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ABSTRACT: Understanding the relationship between protein structure and experimental data is crucial for utilizing experiments to
solve biochemical problems and optimizing the use of sparse experimental data for structural interpretation. Tandem mass
spectrometry (MS/MS) can be used with a variety of methods to collect structural data for proteins. One example is surface-induced
dissociation (SID), which is used to break apart protein complexes (via a surface collision) into intact subcomplexes and can be
performed at multiple laboratory frame SID collision energies. These energy-resolved MS/MS experiments have shown that the
profile of the breakages depends on the acceleration energy of the collision. It is possible to extract an appearance energy (AE) from
energy-resolved mass spectrometry (ERMS) data, which shows the relative intensity of each type of subcomplex as a function of SID
acceleration energy. We previously determined that these AE values for specific interfaces correlated with structural features related
to interface strength. In this study, we further examined the structural relationships by developing a method to predict the full ERMS
plot from the structure, rather than extracting a single value. First, we noted that for proteins with multiple interface types, we could
reproduce the correct shapes of breakdown curves, further confirming previous structural hypotheses. Next, we demonstrated that
interface size and energy density (measured using Rosetta) correlated with data derived from the ERMS plot (R2 = 0.71).
Furthermore, based on this trend, we used native crystal structures to predict ERMS. The majority of predictions resulted in good
agreement, and the average root-mean-square error was 0.20 for the 20 complexes in our data set. We also show that if additional
information on cleavage as a function of collision energy could be obtained, the accuracy of predictions improved further. Finally, we
demonstrated that ERMS prediction results were better for the native than for inaccurate models in 17/20 cases. An application to
run this simulation has been developed in Rosetta, which is freely available for use.

■ INTRODUCTION
Data from tandem mass spectrometry (MS/MS) experiments
increasingly provide valuable structural information for
proteins and protein complexes. An assortment of different
techniques can be used to measure various types of structural
information.1−5 For example, ion mobility (IM) can provide
information on size and shape,6−8 chemical cross-linking (XL)
can provide information on residue distances and contacts,9−11

and covalent labeling can provide information on solvent
accessibility and flexibility of residues.12−16 The resulting
structural information can then be used to better understand
the roles of the specific proteins in biological processes. These

sparse data have also been combined with computational
modeling methods17,18 to improve the accuracy of structural
predictions.19−29

Surface-induced dissociation (SID) is an ion activation
method that provides information on the native structure of
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protein complexes, in the form of mass-to-charge (m/z)
measurements of subcomplexes.30−34 After soft ionization
(using nanoelectrospray ionization, which allows the protein to
largely retain a nativelike structure despite gas phase
conditions35−37), complexes are intentionally collided with a
surface at hyperthermal energies. When this process occurs, the
majority of the collision energy is converted to internal energy,
cleaving the noncovalent protein−protein interfaces and
breaking the complex into various subcomplexes. The relative
intensities of these resulting subcomplex types are measured
using MS/MS. The experiment is then repeated at multiple
acceleration energies to measure a profile of interface cleavage.
The results of these experiments, energy-resolved mass
spectrometry (ERMS) data, are often plotted as ERMS plots,
which show the relative intensity of each resulting subcomplex
type as a function of the acceleration energy toward the
surface. From these data, complex stoichiometry and
connectivity can be pieced together as interfaces break.33 We
have also demonstrated previously that these data can measure
the relative strengths of specific protein−protein interfaces.38

We hypothesized that weaker interfaces would break at lower
acceleration energies, while stronger interfaces would require
more energy to break. Previously, we quantified this for a
subset of the interfaces in each protein complex. This metric
was the appearance energy (AE), which was defined as the
acceleration energy when the resulting subcomplexes (after the
breakage of the interface) reached 10% of the relative intensity.
Using this metric, we showed that (i) structural features
measuring interface strength correlated with the AE values, (ii)
the AE could be reliably predicted from the structure of a
specific interface, and (iii) that this information was beneficial
in scoring output structures from protein−protein docking
experiments, which would then be used to accurately predict
the structure of a complex.39,40 Though this work showed
promising results, one downside was the extraction of only one
AE value for a given interface, disregarding much of the
information contained in the ERMS data.

