis data
are used to infer residue solvent exposure. IM-MS data reveal information about the size and
shape of proteins, while SID-MS is used to analyze protein complex connectivity and stoichiom-
etry. Sparse experimental data from structural MS generally must be interpreted in combination
with computational methods to elucidate protein structure.

Computational methods have increasingly been employed to complement experimental tech-
niques in order to elucidate protein structures (16, 17). As experimental data become more readily
available, software packages can be employed to combine sparse data with advanced structure
sampling and scoring techniques. A number of computational tools currently exist for protein
structure modeling, including the Rosetta software suite (17, 18), I-TASSER (19), Phyre2 (20),
Integrative Modeling Platform (IMP) (21), HADDOCK (22), and MODELLER (23). Sparse ex-
perimental data can be implemented during the computational modeling process or used as a filter
during post–model generation analysis. Here, we highlight work that combines computational ef-
forts for protein structure examination with sparse experimental data from MS.We discuss work
that incorporates XL-MS, HDX-MS, CL-MS, limited proteolysis, IM-MS, and SID-MS experi-
mental data into computational modeling.
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Figure 1

Mass spectrometry–based methods (blue box, top) and computational modeling (green box, bottom) explored in this review. (a) Chemical
cross-linking involves the modification of residues, commonly lysine, to provide information on spatial proximity. (b) Hydrogen–
deuterium exchange examines the exchange rate of amide hydrogens with deuterium solvent to give insight into solvent exposure and
residue flexibility. (c) Covalent labeling is reliant on the irreversible covalent modification of residues, illuminating solvent exposure and
topology. (d) Limited proteolysis uses a protease enzyme to cleave proteins into fragments based on solvent exposure. (e) Ion mobility is
used to investigate the shape and size of proteins based on the collision cross-sectional area. ( f ) Appearance energies (AEs) can be
deduced from surface-induced dissociation, in which a protein complex collides with a surface (vertical black bar) and breaks apart,
providing insight into the stoichiometry and connectivity of the complex. Data from these techniques are then incorporated into
computational modeling techniques such as protein–protein docking to examine complexes, structure prediction via ab initio or
homology modeling, and molecular dynamics based on experimental restraints.

CHEMICAL CROSS-LINKING

XL uses reagents to chemically link two amino acids, particularly the side chain atoms within ly-
sine residues, to assess proximity within a protein or within protein complexes (9). After digestion
and separation via liquid chromatography, cross-links can be identified via tandem MS. XL-MS
experiments provide insight into protein structure. Residues that are distant from one another
in amino acid sequence can be identified as being within spatial proximity. Interactions between
protein complex subunits can also be inferred by residues that are identified as cross-linked. Only
residues that are solvent-exposed should bemodified by a cross-linking reagent. As such, the cross-
linking agent can give insight into proximity between surface residues, from which contact infor-
mation can be further derived with computational methods that use XL-MS data. XL-MS efforts
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Figure 2

Improvement of model prediction and scoring with chemical cross-linking (XL) mass spectrometry data. (a) Best-scoring models of
IgBP1 (green) complexed with PP2AA (purple), with the opaque cartoon depicting the best-scoring model from the largest cluster and
the more transparent cartoons depicting the best-scoring models from the second to the fourth largest clusters. Cross-links are
depicted as green, red, and blue spheres, with black spheres representing mutations. (b) Rosetta score versus root-mean-square
deviation (RMSD) to the largest cluster plot for models with a minimum of six interprotein XLs (gray), a minimum of six interprotein
XLs with binding interfaces larger than 900 Å2 (blue), and representative models from the four biggest clusters (red). Figure adapted
from Reference 25 (CC BY 3.0).

have been incorporated into the Critical Assessment of Structure Prediction (CASP) challenges
to integrate high-density XL-MS data into prediction methods (24).

Kahraman and coworkers (25) developed methodologies for applying cross-linking data to ho-
mology modeling, de novo modeling, and protein–protein docking. A database called XLdb was
also assembled that contained XL-MS data for individual proteins and protein complexes with
the corresponding Protein Data Bank entries, providing a source of accessible data for the MS
and computational communities. Building on an earlier publication in which Xwalk, a program
that determines the shortest distance between cross-linked amino acids within solvent-accessible
regions (26), was established, distance restraints determined from XL-MS data were implemented
in the Rosetta scoring function. The Rosetta functionality penalized models that conflicted with
the experimental data. For instance, models with residues participating in a cross-link that were
spatially farther apart than the spacer length of the cross-linker received a penalty. The distance
restraints were also applied as filters to examine existing models. Overall, the use of the cross-
linking distance restraints was found to improve both the root-mean-square deviation (RMSD)
of the top-scoring models and protein–protein docking (Figure 2). Similar methodology was ap-
plied by Lössl and colleagues (27) to work in which cross-linking data were used to determine
differences in conformational ensembles and interaction modes of singular and interacting pro-
teins. Additionally, recent work by Piotrowski and colleagues (28) used XL distance restraints with
Rosetta to build models of calmodulin interacting with bMunc13–2 and subsequently to identify
a unique binding mode.

