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Abstract

Ion mobility coupled to mass spectrometry informs on the shape and size of protein structures in the form of a collision cross
section (CCSIM). Although there are several computational methods for predicting CCSIM based on protein structures, including our
previously developed projection approximation using rough circular shapes (PARCS), the process usually requires prior experience with
the command-line interface. To overcome this challenge, here we present a web application on the Rosetta Online Server that Includes
Everyone (ROSIE) webserver to predict CCSIM from protein structure using projection approximation with PARCS. In this web interface,
the user is only required to provide one or more PDB files as input. Results from our case studies suggest that CCSIM predictions (with
ROSIE-PARCS) are highly accurate with an average error of 6.12%. Furthermore, the absolute difference between CCSIM and CCSPARCS can
help in distinguishing accurate from inaccurate AlphaFold2 protein structure predictions. ROSIE-PARCS is designed with a user-friendly
interface, is available publicly and is free to use. The ROSIE-PARCS web interface is supported by all major web browsers and can be
accessed via this link (https://rosie.graylab.jhu.edu).
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INTRODUCTION
Proteins are key functional units that lay the groundwork for
many biological processes such as cell signaling, immune func-
tion and metabolism. Therefore, knowledge of protein structure
is crucial for understanding their roles in biological functions and
developing new therapeutics. Protein structures can be experi-
mentally determined to atomic detail using techniques such as
X-ray crystallography, cryo-electron microscopy (cryo-EM) and
nuclear magnetic resonance (NMR) spectroscopy. However, these
methods are limited by factors such as size, resolution, purifi-
cation conditions, sample quantity and time to name a few [1].
Due to these limitations, routine analyses are not always able to
determine structure to atomistic resolution.

Mass spectrometry (MS) is a widely used analytical technique
in structural biology because it can rapidly provide structural
information of proteins. Some benefits of MS are that it can be
used on a variety of samples, requires minimal sample prepa-
ration and can be easily incorporated into various stages of a
research pipeline. Although native MS is a gas phase technique,
several studies have shown that key aspects of protein struc-
ture, including elements of secondary structure, compactness
and protein–protein interactions, can be retained when proteins
transition from a solution to gas phase [2–5]. There are many tech-
niques that can be used in conjunction with MS to study protein
structures [2, 6–14]. Although such experiments can provide rich
information about the structure of proteins, the data obtained
are often sparse and not enough to resolve the structure to
atomistic detail. Thus, computational methods along with sparse
experimental data can be used in an integrative approach to
further enhance the understanding of protein structures [15–22].
Particularly, several studies [6, 13, 23–47] show that sparse data

from various MS methods have played major roles in integrative
structural biology frameworks.

Ion mobility (IM) provides structural information in the form
of protein shape and size. IM data supplemented with computa-
tional methods can improve protein structure prediction [4, 34–
36, 46, 48]. Briefly, IM is a separation technique used to measure
the movement of ions through a gas under the influence of an
electric field [49, 50]. Particularly, in structural biology, it is used in
the analysis of proteins and other biomolecules [51], where it can
provide information about the shape and size of the analyte. IM
provides this shape and size information in the form of a collision
cross section (CCS) of a protein. The CCSIM value quantifies the
amount of momentum that is exchanged between the ion and
the buffer gas during collisions, and can be thought of as the
rotationally averaged cross-sectional area [52].

There are several methods for predicting CCSIM from structure
[46, 52–59], varying widely with respect to accuracy and speed.
Among these methods, the projection approximation (PA) is the
simplest and fastest method to predict CCSIM [52]. In the PA
method, atoms in the protein are treated as hard spheres with a
predetermined radius. A rotation matrix is employed to randomly
sample various orientations, and subsequently a Monte Carlo
integration method is used to determine the projection area of
the protein structure at each orientation. The projection area is
calculated from the ratio of probe particles that are directly in
contact with the projected atoms to the total number of probe
particles. Usually, a large number of probe particles are required
to obtain an accurate projection area. CCSPA is then obtained from
averaging the projection areas across a large number of random
orientations [59]. Because the PA method relies on a basic hard-
sphere surface, it is impossible to incorporate temperature and
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Figure 1. Illustration of the PARCS algorithm in Rosetta. In PARCS, each
protein atom is estimated as a rough circle using a 9-point approximation
based on the respective atomic and buffer gas radii. The PARCS projection
representation is obtained after iterating through every single atom in the
structure.