In this work, we extend our modeling efforts to utilize the
entire information contained within the SID ERMS data. We
developed a method to predict full ERMS data from the
complex structure. The application to run this simulation in
Rosetta is freely available for use (see Supporting Information
for more information). We first noted that for proteins with
multiple different interfaces, we could reproduce the correct
shapes of ERMS plots, providing further corroboration that
interface strength indeed determines the shape of these curves.
We then demonstrated that interface size and energy density
(measured using Rosetta) strongly correlated with interface
strengths derived from the ERMS data. We subsequently used
this correlation to model the breakages and predict the
distributions. Of the 20 complexes tested, the majority
produced accurate results using the native structures as
input. Finally, we showed, by performing a simple docking
study, that our method was sensitive to structural accuracy,
where non-nativelike models had predicted ERMS that were
poorer fits to experimental curves than those of native
structures.

■ METHODS
The method described in this section was developed to
simulate interface breakage that occurs during SID and predict
ERMS data. Notably, we do not simulate the dynamics of SID
at the molecular level, but rather simply predict abundances of

products after the collision, as will be discussed further. ERMS
plots show the relative intensity of each type of subcomplex
(and precursor) as a function of the SID acceleration energy.
The method is based on simulating breakages for each
interface using a probability function that depends on the
interface strength (structural features) and the acceleration
energy. The simulation method uses the probability function
for each type of interface within a complex and the ERMS plot
is predicted using the method described below.

Probability Function. The probability function used for
each interface is shown in eq 1. This function defines the
probability that an interface breaks (Pb) based on the interface
strength (B, midpoint of the curve) and acceleration energy
(X). At the midpoint, there is a 50% probability for the
interface to break. We chose a fade function where the
probability increases as acceleration energy increases based on
the observed shapes of the SID ERMS plots. Examples of this
function (A = 0.0025 eV−1, B = 2000 eV, and A = 0.0150 eV−1,
B = 2000 eV) are shown in Figure S1. The midpoint of the
function (B) can shift in either direction to accommodate
differences in interface strengths. For example, a higher B
would indicate a stronger interface, which requires more
energy to break, and thus the probability curve is shifted to the
right. The function also has a steepness parameter that has
been set to slightly different values depending on the
conditions (A, described in detail later in the Methods
section). This steepness determines the sharpness or softness
of the breakage threshold. Methodology for obtaining the
parameters A and B for each simulation will be described in the
following sections.

=
+

P
e

1
1

1 A X Bb ( ) (1)

Simulation Process. After probability functions are
assigned for each interface in the complex (defined based on
the complex oligomeric state and symmetry), the following
simulation process is performed for each acceleration energy
on the ERMS plot x-axis, as shown in Figure 1 and described
here. At each acceleration energy, the breakage probability is

Figure 1. Flowchart describing the ERMS plot simulation process.
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extracted from the function (eq 1). Next, the breakage (or lack
thereof) of each interface is simulated based on these
probabilities (using a random number generator). Based on
the remaining connectivity, the resulting subcomplexes are
enumerated. This process of simulating the breakage is
repeated 1000 times, and the frequencies of observed
subcomplexes are averaged and the values of each subcomplex
type are normalized, such that they sum to 1. The process is
repeated for each acceleration energy. Breakage is allowed to
occur only when the acceleration energy exceeds zero, that is,
at x = 0, the precursor is set to intensity of one and the
remaining subcomplexes are set to zero. The results of this
process provide the data needed to construct the predicted
ERMS plot (relative intensity of each subcomplex type as a
function of acceleration energy).

While simulations can be performed from the structure
directly, additional information may be provided to improve
the predictions, if available. If SID experiments were performed
to determine the acceleration energy where breakage of the
precursor begins to occur, predictions can be improved further.
Rather than starting breakage after zero, the breakage is then
started after the breakage cutoff (defined as highest
acceleration energy with at least 95% precursor).

