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Protein complex prediction using Rosetta,
AlphaFold, and mass spectrometry covalent
labeling

Zachary C. Drake1, Justin T. Seffernick1 & Steffen Lindert 1

Covalent labeling (CL) in combination with mass spectrometry can be used as
an analytical tool to study and determine structural properties of protein-
protein complexes. However, data from these experiments is sparse and does
not unambiguously elucidate protein structure. Thus, computational algo-
rithms are needed to deduce structure from the CL data. In this work, we
present a hybrid method that combines models of protein complex subunits
generated with AlphaFold with differential CL data via a CL-guided protein-
protein docking in Rosetta. In a benchmark set, the RMSD (root-mean-square
deviation) of the best-scoring models was below 3.6Å for 5/5 complexes with
inclusion of CL data, whereas the same quality was only achieved for 1/5
complexes without CL data. This study suggests that our integrated approach
can successfully use data obtained from CL experiments to distinguish
between nativelike and non-nativelike models.

Mass spectrometry (MS) is a versatile analytical approach which has
become a vital tool in structural biology, capable of probing the
structure and dynamics of protein assemblies1,2. Protein-protein com-
plexes are central in many crucial biological and cellular processes3,
which makes their structural elucidation important. Currently, over
182,000 protein structures have been determined and archived in the
Protein Data Bank (PDB), with around 114,000 of these being protein-
protein complexes4. These high-resolution protein structures can be
obtained using techniques such as nuclear magnetic resonance
(NMR)5, cryo-electron microscopy (cryo-EM)6, and most notably X-ray
crystallography7. However, structures at atomic resolution are not
always obtainable due to limitations of the forementioned techniques
in areas such as acceptable system size, required sample concentra-
tion, and excessive sample conformational heterogeneity.

Structural mass spectrometry is an alternative method which
generally requires less time for sample preparation, can handle
smaller sample sizes, is usable for a large range of protein sizes, and
provides sparse biophysical data that can be used to gain insight into
a variety of protein structural characteristics. Although MS experi-
ments cannot comprehensively determine a high-resolution protein
structure, insights into conformational states can be obtained, vali-
dation of existing models can be achieved, or the data can be

supplemented with computational techniques for atomic-detail
structure elucidation. A few common approaches in structural MS
are chemical cross-linking8, hydrogen-deuterium exchange (HDX)9,10,
surface-induced dissociation (SID)11,12, ion mobility (IM)13, and cova-
lent labeling of macromolecules (CL)14,15. Chemical cross-linking
involves using chemical reagents that form covalent bonds to link
specific functional groups within or across protein molecules, pro-
viding distance restraints. HDXmethods canbe used to study protein
structure and dynamics using exchange between protein backbone
amide protons anddeuteriumatoms fromsolution, which is sensitive
to local solvent accessibility and flexibility. SID methods involve the
soft ionization of native protein complexes into the gas phase which
are then collided with a rigid surface where they can break apart into
monomers or other intact subcomplexes. This method can provide
information regarding the stoichiometry, connectivity, and interface
strength of complexes. IM can offer structural information regarding
the shape and size of a protein complex by analyzing the travel of a
protein through a bath gas, providing an averaged cross-sectional
area of the system. Finally, covalent labeling probes protein structure
by exposing solvent-accessible amino acid side chains with either
specific or nonspecific reagents that covalently bind. Differences in
reactivity to labeling agents can distinguish between exposed and
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buried residues, as well as residues located at the surface of inter-
acting domains in the case of protein complexes.