charge state effects into the CCS calculation [60]. Additionally, the
PA method cannot accurately account for the concavity in protein
structures [60]. However, due to its speed and accuracy, CCSPA is a
very popular method with integrative modeling [4, 29, 34–36, 38,
45, 46, 61–63], which often requires fast calculations for on-the-
fly structure assessment. Recently, we developed the projection
approximation using rough circular shapes [46] (PARCS), a novel
approach to PA, to accurately predict CCSIM in the Rosetta molec-
ular modeling suite [18, 64, 65]. PARCS calculates the projection
area by first casting the protein structure onto a 2D grid. PARCS
then estimates the area of the 2D projection by filling the grid
using a 9-point circle approximation for each atom (Figure 1).
Finally, the CCSIM prediction from PARCS (CCSPARCS) is obtained
by performing this calculation several times at different random
rotations and averaging the projection area. Although our PARCS
method (developed within the Rosetta framework) is highly accu-
rate and successful in predicting CCSIM, up to this point, usage of
PARCS has required users to be familiar with the command-line
interface in a Unix environment. Often it may also have required
access to high-performance computing and being proficient in
programming languages for data analysis. Thus, usage of PARCS
may have been intimidating and difficult for non-technical users.
On the contrary, a web server interface provides a more user-
friendly and accessible way to interact with such applications
for a wide range of users. The availability of web interfaces for
predicting CCSIM is currently limited. Notably, it is possible to
predict CCSIM via the popular Projection Super Approximation
method through their intuitive webserver [57]. However, at the
time of this study, we could not find any active web interface to
predict CCSIM for protein structures using the PA method.

Therefore to bridge this gap, in this study, we introduced a web
server interface for our PARCS method within the Rosetta Online
Server that Includes Everyone [66] (ROSIE). Briefly, ROSIE is an
online platform that allows researchers to create, host and/or use
web-based tools and interfaces for protein structure prediction
and analysis using the Rosetta [18] software package. Here, we
first showcased the simplicity of the PARCS web interface within
ROSIE. We then verified the results of ROSIE-PARCS against the
command-line interface of PARCS (CLI-PARCS). Upon successful
verification, we then highlighted the effectiveness of the PARCS
web application with two different case studies. In the first case
study, we showed the agreement of the CCSIM and the CCSPARCS for
known protein structures from the Protein Data Bank [67] (PDB)
with various structural complexity. In the second case study, we
showed that the absolute difference between CCSIM and CCSPARCS

helped in distinguishing accurate from inaccurate AlphaFold2
protein structure predictions. To do this, we first predicted protein
structures with AlphaFold2 [68] (AF2) and calculated the absolute
difference (�CCS) between the CCSIM and the CCSPARCS for the
AF2 predicted structures. We then compared the �CCS to the root
mean squared deviation (RMSD) of the AF2 predicted structure
from its native protein structure. Our verification tests showed
that, as expected, ROSIE-PARCS performed exactly like CLI-PARCS.
Additionally, our case studies demonstrated that ROSIE-PARCS
can accurately predict IM data and can differentiate between
accurate and inaccurate models of protein structures. ROSIE-
PARCS, freely available to everybody, can be accessed via the
following link (https://rosie.graylab.jhu.edu).