Benchmark Set. The benchmark set used in this study
primarily contains proteins with ERMS data published
previously.38 These proteins include triose phosphate isomer-
ase (8TIM), streptavidin (1SWB), neutravidin (1AVE),
pyruvate kinase (1AQF), concanavalin A (1JBC), transthyretin
(5HJG), D-sialic acid aldolase (6ALD), hemoglobin (1GZX),
tryptophan synthetase (1WBJ), cholera toxin B (1FGB), C-
reactive protein (1GNH), serum amyloid P (1SAC), beta-
lactoglobulin (6QI6), lysozyme (4R0F), and enolase (1E9I). A
few additional proteins were also included in the data set:41,42

IspD (1VGT), Can (1 T75), DeoC (1KTN), Upp (2EHJ),
and HFq (1HK9). In all cases, experiments were performed on
a Waters Synapt G2 or G2s mass spectrometer, operated in
mobility mode. Protein complexes were prepared for spray
under charge-reducing conditions.43 In total, the data set
contained six homodimers (C2 symmetry), eight homote-
tramers (D2 symmetry), two heterotetramers (one with D2
symmetry and one with C2 symmetry), three homopentamers
(C5 symmetry), and one homohexamer (C6 symmetry). The
complex types and connectivities are shown for each complex
in Table S1. The PDB structures were first relaxed in Rosetta
using the REF2015 scoring function.44 Next, interface
properties were calculated using Rosetta InterfaceAnalyzer45

for each type of interface in each complex (in some complexes,
multiple interfaces are symmetric and thus equivalent). From
this calculation, interface surface area (dSASA_int) and energy
per interface residue (per_residue_energy_int) were extracted
for use in determining breakage probabilities, as described in
the following section.

For each of the experimental ERMS data individually,
optimal values of B (midpoint of probability curve) were
determined to maximize agreement between predicted and
experimental data. These values were then used to observe a
correlation between experimental data (optimal B from
ERMS) and structure (interface features). The metric used
to quantify agreement between predicted and experimental
ERMS data was root-mean-square error (RMSE), which was
calculated based on the relative intensity difference at each
value of acceleration energy over each subcomplex type.

Determination of Probability Midpoint (B). As
mentioned previously, the inputs to the ERMS simulation
algorithm are probability curves for each interface. These
probability curves are modulated based on interface strength
using the midpoint of the fade function (B, stronger interface
corresponds to higher B). The B values were determined based
on the observed correlation between the following interface
features: interface surface area (SA [dSASA_int], positive
correlation), and energy per interface residue (PRE [per_re-
sidue_energy_int], negative correlation). The function to
determine B from interface structure is provided in eq 2.
The values of the weights for both options (without and with
knowledge of breakage cutoff) are provided in Table S2. To
determine the optimal weights, we used the Python simplex
algorithm (minimizing χ2) and linear regression.46

= + +B w SA w wPRESA PRE int (2)

Determination of Probability Steepness (A). For the
majority of systems, the steepness (A) of the probability curve
was set to the following values: A = 0.0025 eV−1 without
breakage cutoff, A = 0.0020 eV−1 with breakage cutoff.
However, for dimers with particularly rigid subunits, the
steepness was set to a higher value to account for the sharper
observed slopes of the ERMS plots. The higher steepness (A =
0.0150 eV−1 with and without breakage cutoff) was used for all
dimers that had intra-subunit disulfide bonds.

■ RESULTS AND DISCUSSION
Here, we describe a method to simulate ERMS data from SID-
MS/MS experiments for protein complexes with a variety of
oligomeric states (predict the data, not to physically simulate at
the molecular level). ERMS plots show the relative intensity of
each subcomplex type after SID as a function of the
acceleration energy. We observed correlations between
experimental data and interface structure. Based on the
strength of each interface (as measured by size and Rosetta
energy), a probability curve was constructed using a fade
function to define the probability of breaking each interface as
a function of acceleration energy (see Figure S1 for example).
Using this probability curve for each interface, breakages were
simulated for 1000 complexes at each acceleration energy. The
resulting averaged, normalized data were then used to
construct the predicted ERMS plot and compared to
experimental results for a data set containing dimers, tetramers,
pentamers, and hexamers (see Table S1). All systems are
referred to by the PDB ID in Table S1 and given in the
Methods section.