XL-MS data were used in the protein structure investigation of human serum albumin protein
domains by Belsom and colleagues (29). Instead of traditional XL reagents, this work employed a
photo-XL agent that led to increased XL data to probe the protein both in isolation and within
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blood samples.Uponmodeling with XL-MS data as restraints and residue contacts predicted with
a newly developed software, serum albumin protein models were successfully identified with low
RMSD values (3–6 Å) for both the purified and sample models. A similar approach was explored
in work from dos Santos et al. (30) in which XL-MS data along with coevolutionary information
were applied to protein structure prediction. In the work, simplified models containing only al-
pha carbons were used with restraints from XL-MS and coevolutionary data via direct coupling
analysis to elucidate tertiary structure. Models were evaluated by clustering and template model-
ing score for multiple proteins. Quality models were identified from the method, validating the
effectiveness of the proposed methodology.

Hauri et al. (31) used computationally determined models for a very large (1.8-MDa) protein
complex found in human plasma to examine specific peptides from XL-MS, an effort denoted
as targeted XL-MS. Targeted XL-MS used different MS acquisition techniques to discriminate
between computational models of the protein complex modeled by Rosetta’s homology modeling
protocol. Proteins from the complex were docked together to produce a collection of potential
models that represented the quaternary structure of the complex. Models of the protein–protein
complex that scored well with the cross-linking data were used to identify a short list of poten-
tially cross-linked lysine pairs.Models then underwent a flexible backbone docking workflow with
cross-linking data as distance restraints. Overall, the development of targeted XL-MS paved the
way for continued improvement of the quaternary structure prediction of highly complex systems.
Recent work by Khakzad (32) and others sought to elucidate another large protein complex, the
membrane attack complex. A streamlined protocol for targeted XL-MS was pursued to examine
the bacterial protein complex in human plasma. The cross-linking results were used to obtain a
complete model of the complex that was corroborated with existing models from crystallogra-
phy and cryo-EM. This work further demonstrated the applicability of XL-MS, particularly to
complex targets from bacterial systems relevant to human disease.

XL force field (XLFF), a force field that relied upon XL-MS restraints, was applied to Rosetta’s
ab initio protocol by Ferrari and colleagues (33). This was accomplished by determining the prob-
ability of identifying residues that could potentially cross-link within a nonredundant set of pro-
teins from the Protein Data Bank. The resulting probability curve was then used to determine
a potential energy function reliant on the cross-linker length and the residues involved in link-
age. Usage of the XLFF resulted in higher quality, more native-like models occurring within the
top-scoring model distributions.

In addition to the inclusion of cross-linking data within Rosetta, software has been devel-
oped outside the Rosetta suite. Degiacomi and coworkers (34) implemented a software tool called
DynamXL to consider the implications of protein dynamics when modeling cross-linking data.
In contrast to other methods that rely upon the beta carbon for distance measurements, the
DynamXL algorithm employed the side chain nitrogen atom of lysine for distance calculations,
which was suggested as being more experimentally accurate and less computationally expensive.
Additionally, the method took the flexibility of residue side chains into account by examining dif-
ferent rotamers and backbone conformations. The work sought to minimize the elimination of
reasonable cross-links while simultaneously excluding impossible cross-links, which led to less er-
ror when classifying cross-linkages. Overall, the application of this methodology led to improved
RMSD values from protein–protein docking, highlighting the accuracy of the implementation.

Recent work by Mintseris & Gygi (35) explored high-density XL-MS efforts in combination
with IMP and Rosetta. The methodology was used to model carbonic anhydrase proteins and the
yeast proteasome. To minimize computational cost, the implemented software reduced sampling
of decoy and target peptides to minimize false discovery rates and simplify false discovery rate cal-
culations. Alternative reagents that established cross-links with additional residue types promoted
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the cross-linking density, thus providing better results. XL-MS data were applied to the modeling
of inhibitor-bound carbonic anhydrase via restraints applied during protein–protein docking with
Rosetta. High-quality models were identified. Additionally, the work tackled the modeling of the
yeast proteasome with both Rosetta and IMP based on the XL-MS data. Coarse-grained models
of the complex were elucidated, and regions were verified by existing cryo-EM models.