Covalent labeling offers several advantages over other MS tech-
niques. For example, the challenging low abundance of specific inter-
peptide cross-links and complicated tandem MS fragmentation of
chemically cross-linked peptides are not an issue for covalent labeling
techniques16. Furthermore, due to the formation of stable, covalent
bonds, the labeling of amino acids with labeling reagents are usually
irreversible, unlike HDX where back-exchange frequently occurs,
adding additional layers of complexity. Sparse structural data can be
obtained from covalent labeling experiments with reagents such as
hydroxyl radicals, carbenes, trifluoromethylations (CF3), diethylpyr-
ocarbonate (DEPC), and sulfo-N-hydroxysuccinimide acetate (NHSA)17.
Theseexperiments providemetrics ofmodification thatdependon the
reactivity, solvent accessibility and potentially other structural fea-
tures of the specific residues in solution. Structures of protein com-
plexes can be further probed by comparing the degree ofmodification
in theunboundandbound states,whenpossible. Interface residues are
generally identified by examining large changes in modification rates
between the unbound/bound state of a complex as solvent accessi-
bility is likely to most dramatically change at the protein-protein
interfaces. For example, a residue that gets labeled readily in the
monomer, but not in the complex is likely part of the interface;
although protein-protein binding could cause tertiary conformational
changes, which might also result in changes in modification. The data
obtained through a covalent labeling MS experiment can thus be used
to probe higher orders structure of protein complexes.

As an alternative to experimental methods, modern computa-
tional methods have seen great success in accurately predicting and
modeling protein tertiary structure18,19. The recent release of
AlphaFold220 (AF2, from DeepMind) has resulted in a revolution in the
accuracy of computational protein modeling. AlphaFold21 is a neural
network-based model that takes advantage of sequence coevolution
datawhichhas shownremarkable success andhas outperformedother
prediction methods during the 13th and 14th (with AF2) Critical
Assessment of Techniques for Protein Structure Prediction (CASP)22,23,
a series of blind tests to gauge the current state of protein structure
prediction. AlphaFold-Multimer24 was released in 2021 and uses the
AF2 model but was trained to predict multimeric complexes from
sequences of multiple chains. Similarly, traditional protein-protein
docking algorithms are useful for analyzing and predicting models of
complexes. In protein-protein docking, monomeric structures (which
can be obtained in a variety of ways) are used as input, and structures
of the complex are predicted, with favorable orientations of the dif-
ferent subunits. Existing protein-protein docking algorithms which
have been successful include ClusPro25, HDOCK26, ZDOCK27,
SwarmDock28, HADDOCK29, PIPER30, and RosettaDock31. RosettaDock
is a part of the Rosetta32 molecular modeling software suite which
contains a large variety of algorithms for computational modeling and
analysis of protein structures.

Incorporation of sparse experimental data into algorithms pre-
dicting protein structure can further improve computational
predictions33–35. Information obtained from hydroxyl radical foot-
printing (HRF), HDX, andDEPC labeling experiments have been shown
to improve tertiary structure prediction with Rosetta36–43 by using
calculated solvent exposure metrics for models to select for experi-
mentally accurate predictions. Similarly, protein shape and size
information obtained through collisional cross-section data from IM
experiments has also improved Rosetta structure prediction44. A
method iSPOT45, which uses a combination of multiple biophysical
methods (integration of shape information from small-angle X-ray
scattering and protection factors probed by hydroxyl radicals), has
been shown as a powerful approach for integrated modeling of mul-
tiprotein complexes. Isotope exchange using HDX-MS has been used
to improve protein complex prediction by simulating complex isotope

patterns and comparing to those obtained experimentally46. Similarly,
differential HDX data has been incorporated into protein-protein
docking to study the human uracil-DNA-gycosylase (hUNG) and its
protein inhibitor (UGI)47. The use of differential covalent labeling has
yet to be implemented within the RosettaDock framework. Although
AF2 hasproven to be anexcellent and revolutionarymethodof protein
structure prediction, there remain limitations, particularly for protein
complexes48. Covalent labeling has the potential to help overcome
some of these limitations and Rosetta is uniquely suited for the
development of hybrid methods incorporating labeling data as addi-
tional scoring terms, for which there are many examples36,39,41,49,50.
Here, we use RosettaDock to assemble protein complex subunits that
were generated using AF2 and employ covalent labeling data to
improve protein complex structure prediction.