METHODS
IM coupled to MS can provide shape and size information of
proteins in their native state. The shape and size information can
be derived from IM in the form of collision cross sections [14].
PA is a method that can predict CCS values for a given protein
structure. Typically, in the PA method, the projection area of a
protein structure is calculated by first placing the structure in a
2D bounding area (most commonly a rectangle or a circle). Then
the 2D area is probed with random particles (meant to mimic the
buffer gas particles in the IM experiments). These probe particles
that are directly in contact with the atoms (within the bounding
area) are considered as ‘hits’. The ratio of hits to the total number
of probe particles is then multiplied by the area of the bounding
area to obtain the projection area [60]. To ensure accuracy of the
projection area, a large number of probe particles are usually
required [60]. In our previous work [46], we developed a method
to approximate CCSIM using the PA using Rough Circular Shapes
method in the Rosetta molecular modeling suite. In contrast to
previous PA implementations (outlined above), in our PARCS algo-
rithm, the projection area is instead calculated by approximating
the projection of each atom as a rough circle with nine points.
No probe particles are necessary. More specifically, the PARCS
algorithm first takes 3D atomic protein coordinates as input,
randomly rotates the structure and projects it onto a 2D grid. For
each atom on the grid, the center cell and eight surrounding cells
(based on the radii of the projected atom and a buffer gas) are
filled. The process is repeated for all atoms in the protein and
the projection area is derived by summing the areas of the filled
grid cells. From the x-y, y-z and x-z projections at each random
rotation, three projection areas are obtained. The CCSPARCS of
the structure is then acquired from the average projection area
across the total number of random rotations (NRRs). A simplified
illustration of PARCS is shown in Figure 1. Here, we developed
a PARCS web interface on ROSIE, to make the application more
easily accessible and convenient for users to calculate CCSPARCS.
In the subsequent sections, we first describe the dataset of protein
structures used to test the ROSIE-PARCS web interface. Then, we
describe the design and usage of the ROSIE-PARCS web interface.

CCSIM dataset
To test the ROSIE-PARCS web interface, we selected a set of 13
proteins with experimentally determined protein structures avail-
able in the PDB as well as experimentally determined CCSIM (for
the lowest charge states) [14, 69, 70]. This dataset will be referred
to as the CCSIM dataset. The sequence length for these proteins
varied from 123 to 4096. Additionally, the CCSIM dataset consisted
of five monomers, two dimers (1 homodimer and 1 heterodimer),
four tetramers (1 dimer of heterodimers and 3 homotetramers),
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one homopentamer and one heterohexamer. The proteins in the
CCSIM dataset were mostly globular with an average percent
disorder of 6.85% as predicted by the RosettaResidueDisorder [71–
73] application. The CCSIM dataset is outlined in Supplemen-
tary Table 1.

Structure prediction with AlphaFold2 and
evaluation metrics
We selected a subset of the proteins in the CCSIM dataset to assess
protein structures predicted with AF2 using IM data. The primary
sequence obtained from the PDB structures of this dataset (as
shown in Supplementary Table 2) was used to predict the struc-
tures of proteins with AF2 version 2.2.2. All AF2 predictions were
done by setting the template date for homologs to 1900-01-01.
This removed the influence of homologous templates on the AF2
network for structure predictions. Protein complexes within the
CCSIM dataset were predicted with the multimer options in AF2
version 2.2.2. RMSD and RMSD100 [74] were used as the analysis
metrics for evaluating the structures predicted with AF2, similar
to the analysis conducted in one of our previous studies [44].
We first aligned the AF2 prediction with the known structure
(structure obtained from the PDB) and then calculated the RMSD
and the RMSD100. All alignment and RMSD calculations were done
using PyMOL version 2.5.2 [75]. Additionally, the AF2 confidence
metric [average predicted local distance difference test (pLDDT)]
and CCSPARCS were calculated for all AF2 predictions with PARCS
in Rosetta.

Using the ROSIE-PARCS web interface
In general, to use any Rosetta protocol on ROSIE, users first
have to create a GitHub account, since ROSIE uses the GitHub
authorization service for secure user login. The ROSIE-PARCS web
application was designed with an emphasis on both simplicity and
ease of use. In order to use the ROSIE-PARCS web application to
calculate CCSPARCS, users must supply a protein structure in PDB
file format.