HYDROGEN–DEUTERIUM EXCHANGE

HDX is a prevalent nonspecific covalent labeling technique in which a protein is exposed to a
deuterium-rich solvent (10). Amide hydrogen atoms are able to exchange with deuterium atoms
to label the protein backbone. After digestion and separation with liquid chromatography,MS can
be used to identify regions of exchange. HDX-MS has also been used with other techniques such
as electron capture dissociation to assess hydrogen-bonding configurations (36). Regions of the
protein are more likely to be modified by HDX if the amide hydrogens are solvent accessible and
not actively participating in a hydrogen bond. HDX data are often resolved to the fragment level,
but occasionally residue-specific modifications are reported. From there, data can be expressed as
percentage modification, rate constants, or protection factors (PF), all of which are routinely used
as inputs into computational modeling to guide results based on agreement with HDX data.

HDX-MS data have been used with homology modeling, as seen in work from Zhang and
coworkers (37). Homology modeling with MODELLER, Phyre2, and I-TASSER was used to
model the tertiary structure of cytochrome c. HDX-MS results were taken into account when
examining the models. Additionally, the relationship between HDX modification and solvent-
accessible surface area (SASA) was examined to identify the best models. The modeling efforts
with Phyre2 were determined to demonstrate best agreement with the HDX-MS results, and the
SASA values from this model led to better correlations with the percent modification identified
from HDX experiments. The results of this work effectively demonstrated that both HDX data
and solvent exposure could be used to identify better homology models and to improve on our
previous understanding of the cytochrome c mechanism. While HDX-MS data have not been
applied to ab initio modeling, HDX-NMR data have been recently implemented into protein
structure prediction (38).

HDX-MS data, in combination with molecular dynamics (MD) simulations, were employed to
examine empirical and fractional population models for G-protein-signaling regulator proteins in
work fromMohammadiarani et al. (39). Using long-timescale MD simulations with AMBER and
CHARMM force fields, PFs were calculated from simulation frames and then compared to exper-
imentally determined percent modification data. Fractional population models were determined
to bemore accurate and less prone to error than empirical models, arguing that the SASA of amide
hydrogens coupled with the distance between the amide hydrogen and first polar atom could be
used for accurate predictions. This work also indicated that amide hydrogen atoms could fluc-
tuate in exposure over a sub-100-ps timescale. HDX-MS and MD simulations were also applied
to examine interactions between lipids and membrane proteins, such as lipid-induced conforma-
tional changes in proteins, in work from Martens and coworkers (40). The framework developed
in the study emphasized a multistep protocol. After using HDX-MS to evaluate the protein in
both the presence and absence of lipids, interactions were interpreted via MD simulations in var-
ious bilayer conditions. The interactions identified from the simulation were then corroborated
by experimental mutagenesis of relevant sites. The methodology presented in this work was sug-
gested as a basis for further study of various lipid–protein interactions in membranes. Beyond this
work, size-exclusion chromatography, in combination with HDX-MS and circular dichroism, was
used with computational techniques such as homology modeling and MD simulations to examine
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a   Type 1 (2 XLs)

c   Type 3 (2 XLs)

b   Type 2 (2 XLs)

d   Type 3 (1 XL)

IL-7Rα IL-7Rα

IL-7 IL-7180°

IL-7Rα IL-7Rα

IL-7 IL-7180°
IL-7Rα IL-7RαIL-7 IL-7

180°

IL-7Rα IL-7Rα
IL-7 IL-7

180°

Figure 3

Interleukin 7 (IL-7) [multicolored by hydrogen–deuterium exchange uptake] complexed with IL-7Rα (green)
models. Models were docked, clustered, and then sorted into types by similarity. (a–c) Types 1–3 models are
depicted, each using two cross-linking (XL) restraints. (d) The type 3 model with only one XL restraint.
Figure adapted with permission from Reference 42; copyright 2019 American Chemical Society.

the activity of transaminases in work fromMakarov and others (41). This study demonstrated that
the protocol could be applied to enzyme-directed evolution efforts.