In this study, we develop the computational framework (Supple-
mentary Fig. 1) for using covalent labeling data in protein complex
modeling in cases when state-of-the-art methods (both AlphaFold-
Multimer and Rosetta) underperform. We propose a score term
dependent on differential covalent labeling data obtained from HRF,
DEPC, or NHSA experiments which when combined with the Rosetta
score function readily selects computational models which agree with
experimentally determined structures. We first observe a correlation
between differential modification rates and inter-subunit residue dis-
tances within a protein complex based on our structural hypothesis
that interface residues will see greater changes in solvent accessibility
upon complex formation. Next, we develop a protocol where AF2 was
used to generate structures of the protein subunits whichwere used as
input for docking simulations. In a benchmark of 5 complexes, inclu-
sion of our score term predict 5/5 structures with root-mean-square
deviation (RMSD) less than 3.6 Å when compared to the native crystal
structure, as opposed to 1/5 without CL data.

Results and discussion
Correlation of differential covalent labeling and residue proxi-
mity to binding interface
Wehypothesized that differential covalent labeling data could be used
to determine which residues are likely to be located at the binding
interface within a protein complex. Surface residues can participate in
molecular interactionswith nearby solventmolecules. If these residues
are located at the binding interface when part of a complex, upon
binding, the side chains of these residues become buried and only
interact with the neighboring residues of an adjacent bound subunit,
decreasing the number of solvent interactions and the probability of
that residue being labeled. In this case, one would expect to observe
large changes in the frequency of modification for interface residues
between the unbound and bound states of complexes due to large
changes in solvent accessibilities in these regions. Based on this
hypothesis, large decreases in modification of residues from the
unbound to bound state of a complex have a higher probability of
participating in the interface.

To test the proposed hypotheses, we used a benchmark set of
protein complexes with publicly accessible differential labeling data
and a native crystal structure. This dataset consisted of actin bound to
gelsolin segment 1 (actin/gs1, heterodimer, PDB ID: 1YAG)51, β−2-
microglobulin (homodimer, PDB ID: 2F8O)52, and insulin (hexamer of
heterodimers, PDB ID: 4INS)53. To establish the validity of the hypo-
thesized relationship with experimental data, the native crystal struc-
tures of these complexes were used to analyze the proximity of
residues (using inter-residue distance) to the interface as a function of
modification rate in the monomer compared to the complex. We
assumed large-scale conformational changes do not occur upon
complex formation after examining all subunits of each complex
which contained labeled residues and finding that the average RMSD
of the unbound (Actin PDB ID: 3HBT54, β-2-microglobulin PDB ID:
2D4F55, and Insulin PDB ID: 3I4056) to the bound subunit crystal
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structures was 2.1 Å. To quantify the amount of change inmodification
occurring between the unbound/bound state, a modification change
was calculated from modification rates/extents of each state (see
methods for full detail) with a larger positive value indicating a more
significant decrease inmodification from the unbound to bound state.
We hypothesized that such a large decrease in modification from the
unbound to bound state would likely be indicative of residues at the
interface. The maximum modification change for a labeled residue
observed across all three complexes was 80% and the average change
was 18%. To isolate residues with large modification changes, we
considered only residues that saw at least a 40% change in modifica-
tion between unbound/bound states. Residues thatwerewithin 10Åof
the other chain were considered a part of the binding interface, which
is consistent with the interface definition for the iRMSD calculations
usingDockQ57. Froma total of 78 labeled residues across all complexes
in the benchmark set, 38 of these residues were at the interface (dis-
tance < = 10Å), and 40 of these residues were outside the interface
(distance > 10Å). The average modification percentage of residues in
the interface was 38.59%, while the average modification percentage
was -0.04% for residues outside the interface. We first used this cri-
terion to compare the native structures to experimental data. Figure 1a
lists the number of labeled residues with a modification percentage
greater than or equal to 40% at and outside the interface and those
residues are visualized for β-2-microglobulin (Fig. 1b). For all three
complexes, themajority of labeled residues withmodification changes
greater than or equal to 40% were found to be located at the binding
interface of the complex, with all the designated residues being at the
interface for two of the complexes. The two exceptions were residues
P322 and M325 located on a connecting loop region between two α-
helices on the actin portion of the actin/gs1 complex, near the inter-
face. Their peripheral locations to the interface may be the cause for
the observed large modification changes, or those may be due to local
structural changes which may result upon binding to gs1. Previous
work showed that error present in covalent labeling data is acceptable
up to a maximum of 35% of surfaced exposed residues being incor-
rectly identified as falsenegatives and 10%of buried residues identified

as false positives while still providing accurate protein structure
prediction37. In our benchmark, 91% of labeled residues with mod-
ification changes greater than or equal to 40% were close to protein-
protein interfaces, resulting in a false positive rate of 9% which was
within acceptable tolerances. This small preliminary analysis sup-
ported our hypotheses and indicated covalent labeling can be used to
distinguish particular interface residues based off large changes in
labeling.