SID Dissociation Competition Pathways for Tet-
ramers Match Predictions from the Structure. Based on
the design of our simulation algorithm, proteins that exhibited
one unique type of interface between exactly two subunits (C2
dimers, C5 pentamers, and C6 hexamers) produced ERMS
plots with similar shapes, but varying strengths (shifts in
acceleration energies). However, for the tetramers, there were
multiple different types of interfaces (three types each for nine
D2 tetramers and two types for 1WBJ, a linear C2 tetramer).
For this reason, multiple shapes for the ERMS plots were
observable, depending on the relative probability curve
midpoint (B) values of the respective interfaces. We previously
discussed the experimental tetramer SID breakage patterns and
their qualitative relationship to structure for the D2
tetramers,38 but we will revisit the discussion in the context
of predicting ERMS data here.
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As tetramers break into subcomplexes, there is the possibility
of competition between the pathway that forms two dimers
and the pathway that forms one monomer and one trimer.
Thus, the experimental ERMS plots can be roughly classified as
dimer−dimer, competitive (i.e., both pathways occur signifi-
cantly at the same energies), or monomer−trimer, as shown in
Figure 2A,B,C, respectively. In previous work,38 we noted that
dimer−dimer ERMS plots were likely to result from tetramers
with a single dominant interface (in terms of size, i.e., a dimer
of dimers) and that monomer−trimer ERMS plots were likely
to come from tetramers with relatively even interface sizes.
Table S3 (first three columns) shows the structural prediction
(based on the relative interface strengths as outlined above)
and the actual ERMS shape. Except for one (6ALD), all cases
either agree or almost agree (a competitive pathway is
involved, at least at higher energies). Based on this previous
observation, we sought to test whether the relationship
between relative interface strength and ERMS breakdown
pathway could be reproduced using the simulation method
described here. To test this, we predicted ERMS data under
the following conditions: one strong interface (dimer−dimer
expected), relatively even interfaces (monomer−trimer ex-
pected), and somewhere in between (competitive expected).
As predicted, setting B values to match these conditions (B =
1200, −750, 250 eV; B = 750, 500, −250 eV; B = 750, 750,
750 eV, respectively) produced ERMS plots with these three
relative shapes, as shown in Figure 2D,E,F. While the
hypothesized ratios of interface strengths could reproduce
the observed shapes relatively well, the monomer−trimer
shape of the prediction exhibited a pathway that appeared to
be shaped more similar to dimer−dimer than experimentally
observed for many complexes (Figure 2F). However, based on
the methodology, this can be understood. If all interfaces were

even, then monomer−trimer was more likely than dimer−
dimer (three interfaces breaking compared to four, all with
equal probability, e.g., A_B, A_C, and A_D versus A_D, A_C,
B_C, and B_D); however, dimer−dimer is still likely to occur
for a fraction of complexes in the simulation. Despite these
understood discrepancies, using relatively even interfaces, we
were best able to reproduce the monomer−trimer shape.

While the previous discussion relates to the D2 tetramers,
we also tested a linear, C2 tetramer (1WBJ, see Table S1 for
the connectivity diagram). In this case, if the outer interface is
weaker, then monomer−trimer is expected and if the inner
interface is weaker, dimer−dimer is expected. The exper-
imental ERMS plot showed a slight preference for monomer−
trimer (within the pathway competition). Based on this, the
prediction would be that the outer interface was slightly weaker
than the inner, but on the same order of strength. This
expected observation matched the calculated interface areas
remarkably well: 2961 and 3615 Å, respectively. Similar to the
D2 tetramers, the shapes of the different observed pathways
could be constructed based on the hypothesized relative
interface strengths (outer interface stronger: dimer−dimer,
inner interface stronger: monomer−trimer, relatively even
strength: competitive) using the simulation method (data not
shown).

Structural Features Relating to Interface Strength
Correlate with Experimental Data. To (i) examine
correlations between structure and experimental data and (ii)
develop an approach to predict ERMS from the structure, we
first determined the optimal values of the probability curve
midpoint (the optimal B value) that would most closely
reproduce the experimental ERMS data (without yet taking
structure into account). For the majority of proteins in the data
set, a constant value of the probability steepness (A) was used.