Recently, Zhang and colleagues (42) used both XL-MS andHDX-MS data to evaluate protein–
protein docking models of interleukin 7 (IL-7) and its alpha receptor (Figure 3).HDX-MS analy-
sis was performed on IL-7 both free and bound with its receptor to elucidate changes in exposure.
XL-MS was also applied to the system to identify residues involved in the receptor-binding in-
terface of IL-7. Protein–protein docking with RosettaDock produced models of the complex, and
top-scoringmodels were subsequently clustered.Clustering data were analyzed for different num-
bers of cross-links and subsequently validated by HDX data. When examining the cross-linking
data, it was deduced that some cross-links that suggested an interface at a particular region were
undermined by the HDX data that implied protection at the same region, suggesting that a two-
pronged approach was necessary to verify findings. Solvent exposure was additionally examined
using SASA for identified models to determine if the models corroborated with regions of protec-
tion and exposure identified byHDX.Overall, this methodology elegantly emphasized the impor-
tance of more than one structural MS technique being applied to quaternary structure prediction.

HDX-MS data have also been applied to antibody-antigen modeling. Huang et al. (43) used
HDX-MS data along with electron-transfer dissociation to examine binding of themAb1 antibody
with a cytokine with implications in autoimmune disease. SASA calculations and protein–protein
docking provided additional insight into the antibody-antigen binding interface. The study em-
phasized the importance of HDX-MS data and complementary computational efforts for epitope
elucidation. Additionally, recent efforts from Jeliazkov et al. (44) were applied to the improve-
ment of Rosetta software for antigen-antibody modeling, RosettaAntibody and SnugDock. The
SnugDock feature relies on flexible docking to elucidate the complementarity determining region
(CDR) loop, which is indicated in antigen binding and unique among antibody structures, and to
configure an adjustment of the heavy and light fragments relevant to antigen-antibody interac-
tions. Restraints from HDX-MS data were used to score antigen-antibody complexes based on
agreement with the data.When testing the HDX-MS restraints on an antibody-antigen complex
with available labeling data, the HDX-MS restraint-based methodology led to more native-like
structure of the CDR loop.
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HYDROXYL RADICAL PROTEIN FOOTPRINTING

Hydroxyl radical protein footprinting (HRPF) is a nonspecific CL-MS technique in which hy-
droxyl radicals can covalently modify 19 of the 20 amino acid types in proteins (11). Synthesized
via photolysis or radiolysis of water or hydrogen peroxide, hydroxyl radicals modify residues with
varying degrees of reliability and reactivity, as indicated by a broad range of relative intrinsic
reactivities (12). Rate constants for labeled peptide fragments and individual residues can be
determined and used to calculate PF, the relative intrinsic reactivity divided by the labeling
rate constant for the particular residue. Because HRPF is more likely to occur in regions that are
solvent exposed, residues that are more protected (have a higher PF) are correlated with lower
solvent exposure and vice versa.

Xie and colleagues (45) recently examined the relationship between residue protection and
solvent exposure using MD simulations. The work emphasized that normalization of HRPF data
should be sequence dependent and not based on standard values determined from free amino acids.
With labeling data for myoglobin and lysozyme, a method was proposed in which accurate side
chain SASA values are derived from HRPF data by normalizing labeling data based on sequence
context. This was validated by improvements in correlation between labeling data and SASA.
When examining the relationship between normalized PF and relative SASA, the correlation was
determined to worsen as the relative intrinsic reactivity of the amino acids considered decreased,
suggesting that only residues with higher intrinsic reactivity should be used in structural analysis
based on PF.When the rate constant of a particular residue in the folded protein was normalized
with the rate constant of the same residue in the denatured protein, the correlation improved for
all non-sulfur-containing residues (Figure 4). A prediction equation that established a relationship
between relative SASA and the normalized rate constant was determined such that relative SASA
could be calculated from HRPF data. When the prediction equation was tested with homology
models of lysozyme, models with backbone RMSD less than 3 Å could be differentiated from
models with backbone RMSD greater than 4 Å.

Our group has usedHRPF labeling data for protein structure prediction.We used the relation-
ship between the natural logarithm of PF (lnPF) and a residue exposure metric, spherical neighbor
count, for 15 relaxed crystal structures of calmodulin as a prediction equation. The equation was
then implemented in the first available software to use HRPF data for protein structure prediction
(46).When tested on ab initio models for four benchmark proteins, the addition of our score term
within the Rosetta framework led to improvement in the best-scoring model RMSD and funnel-
like quality of the score versus RMSD distributions. Results were further validated through the
use of a confidence metric that assessed the funnel-like quality of the score versus RMSD dis-
tribution when RMSD was calculated to the best-scoring model. Follow-up work explored the
incorporation of labeling data into the ab initio folding algorithm, as opposed to using labeling
data for model rescoring (47).