Furthermore, we hypothesized that a larger distance to the
binding interface for a particular residue would result in less solvent
accessibility change when comparing unbound and bound states. For
this reason,wewould expect a smaller change inmodification between
the unbound/bound states of a complex. Combining all labeling data
from all three complexes along with the interface distances of these
labeled residues resulted in a more comprehensive analysis (Fig. 1c). A
linear trend with R2 = 0.36 and a normalized root-mean-square error
(NRMSE) of 1.5 was observed between modification change (experi-
mental data, y-axis) and the interface distances (native structures, x-
axis) for labeled residues. A larger distance between a labeled residue
and the other subunits in the bound form correlated with generally
smaller changes in modification. This linear correlation observed was
similar to previous work comparing solvent exposuremetrics (solvent
accessible surface area and neighbor count) and covalent labeling36,38.
We used this correlation to predict an expected modification change
fromany structuralmodel (by calculating the distances to the interface
and using the fit line). The linear parameters of slope and intercept
(Fig. 1c) were incorporated within our covalent labeling score term, as
described in Methods.

Structure prediction with covalent labeling data
RosettaDock has had many successes in modeling quaternary protein
structure58. And its docking predictive capabilities can be further
enhanced with the inclusion of sparse experimental data59–62. The
benefit of using integrative modeling is that the results depend on the
combination of Rosetta score and experimental data correlation, not
one individually. The RosettaDock Interface score (Isc) accounts for

R2 = 0.36
NRMSE = 1.46
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Actin/GS1 5 2
β-2-Microglobulin 4 0
Insulin 11 0
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Fig. 1 | Quantifying the relationship between modification change and proxi-
mity to interface. a Breakdown of the residues with a modification change of at
least 40%, within and outside the binding interfaces of a specified complex. The
residues shown in Panel (a) are a subset of the residues shown in Panel c.
b Visualization of the four labeled residues with large modification changes (see
Panela) for one subunit of theβ−2-microglobulin homodimer crystal structure. The

labeled residues are colored in blue, the respective closest residue on a different
subunit of the complex is colored in green, and the interface distance between
them is shown above the dotted yellow line. c Linear correlation between mod-
ification changes of all labeled residues and the interface distances, where larger
modification changes are expected for residues at the interface (x = 0). Source data
are provided as a Source Data file.
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interactions at the binding interface and can be supplemented with
additional score terms to predict more nativelike poses. Here we
aimed to explore whether covalent labeling MS data canmeaningfully
improve model quality. Due to the accuracy of AlphaFold2 (AF2) for
monomer prediction, models generated by AF2 were used to provide
the input to RosettaDock and a covalent labeling-based score termwas
used to rescore the oligomeric structures of modeled protein com-
plexes and predict the native structure.

The parameters obtained from the correlation (Fig. 1c; a slope of
−2.07 and an intercept of 46.27) were used to simulate predicted
modification changes of labeled residues. For each labeled residue in a
modeled complex, the interface distance was used to calculate a pre-
dicted modification change. Then the difference between experimen-
tally observed and predicted modification change was calculated and
input into a sigmoidal penalty term which penalized residues showing
larger disagreement with experimental data (see Eq. 3 in Methods).
The scores from the penalty function were then summed up for each
labeled residue in a model and normalized across all models of a set.
The resulting normalized score from the covalent labeling score term
was then weighted and added to the Isc to form the covalent labeling
score. Since traditional docking consists of two docking partners, the
insulin complex was broken up into three separate sub-complexes to
model the assembly of all unique interfaces, where AB_CD, ABC-
D_EFGH, ABCDEFGH_IJKL define what chains made up each docking
partner, separated by an underscore. In a first study, we redocked the
native crystal structures and Rosetta yielded accurate predictions for
4/5 complexes (Supplementary Fig. 2a). The only exception was β-2-
microglobulin, for which a top-scoring model with an RMSD of 9.2 Å
was identified. When including covalent labeling data in the score
function, 5/5 complexes had accurate predictions and the top-scoring
model for β-2-microglobulin had an RMSD of 3.0 Å (Supplementary
Fig. 2b). While these data were promising, the preliminary docking
study required crystallographic information of subunit structure in the
complex state.