Figure 2. (A−C) Examples of experimental ERMS plots for tetramers of the three possible pathways: dimer−dimer (1SWB), competitive (5HJG),
and monomer−trimer (2EHJ), respectively. (D−F) Examples of predicted ERMS plots with the corresponding hypothesized relative interface
strengths for the three pathways.
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However, to account for the observed steeper slopes in the
ERMS plots for dimers with particularly rigid subunits, a higher
value of A was used in these cases (defined as dimers with at
least one intra-subunit disulfide bond). For dimers with more
rigid subunits, less energy is redistributed into unfolding the
subunits after the SID collision. For this reason, the
dissociation (from dimer to monomers) occurs closer to an
“all or nothing” pathway once the acceleration energy reaches a
certain threshold, that is, either breaks close to completely or
little at all. On the other hand, less rigid dimers undergo a

more gradual dissociation (with respect to the increasing
acceleration energy). In the data set, two proteins met this
criterion for a larger A value (4R0F and 6QI6). An example
comparison of the effect of these different steepnesses on the
probability curve is shown in Figure S1. The curve with larger
steepness has a smaller range of acceleration energies that
produces a probability of breaking in the ∼0.2−0.8 range. This
same phenomenon was not observed for complexes larger than
dimers. We hypothesize that this was due to the larger number
of degrees of freedom for the larger complexes. Because they

Figure 3. Correlations between structural features and experimental data for all interfaces. (A) and (B) Correlation between surface area (SA) and
Rosetta per-residue interface energy (PRE), respectively, with the optimal B values from the experimental data (Bopt). (C) Predicted B value (Bpred)
used in the simulations calculated using eq 2. Blue points are tetramer interfaces, and orange points are non-tetramer interfaces (dimer, pentamer,
or hexamer).

Figure 4. Predicted ERMS plots for select complexes (remaining shown in Figure S2). The following complexes shown here by PDB ID: 1KTN,
4R0F, 1VGT, 1SWB, 1AQF, 1T75, 1SAC, 1FGB, 1GNH, 1HK9, 1GZX, and 1WBJ. Solid line: prediction, dotted line: experimental ERMS.
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have more possible avenues to redistribute energy, the rigidity
might play less of a role in breakage slope.

We hypothesized that interfaces with higher optimal B
values (a value extracted from experimental data) would have
stronger structural features, that is, larger interface area, more
favorable energy, and so forth. To test this, we calculated
interface features using the relaxed crystal structures for the
complexes in our data set. As noted in the previous section and
in previous work,38 relative interface size between different
interfaces correlated with the shapes of the tetramer ERMS
plots (see first three columns of Table S3: structure class,
experimental class, and prediction class). Here, we examined
the correlations between optimal B (experimental) and
interface features, as shown in Figure 3. Panels A and B of
Figure 3 show correlations between interface surface area (SA)
and per-residue energy of interface (PRE), respectively, with
the optimal B. The observed correlations matched the
expected trends. Larger interfaces tended to have higher
optimal B values (R2 = 0.64), that is, dissociate at higher
acceleration energies. Stronger interfaces (lower PRE) tended
to also have higher optimal B values (R2 = 0.41). These data
demonstrate that (i) the entire ERMS data correlate with
structural features of protein−protein interfaces (rather than
just “onset” AE) and (ii) that the previously qualitatively
observed phenomenon regarding interface sizes and tetramer
shape can be generalized quantitatively.

ERMS Data Can Be Reliably Predicted from the
Structure. To use these correlations in the prediction method
(i.e., to predict ERMS data from the structure), we used a
combination of the SA and PRE to determine the B input for
the simulation. The correlation between predicted B and
optimal B value is shown in Figure 3C (corresponding to eq 2)
and had an R2 value of 0.71. The resulting ERMS plot
predictions are shown in Figure 4 and S2. Overall, the average
RMSE was 0.20 (median of 0.18) with only three cases of
RMSE greater than 0.30, indicating good agreement with the
experimental data for most of the 20 benchmark cases. The
breakdown of average RMSE of the different complex types is
the following for dimers, tetramers, pentamers, and hexamer,
respectively: 0.26, 0.18, 0.19, and 0.12.