More recently, we sought to improve the correlation between the lnPF and the neighbor
counts of HRPF-labeled residues, as we hypothesized that accounting for side chain flexibility
would improve the relationship (48). We used a conical neighbor count for a subset of residue
types selected based on intermediate to high intrinsic reactivity and simulated side chain flexi-
bility with MD simulations and a Rosetta mover ensemble for four benchmark proteins. Upon
determining that the normalized root-mean-square error of lnPF versus conical neighbor count
was comparable between MD and the mover ensemble, we developed a new Rosetta score term.
We scored 20,000 ab initio models with our term, then calculated a total score by combining the
HRPF score with the Rosetta score. The top 20 scoring models were used as inputs for mover
model generation, then scored with both Rosetta and HRPF data. Upon including mover models
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Figure 4

Comparison of prediction equations using SASA and hydroxyl radical protein footprinting (HRPF) data. (a) Prediction equation
between relative SASA (<SASA>N/<SASA>GXG, SASA normalized by SASA values standardized for each residue, X, in a glycine
tripeptide) and normalized protection factor (slopeN/relative intrinsic reactivity) using myoglobin data for residue types tryptophan,
tyrosine, phenylalanine, histidine, leucine, and isoleucine. (b) Lysozyme <SASA> calculated using the prediction equation derived from
panel a versus SASA observed in molecular dynamics (MD) simulations. (c) Prediction equation between relative SASA of the native
(<SASA>N/<SASA>GXG) and rate constant ratio (slopeN/slopeD) for all non-sulfur-containing myoglobin residues, where N denotes
native and D denotes denatured. (d) Lysozyme SASA calculated using the prediction equation shown in panel c versus SASA observed in
MD simulations. Figure adapted from Reference 45 (CC BY 4.0).

in our distributions, we found that the best-scoring model RMSD was identified at accurate
atomic detail for three of the four proteins, indicating that HRPF with a Rosetta mover ensemble
can be used to significantly improve model quality.

OTHER COVALENT LABELING METHODS AND LIMITED
PROTEOLYSIS

Besides the popular HDX and HRPF techniques, other covalent labels have also been used to
elucidate protein structure. Carbene, another nonspecific covalent labeling reagent, has been used
for structural MS. Carbene footprinting was applied by Manzi and coworkers (49) to examine the
binding sites of lysozyme and a large protease. Additional work by Manzi et al. (50) demonstrated
that carbene footprinting could be applied to more complex cases by elucidating the interfaces of a
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trimer membrane protein. Radical trifluoromethylation, in which 18 amino acids can be modified,
has also been used for covalent labeling structural MS.Myoglobin, beta-lactoglobulin, and mem-
brane protein vitamin K epoxide reductase were explored by radical trifluoromethylation in novel
efforts by Cheng and coworkers (51).This work paved the way for an additional study in which tri-
fluoromethyl radicals were produced via synchrotron radiolysis (52). Radical trifluoromethylation
is a particularly promising technique for future structure prediction efforts.

In addition to nonspecific covalent labeling reagents, other covalent labeling reagents that
modify only specific residues have been used to probe protein structure. Diethylpyrocarbonate
(DEPC) is a readily available labeling reagent that modifies cysteine, lysine, histidine, serine, thre-
onine, and tyrosine residues along with the N-terminus. The residue microenvironment has been
recently shown to play a role in labeling weakly nucleophilic serine, threonine, and tyrosine (STY)
residues, as labeled STY residues with lower solvent exposure were found to be in the vicinity of
hydrophobic residues (53).Based on this study,we developed a score termwithin Rosetta to reward
models that demonstrated agreement with DEPC labeling data (54). Labeled STY residues with
from 5% to 35% relative SASA were rewarded for having more hydrophobic neighbors, while
unlabeled STY residues with the same solvent exposure were rewarded for having less hydropho-
bic neighbors. Additionally, our term rewarded labeled histidine and lysine residues with higher
solvent exposure, as residues that are more exposed are more likely to be covalently labeled. The
DEPC score was added to the Rosetta score, and models were ranked by total score. We tested
our term with ab initio and homology models for six benchmark proteins and found that the best-
scoring model RMSD and funnel-like quality of the score versus RMSD distributions improved
with use of our term.