To simulate a more realistic situation, we then used AF2 to gen-
erate components (subunits or sub-complexes) of the complexes,
which were then input into docking simulations. The top-ranked AF2
models were all accurate with respect to the native structure with
RMSD values of 1.2 Å and 0.7 Å for actin and gs1 A and G chains
respectively, 1.6 Å for β-2-microglobulin chains, and 1.5 Å for insulin
heterodimer. Scoring of the docked sets using covalent labeling data
was performed by combining the covalent labeling score term pro-
duced by our method with Isc, as previously described. The score
versus RMSD plots without using covalent labeling data are shown in
Fig. 2a, where the top-scoring model RMSD with respect to the native
structure was 11.2 Å for actin/gs1, 10.1 Å for β-2-microglobulin, 1.7Å for
insulin AB_CD, 9.6 Å for insulin ABCD_EFGH, and 6.8 Å for insulin
ABCDEFGH_IJKL. Only 1/5 of the sets of docked structures had a top-
scoring model with RMSD less than 5 Å. Figure 2b shows the results of
docked sets from Fig. 2a using our covalent labeling score instead of
Isc. Using our score, 5/5 of the sets had top-scoring models with an
RMSD below 3.6 Å. The top-scoring model RMSD with respect to the
native structure was 1.6 Å for actin/gs1, 3.17 Å for β-2-microglobulin,
1.73 Å for insulin AB_CD, 3.53Å for insulin ABCD_EFGH, and 3.54Å for
insulin ABCDEFGH_IJKL. Figure 2c shows the top-scoring models for
each docked set with the inclusion of our covalent labeling score term
aligned to the native crystal structure.

The assessment of additional metrics further demonstrated the
benefits of including covalent labeling in scoring. As shown in Table 1,
improvements were observed in TM-score and DockQ score upon
addition of CL data. TM-score analyzes the topological similarity
between structures andDockQ is a qualitymeasure used for evaluation
of protein-protein docking data. The average TM-score improved from
0.70 to 0.84 (further improvement of high fold similarity) and the
average DockQ score improved from 0.21 (an incorrect structure) to

0.50 (a medium quality structure) when including covalent labeling
data in scoring. The TM-score and DockQ score for all top-scoring
models either stayed the same or improved with the addition of
experimental data (Supplementary Table 1). These results demon-
strated that the information contained in the covalent labeling mod-
ification of residues can indeed facilitate the discrimination of
nativelike and non-nativelike poses.

As a comparison to state-of-the-art methodology, we also used
AlphaFold-Multimer to predict the full structure of the complexes
from our benchmark set without including the native structure as a
homolog. Figure 2d shows the generated AlphaFold-Multimer models
aligned to the native structures for the complexes. The root-mean-
squared deviation (RMSD) of the top-ranked models for each of the
complexes were 1.1Å, 13.8Å, 1.5 Å, 7.8 Å, and 16.0Å for actin/gs1, β-2-
microglobulin, insulin AB_CD, insulin ABCD_EFGH, and insulin ABC-
DEFGH_IJKL, respectively. Only 2/5 complexes in the benchmark set
were accurately predicted with an RMSD below 7 Å. Interestingly, for
the β-2-microglobulin homodimer, AlphaFold-Multimer predicted
accurate individual chains in its top-rankedmodel (with anRMSDof 1.6
Å for both chains) but failed to accurately predict the full complex.
This could be the result of loop regions (S11-N21 and F56-W59) present
at the edges of the binding interface which may impede AlphaFold-
Multimer’s ability to orient the subunits correctly. The inclusion of CL
data (with labeled residues H13, K19, and K58 located in these loop
regions) provides structural insights which may help overcome the
incorrect predictions. It can be seen in Fig. 2d that the interface and
orientations of the separate chains did not match that of the native
structure.