The dimer results varied the most. The best RMSE of 0.06
was observed for PDB ID 1KTN, while the two worst
predictions were for 8TIM and 6QI6, with RMSE values of
0.36 and 0.53 respectively. Of the six dimers in the data set,
two had RMSE less than 0.2, two had RMSE greater than 0.2
and less than 0.3, and two had RMSE greater than 0.3. This
variability for dimers can be explained by the need to predict
the single B value very accurately to match the experimental
ERMS plot, while the other complex types were more
forgiving. The pentamers and hexamers were all at least
moderately accurate (RMSE <0.30 for all). For the tetramers,
we additionally examined the shapes of the predicted ERMS
plots, as discussed previously. Though the RMSE was poor for
a couple cases (1AQF: RMSE = 0.29 and 1T75: RMSE =
0.31), in every case, the RMSE was low and/or the shape
matched the experimental shape (dimer−dimer vs monomer−
trimer vs competitive), as shown in Table S3. There were three
cases where a competitive ERMS was predicted for a dimer−
dimer or monomer−trimer (1GZX: RMSE = 0.12, 2EHJ:
RMSE = 0.20, and 6ALD: RMSE = 0.19); however, the
RMSEs were still low (indicating the general breakage
occurring at acceleration energies near the actual).

Furthermore, when comparing the accuracy of each
subcomplex type over all the predictions, the monomer curves
were typically the most inaccurate. This is likely due the
monomers having the most variability in the experimental
curves, where they can vary from 0 up to almost 1 in many
cases. This is likely due to the fact that monomers can be
produced from secondary cleavage in addition to primary. This
phenomenon is further emphasized when comparing the
monomer experimental curves to trimers (which are typically
low intensity and stable regardless of acceleration energy and
predictions are very accurate). The average RMSE values for
the monomers, dimers, trimers, tetramers, pentamers, and
hexamers were 0.26, 0.20, 0.08, 0.11, 0.14, and 0.15,
respectively.

Improved Accuracy for ERMS Data Prediction with
Additional Information. While we demonstrated in the
previous section that SID ERMS data can be predicted directly
from the structure, additional information can also be included
in the predictions to improve the results further. In the
previously described method, simulated breakage occurs
immediately at acceleration energies greater than 0 eV.
However, for some cases, the experimental ERMS plots reveal
that the complexes do not start to break until they reach
slightly larger energies. For example, in the predicted ERMS
plot for 1SAC in Figure 4 (solid line), breakage occurs
immediately after 0 eV. However, in the experimental ERMS
plot (dotted line), breakage is only observed for acceleration
energies higher than 360 eV. If that specific energy where
breakage begins is known (via an experiment), then the
simulations can be adjusted to begin breakage at that point.
The breakage cutoff was defined as the maximum observed
acceleration energy with at least 95% precursor (ex: breakage
cutoff = 360 eV for 1SAC). Including this additional
information improved the predictions, as will be described
further. However, we also sought to explore the origin of these
breakage cutoffs and whether they correlated with the
structure. The extracted breakage cutoffs did weakly correlate
with structural features of the protein complexes such as total
number of residues, number of residues per chain, SA of largest
interface, and Rosetta ΔG of the strongest interface, as shown
in Figure S3. This generally indicates that larger complexes and
complexes with larger or stronger interfaces tend to only begin
breaking at higher SID acceleration energies, which are
correlated with ion activation energies. This is consistent
with RRKM (Rice−Ramsperger−Kassel−Marcus) theory
(kinetic theory of fragmentation by mass spectrometry),
which shows that fragmentation will only occur once the
pathway-dependent activation energy for a given fragmentation
reaction has been exceeded to allow fragmentation at a
particular rate, which is determined by the instrument time
frame. The excess energy that is required to drive a
fragmentation reaction with an instrument-dependent rate is
called the kinetic shift. Thus, overall, the reaction rate depends
on the activation energy and the kinetic shift. Fragmentation
kinetics are determined by the activation free energy (ΔG#),
that is, barrier height and not the equilibrium thermodynamic
value of ΔG. We did not calculate the microstates above the
barrier (transition state, TS) to determine (or, at least,
estimate) the kinetic shift. As Beynon and Gilbert noted,47 at
high (internal) energies and for large molecules, this procedure
becomes increasingly impracticable (see, page 43 in ref 47).
Our approach is somewhat related to Cooks’ kinetic method in
that dissociation trends are used to determine thermodynamic
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parameters.48 Generally speaking, the larger the size of the
protein complex, the larger and stronger the interface area,
which drives the correlation between the experimentally
observed fragmentation efficiency and laboratory SID energy
(see curves in Figure 4). Lastly, we note that the Prell group
recently showed that the conversion of lab frame SID collision
energy likely increases in efficiency with ion size.49 We do not
have direct evidence for T−V transfer as a function of protein
complex size and, especially, about the kinetic shift.
Furthermore, we previously showed that interface features
(similar to the features used in this work) correlated much
better than overall size with SID dissociation.38 Thus, Prell’s
results (albeit important for unfolding protein ions) have no
direct influence on our interpretation.