Similar to covalent labeling, limited proteolysis is a technique in which a protein is exposed
to a low concentration of protease that cleaves solvent-accessible regions of the protein (13, 55).
Hennig and coworkers (56) developed a pipeline between MDMDAT, software that analyzes MS
data, and HADDOCK, a protein–protein docking algorithm. Limited proteolysis data were first
analyzed byMDMDAT and then used by HADDOCK to dock the protein Rpn13 with ubiquitin.
This work demonstrated that limited proteolysis data could be applied to a protocol for pro-
tein complex modeling that was easier and quicker than structure determination methods such as
NMR. Limited proteolysis was also applied to examine protein complexes in work by Proctor and
colleagues (57). Limited proteolysis elucidated by MS guided the modeling of the Cu/Zn super-
oxide dismutase (SOD1) trimer protein complex. Software was developed to translate locations of
proteolysis into restraints that were applied to discrete MD simulations. Such restraints empha-
sized the importance of regions affected by proteolysis being solvent exposed.After coarse-grained
and full-atomMD simulations to isolate the lowest energy model, computational mutagenesis was
applied to examine interface residues of importance to SOD1 trimer generation.

ION MOBILITY

IM is a structural native MS technique in which proteins are subjected to soft ionization in the
gas phase and then exposed to a nitrogen or helium gas chamber in which an electric field is ap-
plied. Instead of residue- or fragment-resolved data, as for the previously described techniques,
IM-MS provides insight into the shape of the protein. Commonly calculated from IM-MS data is
the collision cross section (CCS), which is the rotationally averaged two-dimensional projection
area of the protein. Computational methods currently exist to predict CCS from protein struc-
ture, including the trajectory method (58, 59), projection superposition approximation (60), and
projection approximation (61).

In elegant work by Bleiholder & Liu (62), MD simulations were employed to model ubiquitin
at various charge states for ion spectra prediction. The structure relaxation approximation (SRA)
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method was introduced to examine the similarity of ubiquitin ions to the native protein. SRA
operated with input MD simulation frames by removing solvent, adjusting the charge state via
charged residues with high exposure, relaxing the structure with a short simulation of the gas-
phase protein, calculating average cross sections with the projection superposition approximation,
and then determining the IM spectrum based on Gaussian distributions of the averaged cross
sections. The method was validated by the agreement of residue interactions between the crystal
structure and modeled states, demonstrating that ubiquitin remained native-like during the
procedure.

Hall and colleagues (63) examined a modeling method in which coarse-grained models of pro-
tein complexes were evaluated with a scoring function based on their agreement with CCS data.
Complexes from the Protein Data Bank were used to validate the use of coarse-grained models,
and the CCS values of the coarse-grained models were demonstrated to be similar to those calcu-
lated using all-atom models. The coarse-grained model relied on spheres to represent individual
proteins, while a complex was represented by multiple spheres. For the scoring function, volume
and CCS restraints were implemented based on the findings from a benchmark set. This method
was then applied to influenza B virus neuraminidase, for which models were scored based on vol-
ume and CCS restraints and then clustered by similarity to other models. The most native-like
model was identified within the largest cluster. The method was further applied to tryptophan
synthase and nitrobenzene dioxygenase complexes. The case study of nitrobenzene dioxygenase
successfully identified high quality models, while the tryptophan synthase uncovered the relevance
for symmetry data, which was identified by other experiments. This work confirmed that IM-MS
data were able to play a valuable role in protein complex structure investigation.

Eschweiler and coworkers (64) used IM-MS data and computational modeling to elucidate
a structural model of the urease activation complex. CCS values were determined for the sub-
complexes of interest and used to guide coarse-grained model generation with IMP, represent-
ing subunits within the complex as individual spheres. A Monte Carlo algorithm was applied to
sample conformational space with the aid of restraints from both CCS data and previous exper-
imental data that established connectivity between particular subunits. IMPACT was applied to
determine CCS values for complex models, followed by a clustering and comparison to existing
complex structures.This study effectively modeled a very large complex using numerous restraints
from experimental and calculated CCS, XL-MS, and small-angle scattering X-ray data. A simi-
lar methodology was applied in recent work by Wang and colleagues (65). In order to model
apolipoprotein E oligomers relevant to Alzheimer’s disease, IM-MS data were used to identify
coarse-grained models using IMP. Additionally, collision-induced unfolding was used to examine
the monomer and tetramer of apolipoprotein E. This work deviated from the use of spheres for
each individual subunit within the complex. Instead, the monomer was modeled with two do-
mains, or two spheres, within the coarse-grained model, which corroborated the CCS data. A
Monte-Carlo algorithm was applied to identify models, which were subsequently clustered by
similarity to determine a likely complex structure. Intriguingly, electron-capture dissociation was
also implemented to validate models based on identification of flexible portions of the complex,
demonstrating the capability of IM-MS and IMP modeling coupled with additional experimental
techniques.