Conclusion
Sparse experimental data can bolster the effectiveness of existing
computational techniques. In this current study, we have proposed a
hybrid technique utilizing the combination of state-of-the-art com-
putational methods (AlphaFold and RosettaDock) with covalent
labeling mass spectrometry data to address cases when the compu-
tational tools fail to model accurate complexes. Covalent labeling
reagents modify residues based on features such as solvent accessi-
bility, and we have demonstrated that changes in modification of
residues in covalent labeling experiments can be used to determine
the likely proximity of these residues to the binding interface within
protein complexes (Fig. 1). As the modification change of a labeled
residue between the unbound/bound states of a complex increases, it
is more likely to be located at the binding interface. The relationship
between experimentalmodification change and inter-subunit distance
was used to predict modification changes of modeled residues. We
demonstrated that RosettaDock with the inclusion of our covalent
labeling score term can predict accurate models for all the complexes
in our benchmark set using AF unbound structures as input. Large
improvements in model quality were observed when our score term
was included. For example, the RMSD of the top-scoring model
improved from 11.2Å to 1.6Å for actin/gs1 and 10.1Å to 3.2Å for β-2-
microglobulin (Fig. 2a, b). This demonstrated that the information
contained in the experimental covalent labeling values can improve
scoring and model selection within RosettaDock. For protein systems
with greater flexibility which are more likely to experience induced
structural changes, this method may not be suitable due to our
method’s assumption that large structural changes do not occur upon
binding. This score term can be used through the newly developed
cl_complex_rescore application within Rosetta. A tutorial for using this
application can be found in Supplementary Note 1 within the Supple-
mentary Information. Future work will include increasing the number,
oligomeric state, and structural types of labeled proteins, along with
the types of covalent labeling reagents used, tomore comprehensively
test the ability of covalent labeling data to elucidate protein complex
structure. Additionally, the use of multiple orthogonal labeling
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techniques to study a single protein complex could be a promising
avenue to potentially maximize the structural information obtained
from covalent labeling experiments due to greater sequence and
residue type coverage. For example, the simultaneous use of bothHRF

and DEPC/NHSA labeling yields a significantly greater coverage of the
‘optimal’ residue subset (6/9of optimal set if combined, asdiscussed in
methods) and total sequence coverage. In this study, we exclusively
used differential covalent labeling data since it provides the most
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generated for each complex in the benchmark set using AlphaFold2models as
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the crystal structure. Actin/gs1 is shown in green, β−2-microglobulin in blue, and
insulin structures in pink. The RMSD of the top-scoring model is indicated next to
the marked point. a RosettaDock Isc versus RMSD (without CL data). b Covalent
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Multimer aligned to native crystal structure. RMSDs are listed for each complex.
Source data are provided as a Source Data file.
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accurate structural information. However, many labeling experiments
only yield non-differential datasets. In future work, we will focus on
developing computational tools that utilize thesedatasets for complex
prediction. In addition, we plan to explore combining other types of
complementary experimental MS data with covalent labeling data.