When including the breakage cutoff, the ERMS predictions
improved notably overall, as shown in Figure S4. Note that
different parameters were used for these simulations based on
the observed correlations (the R2 value between predicted and
optimal B also improved slightly to 0.72). The average RMSE
of these predictions was 0.17 (median of 0.15) with only two
cases of RMSE greater than 0.30, indicating good agreement
with the experimental data for all but a few cases. The
breakdown of average RMSE of the different complex types
was the following for dimers, tetramers, pentamers, and
hexamer, respectively: 0.20, 0.17, 0.16, and 0.13. Overall, 16/
20 cases improved with the additional information and
different weights, though the average RMSE difference
between the original and new values for the other 4/20 was
only 0.01. The average improvement in RMSE for the
remaining 16 was 0.04. While the data suggest that the
additional information can be beneficial, the prediction
method from structure alone was nearly as accurate.

ERMS Predictions Using Native Protein Models Were
More Accurate than for Those from Non-native
Structures. As the ERMS prediction method was developed
to accurately predict ERMS data for relaxed native structures,
we hypothesized that prediction results would be inferior for
inaccurate structures (which have high RMSD to the native
structure). To test this hypothesis, we performed simple
docking simulations (see Supporting Information for details)
that allowed for the generation of high RMSD protein complex
models. A set of 25 models with RMSD in the range of 15−30
Å were chosen. To curate this set, we specifically chose
structures that also had favorable Rosetta interface scores
(independent of structural accuracy). These structures were
then used to predict ERMS data using the method developed
in this work (without including breakage cutoff information).
In this experiment, we found that the average RMSE of the
incorrect structures (comparing ERMS prediction to exper-
imental ERMS) was worse than that of the native for 17/20
cases, the same for 1/20 cases, and better for only 2/20 cases
(which were both already inaccurate for the native structures,
RMSE > 0.35), as shown in Table S4. These results indicated
that inaccurate models with favorable interface scores (mean-
ing that they could possibly be in competition with low RMSD
models when ranking in a blind test) matched the experimental
data significantly worse than natives when using our ERMS
prediction method.

■ CONCLUSIONS
We have developed a method to predict ERMS distributions
for SID experiments from the structures of protein complexes.
Based on the interface strengths in a complex, the computa-

tional method simulates breakages based on a probability curve
that was able to reproduce the shape of the experimental
curves. Using this method, ERMS data were reliably predicted
(average RMSE of 0.20), and for cases with multiple
competing dissociation pathways, the correct pathway was
typically predicted. We also demonstrated that there is a
correlation between structural features of all protein−protein
interfaces in a complex and the entire ERMS plot. Next, we
showed that the prediction results can be improved further if
the acceleration energies where the complex begins to break
apart are known, though the method was accurate for most
cases without this additional information. Finally, based on a
simple docking study, it was observed that incorrect structures
with favorable scores predicted worse ERMS data than native
structures using the same method.

This novel algorithm for predicting full SID ERMS data
from structure represents a significant improvement from
previous modeling efforts. This method allows us to model
entire ERMS data, rather than a single AE, as was the focus of
previous work. The prediction method has been developed as a
Rosetta application, which is freely available for use. The
application can handle any structure with arbitrary con-
nectivity, but has been benchmarked against some relatively
simple complex stoichiometries here. A tutorial can be found in
the Supporting Information. The ERMS prediction results
obtained with high RMSD models showed that inaccurate
structures which Rosetta flags as favorable can be identified to
be unfavorable based on SID ERMS prediction. This
preliminary study demonstrated the potential of our method
in SID-guided protein complex prediction in future work to
assist in scoring. Future work will focus on incorporating the
ERMS prediction algorithm to guide complex modeling
methods. This method could be applicable to any complex
where multiple potential structures can be generated computa-
tionally (e.g., by symmetric docking or other), benefiting
model selection. Furthermore, because SID provides informa-
tion on interface strength, integrative modeling could be
performed, with additional types of MS data providing
different structural information, such as overall size/shape
from IM21 and buried/exposed residues from covalent
labeling.50
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