Finally, our group (66) has developed Rosetta functionality to use IM-MS data in protein ter-
tiary structure prediction. An algorithm called Projection Approximation using Rough Circular
Shapes (PARCS) was implemented to calculate CCS values from protein structure. PARCS was
shown to perform as accurately and efficiently as the popular IMPACT method. A score term
reliant upon IM-MS data was also incorporated into the Rosetta framework based on the PARCS
predictions. The score term penalized models with differences in observed and predicted CCS.
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Figure 5

Incorporation of ion mobility–mass spectrometry (IM-MS) data into Rosetta improved the root-mean-
square deviation (RMSD) of the best-scoring models. (a) Depiction of a protein and its projection on a plane
upon space-filling measures by the Projection Approximation using Rough Circular Shapes (PARCS)
application. (b) Structural alignments of the crystal structure (gray) with the best-scoring model when scoring
without (burgundy) and with (yellow) IM-MS data. (c) Comparison of best-scoring model RMSDs when
scoring with and without IM-MS data. The black line indicates no change in RMSD with and without
experimental data. Helium buffer gas conditions are depicted by teal dots, while nitrogen buffer gas
conditions are shown by gold dots. Figure adapted with permission from SM Bargeen Alam Turzo.

It was first tested on models for a benchmark set of proteins with PARCS-computed CCS values
in which the RMSD of best-scoring models was improved for 82 of the 100 proteins examined
(Figure 5). The funnel-like quality of the score versus RMSD distributions for model sets also
tended to improve upon scoring with IM-MS data. Additionally, the score termwas examined with
ab initio and homology models for 23 proteins for which experimental IM-MS data were avail-
able, with the RMSD improving or exhibiting no change for all 23 instances. This work further
solidified the capability of IM-MS methods to elucidate protein structure.
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SURFACE-INDUCED DISSOCIATION

Recently emerging as a structural native MS technique, surface-induced dissociation (SID) relies
on the breakage of interfaces within a protein complex when the complex strikes a surface.During
SID-MS, protein complexes undergo soft ionization and are then collided with a surface, which
can provide insight into the stoichiometry and interfaces within a protein complex. The dissocia-
tion observed in SID experiments can be correlated with identified assembly pathways (67–69).

We have demonstrated that predicting SID appearance energy (AE) from protein structure
is possible (70). AE, specified as 10% fragmentation, was predicted from quantities such as the
number of residues at the interface; number of unsatisfied hydrogen bonds; and rigidity fac-
tor, which was determined by intermolecular interactions such as hydrogen bonds, salt bridges,
and disulfide bonds. A weighted sum of these terms was used in a prediction equation such
that a strong correlation was observed between predicted and experimental AE. The develop-
ment of this model suggested that the methodology could be applied to structure prediction
applications.

Our group (71) then developed a computational algorithm to use SID-MS data for protein
complex structure prediction. The number of residues at the interface, rigidity factor, and buried
hydrophobic surface area were combined to better predict AE. The new model that combined
these three terms was then used in the creation of a Rosetta scoring term that combined SID
data with RosettaDock scoring. It was first tested on 57 protein systems using crystal structures to
calculate the experimental AE, with 54 out of 57 cases demonstrating improvement or no change
in best-scoring model RMSD. When using experimentally determined AE from SID-MS, six of
the nine complexes examined demonstrated near-native structures within the top three scoring
models (Figure 6).Additionally, a confidencemetric was established in this work, using the average
score per residue for the best 1,000 models to independently verify the accuracy of scoring. The
confidence metric allowed identification of successful predictions, as proteins with more-negative
scores per residue tended to have improved RMSD values compared to complexes with a higher
score per residue. Overall, this work demonstrated that SID data with RosettaDock can be used
to improve protein complex structure prediction effectively. In recent follow-up work, using SID-
MS data with cryo-EM data was shown to result in improved flexible docking results for protein
complexes and required less prior knowledge of structures (72).