Methods
Protein complex benchmark set
The threeprotein complexes used in the benchmarkdatasetwere actin
bound to gelsolin segment 1 (actin/gs1, heterodimer, PDB ID: 1YAG)51,
β-2-microglobulin (homodimer, PDB ID: 2F8O)52, and insulin (hexamer
of heterodimers, PDB ID: 4INS)53. Crystal structures were available for
each for the purpose of benchmarking predicted models. Residue-
resolveddifferential covalent labeling datawere alsoobtained for each
system inboth the unbound andbound states51–53. The labeling reagent
used for the actin/gs1 and insulin complexes was hydroxyl radicals and
for β-2-microglobulin, the labeling reagents were diethyl pyr-
ocarbonate (DEPC) and sulfo-N-hydroxysuccinimide (NHSA). We pre-
viously showed that labeling a subset of ‘optimal’ residues (G, R, K, L, T,
F, S, V, and D) provides the highest amount of structural information
useful in structure prediction37. HRF reliably labels L and F (2/9 of
optimal set) and DEPC/NHSA labels R, K, T, and S (4/9 of optimal set).
Therewere 41 labeled residues for both the unbound and bound states
for actin/gs1, 20 for β-2-microglobulin, and 17 for insulin. For bench-
marking purposes, interface residues were defined as any residue with
a heavy atom within 10 Å of a heavy atom in another protein subunit.
Although each labeled residue had a measure for the frequency of
modification in both the unbound and bound states separately, we
wanted to directly quantify the change in modification between these
states, hypothesizing that residues with large changes would likely be
part of the protein-protein interface. For each complex in the data set,
the modification change between different states of the complex was
computed from the data, as shown in Eq. 1, using the degree of labeling
for each complex where Munbound and Mbound are the degree of mod-
ification (modification rates for actin/gs1 and insulin, extent of mod-
ification for β-2-microglobulin) of the unbound and bound states of
the complex, respectively.

Modif icationChange=
Munbound �Mbound

Munbound
*100% ð1Þ

Protein-protein docking
Docking simulations require input subunit structures which are used
to predict the structure of complexes. In this work, we obtained input
structures using two different methods. First, we used the bound
crystal structures to perform a preliminary redocking study. Next,
structures for each docking partner of actin/gs1 and β-2-microglobulin
were generated using AlphaFold2 (AF2) for a more realistic prediction
protocol20. For insulin, the base subunit is a heterodimer, so
AlphaFold-Multimer24 was used. The default settings for both Alpha-
Fold methods were used along with the addition of all genetic data-
bases (–db_preset=full_dbs flag). Since traditional docking consists of
two docking partners, the insulin complex was broken up into three
separate structures to model all unique interfaces, where AB_CD,
ABCD_EFGH, ABCDEFGH_IJKL define what chains make up each dock-
ing partner, separated by an underscore (Supplementary Fig. 3). The

docking protocol using RosettaDock was the same for each type of
input structure. For each system, after prepacking, we generated sets
of 10,000 docked models. The position and orientation of the second
docking partner was randomized using the -randomize2 flag in the
RosettaDock protocol to perturb each system.

Complexes generated using AlphaFold-multimer
As a comparison to the docked models produced by RosettaDock, we
also used AlphaFold-Multimer to predict full structures of each com-
plex. To generate a more fair, blind prediction using AlphaFold-Mul-
timer, restrictions were placed on which templates were used during
model construction, as recommended by AlphaFold developers20. We
modified the AlphaFold-Multimer input to only use PDB templates of
structures that were deposited prior to the date of the first published
structure of each complex to prevent any biased homology modeling
based on existing crystal structures of the complexes.

Scoring strategy
In this study, we proposed that differential covalent labeling data
(comparing the unbound and bound states of a complex) could be used
to indicate the proximity of a labeled residue to the binding interface of
protein complexes and subsequently be used to assess model quality
based on agreement with the experimental data. This was accomplished
by comparing themodification change (Eq. 1) of labeled residues and the
distance from the interface in the crystal structures. The interface dis-
tance (Fig. 1b) was defined as the shortest distance between a heavy
atom of the target residue and a heavy atom from the binding partner.
This comparisonyieldedanexpected, inverse linear correlationbetween
modification change and interface distance with the slope and intercept
of the trendline being −2.07 and 46.27, respectively. The linear para-
meters of this trendline were used to predict modification changes of
modeled residues for subsequent scoring based on comparisons to
experimentally determined modification changes.

Therefore, to integrate the information regarding the modifica-
tion change and interface distance into Rosetta to improve model
scoring, a covalent labeling score term (CLScore Term) was developed to
assess the models generated with RosettaDock based on their agree-
ment or disagreement with covalent labeling data. The covalent
labeling score (CLScore), as defined in Eq. 2, was the sum between the
CLScore Term (described in the following paragraph) and the Rosetta
Interface score (Isc). The CLScore Term produced the best results within
a weight range of 60–90, so a weight of 65 was chosen.

CLScore = Isc+65CLScore Term ð2Þ

CLScore Term =
X

i

Pi =
X

i

1� 1

1 + eA di�Bð Þ
� �

ð3Þ

Iscwas the energy of the binding interface of the docked complex
calculated using the Rosetta REF2015 score function31. CLScore Term,
defined in Eq. 3, was a sum of per-residue penalties (Pi) calculated
using a sigmoidal penalty function. The penalty function scores
labeled residues of a model based off deviations of predicted mod-
ification changes and modeled interface distances from the observed
trendline of the native dataset (with large deviations from experi-
mental results penalized).

For each labeled residue of a given model, interface distance is
calculated and used to predict modification change using the slope
and intercept defined above. The difference ðdiÞ between the experi-
mental and predicted modification change was input into the penalty
function. The A and B parameters defined the steepness andmidpoint
of the curve respectively, where A = 1.88 and B = 38.0. The summed
penalties for all models are then normalized by dividing each score by
the maximum score obtained for that particular system. Thus, the

Table 1 | Average metric analysis for the top-scoring models
with and without covalent labeling data. Source data are
provided as a Source Data file

Avg RMSD (Å) Avg TM-Score Avg DockQ Score

w/o CL data 7.89 0.70 0.21

w/ CL data 2.70 0.84 0.50
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resulting CLScore Term ranges from 0 to 1 where greater deviation from
the trendline (indicating worse agreement with the experimental data)
results in a larger penalty score from the score term.

Analysis metrics
The quality of models was assessed quantitively using alpha-carbon
root-mean-squared deviation (RMSD), template modeling score (TM-
score)63, andDockQ64 scorewith respect to the native crystal structure.
For eachmodel, the globalRMSDvalueswerecalculatedusing PyMol65.
TM-score was used to analyze the topological similarity to the native
structures. The TM-score ranges from0.0 to 1.0where a perfectmatch
corresponds to a TM-score of 1.0. TM-score classifies models as either
having random structural similarity (0.0 <TM-score <0.17) or high fold
similarity (0.5 <TM-score <1.00) to the native structure. DockQ is a
protein-protein docking quality measure which ranges between 0.0
and 1.0 with a perfect match being equal to 1.0. Similar to TM-score,
DockQ uses four categories for classifying models: incorrect (0
<DockQ score <0.23), acceptable quality (0.23 < =DockQ score <0.49),
medium quality (0.49 < = DockQ <0.80), and high quality (DockQ
score > 0.80).

Software usage for data analysis
Python v.3.7.3 was used for data analysis. Matplotlib v.3.1.2 was used
for the creation of all scatter plots. PyMol v.2.0.7 was used to generate
the figures of all proteins.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The crystal structure data used in this study were obtained from the
Protein Data Bank (https://www.rcsb.org) with accession codes1YAG,
2F8O, 4INS. The accession codes of the unbound structures are 3HBT,
2D4F, and 3I40. A subset of 200 docked models for each structure
generated using AlphaFold and RosettaDock (including the 100 top-
scoring models before and after using CL data) as well as the labeling
data used in this work are available in the Supplementary Information
as Supplementary Data 1. Access to the complete set of models (not
available due to size limitations) can be obtained by emailing the
corresponding author (lindert.1@osu.edu). Source data are provided
with this paper.

Code availability
The cl_complex_rescore application is available for free to academic
users through the Rosetta software suite at https://www.
rosettacommons.org/software/. The current academic version of
Rosetta (3.13) can be freely downloaded from https://els2.comotion.
uw.edu/product/rosetta for academic users. The source code for the
cl_complex_rescore application (which is part of the Rosetta codebase)
is only made available to academic/non-profit/government entities
and commercial entities with a Company Contributor License. While
availability to the Rosetta codebase is free for academics/non-profit/
government entities, note that there is a Rosetta license fee for
industry users to gain access to the source code and the applications in
Rosetta (including the cl_complex_rescore application). Currently the
University of Washington exclusively manages all Rosetta licensing.
More information on Rosetta licensing can be found at https://www.
rosettacommons.org/about/faq. Instructions to run the cl_com-
plex_rescore application in Rosetta can be found in Supplementary
Note 1 within the Supplementary Information.
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