FUTURE DIRECTIONS OF THE FIELD

While advances in MS and computational technologies have propelled the field forward in recent
years, obstacles still exist and will require provocative solutions to overcome.

As MS data are too sparse to determine protein structure unambiguously, computational tech-
niques will remain relevant to the interpretation of MS data for structure elucidation. One way in
which the community can support computational method development is through the establish-
ment of central data repositories. Such databases currently exist for other experimental techniques
(73–75). Kahraman and coworkers (25) have started to pave the way for this effort by establishing
a cross-linking database. Hopefully, other MS databases will follow in the near future. Publicly
available data sets can lead to the creation and development of freely accessible, competitive algo-
rithms that can harness sparse experimental data, such as the MS data outlined here, to improve
structure prediction with machine learning and artificial intelligence methodologies.

Because MS data are sparse, even advanced computational methodologies will inevitably
predict false positive structures. Going forward, integrative structural modeling that combines
multiple sets of experimental data will be instrumental in reducing the rate at which false positives
occur. Further exploration of protein complexes remains a key endeavor for the future of protein
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Figure 6

Use of surface-induced dissociation mass spectrometry (SID-MS) data improved the root-mean-square deviation (RMSD) of
best-scoring models. Alignment of the crystal structures (green) with one of the top three best-scoring models when (left) scoring
without SID-MS data (purple) and when (right) including SID-MS data in scoring (pink) for three protein complexes (PDB IDs 1GNH,
1GZX, and 1SAC). Figure adapted with permission from Justin Seffernick.

structure modeling. Protein complexes have been implicated to have roles in many biological
processes, and structural changes to complexes can lead to human disease (76). Elucidation of
protein complex structure can provide insight into the mechanisms of such complexes. Structural
information can complement efforts to target protein complexes with drugs to alleviate implica-
tions in disease. The study of protein complexes benefits greatly from integrative experimental
techniques to combat modeling ambiguities. This has been nicely demonstrated in work by Zhang
and colleagues (42) that applied both HDX and XL data to quaternary structure investigation.
The field should continue to emphasize the combination of multiple techniques to elucidate
structural features of protein complexes.

Recently, the performance of AlphaFold at CASP14 has raised questions about the role of
experimental techniques in protein structure determination (77). AlphaFold relies on artificial
intelligence to accomplish protein structure prediction from amino acid sequences (78). Its
impressive global distance test median score of 92.4 (79) redefined the field’s expectations of how
precise modeling algorithms could be. This inevitably caused speculation about the ability to
determine protein structure purely computationally. We believe that this is unlikely to happen
in the near future. We anticipate that computational researchers will continue to establish
techniques that mimic AlphaFold. Callaway indicated in his Nature synopsis of CASP14 (77) that
purely computational structure determination is unlikely, but rather that sparse experimental data
will soon be sufficient for unambiguous structure elucidation in combination with the new wave
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of artificial intelligence technologies. As such, we anticipate that MS data will play a continued,
if not growing, role alongside tools like AlphaFold.

An additional future avenue of protein structure prediction from MS data is citizen science.
FoldIt is one such tool that enlists video game enthusiasts for structure prediction (80). With its
colorful graphical user interface and endearing symbols for relevant scientific concepts such as
steric hindrance and solvent exposure of hydrophobic regions, FoldIt uses the Rosetta software
suite to reward user-sampled conformations of proteins.Users can advance throughmultiple levels
of the game while supporting scientific efforts by sampling protein conformations that may be
inaccessible to automated protein sampling algorithms. Overall, games such as FoldIt inspire a
new generation of scientists while tackling the sampling problem and examining novel protein
conformations.

In summary, the future ofMS techniques with complementary computational methods appears
promising. The combination of MS and computational protocols will, in our opinion, lead to the
elucidation of many challenging protein structures.

CONCLUSION

The field of structural mass spectrometry has significantly benefited from the development of
hybrid computational techniques for MS-guided protein structure prediction. Algorithms that
use XL-MS, HDX-MS, HRPF-MS, limited proteolysis, IM-MS, and SID-MS data for tertiary
and quaternary structure prediction, described here, successfully allow structure elucidation from
sparse MS data. The field will continue to thrive with efforts to maintain accessible data sets and
software packages, to combine multiple techniques for the purpose of protein complex elucida-
tion, and to pursue out-of-the-box methods such as FoldIt that recruit the general public into
structure prediction efforts. While it is encouraging to see how far the field has progressed re-
cently, it remains even more exciting to envision where the field will go with continued advances
in techniques and technology.
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