Uploading PDB files on ROSIE-PARCS
Screenshots of the submission page of ROSIE-PARCS are shown
in Figure 2. In order to upload PDB file(s) on the input page of
ROSIE-PARCS, users may drag their PDB file(s) directly into the
‘Input PDB file(s)’ box on the webpage as shown by the black dashed
box in Figure 2. Users alternatively have the option to upload their
PDB file(s) by clicking the ‘Browse’ button next to the ‘Input PDB
file(s)’ box, which will open a drop-down menu (indicated by the
black dashed box around the ‘Browse’ button in Figure 2). From
there, users can navigate to the desired PDB file(s). Additionally,
as illustrated in Figure 2, users have a third alternative option to
directly enter a PDB ID into the ‘PDB Code’ box (indicated by the
green dashed box), and then click the ‘download’ button. How-
ever, this button should be used with caution when downloading
protein complexes. The Supplementary Methods describe how to
properly download and save protein complexes that contain all
protein subunits. Notably, users are allowed to submit multiple
PDB files simultaneously (as exemplified by the orange dashed
box in Figure 2) on the ROSIE-PARCS webpage (with an upper-limit
of 100 PDB files per job submission). This multiple-PDB option
is accessible to any of the methods mentioned above. Once the
upload is successful, the webpage will display information about
the number of residues, atoms and the chain identifiers in the PDB
files that were uploaded.

Option to calculate CCSPARCS by varying the NRRs
using ROSIE-PARCS
The NRRs determine the number of projections that are being
used to average the projection areas. For example, by default,
PARCS uses 300 random rotations to calculate the CCSPARCS. This
means that 900 projections are being used to average the projec-
tion areas to calculate the CCSPARCS. This default setting was based
on the dataset in our previous study [46]. However, for smaller
proteins, users may be able to obtain comparable results with
a lower NRR. Conversely, for large structures, users may find it
necessary to increase the NRR to calculate reliable CCS values.
Users can set this variable by changing the input in ‘Input number
of random rotations. Minimum: 100, Maximum: 1000, Default:
300.’ as indicated by the red dashed box in Figure 2. The NRR has
an upper limit of 1000 (3000 projections). This upper limit for NRR
is adequate based on our previous study [46].

Option to calculate CCSPARCS in different buffer
gas conditions using ROSIE-PARCS
The CCSIM varies depending on the buffer gas conditions in
which the IM experiment is carried out [76]. PARCS includes the
option to predict CCSIM for different buffer gas conditions. This is
achieved by controlling the probe radius (PR) option within PARCS.
Currently PARCS has been demonstrated to successfully predict
CCSIM in helium and nitrogen buffer gas conditions. Therefore,
we have included this option as ‘Input probe radius in Angstrom. He
buffer gas: 1.0 (default), N2 buffer gas: 1.81.’ on the input page as
indicated by the blue dashed box shown in Figure 2. By default,
PARCS calculates the CCS in helium gas conditions.

Verification of ROSIE-PARCS web application
results against command-line interface PARCS
We first set out to verify that the results of ROSIE-PARCS under
various parameter settings agreed with the results obtained from
the command line version of PARCS (CLI-PARCS). We varied the
PR and the NRRs and calculated CCSPARCS for the proteins in the
CCSIM dataset. As part of this, we carried out three verification
tests. First, the PR for both ROSIE-PARCS and CLI-PARCS was varied
from 1.0 to 2.0 Å in increments of 0.2 Å, while keeping the NRR
parameter fixed at 300. Next, we varied the NRR from 100 to 600
in increments of 100, while keeping the PR fixed to its default
setting (PR = 1.0 Å). Finally, we randomized both input parameters,
the PR (within a range of 1.0 –2.0 Å) and the NRR (within a range
of 100–600). Using this randomization, we obtained six sets of
input parameters (PR, NRR). These were (1.45 Å, 432), (1.22 Å, 218),
(1.37 Å, 470), (1.29 Å, 322), (1.24 Å, 160) and (1.78 Å, 231). Using
these input parameters, we calculated the respective CCSPARCS for
all the proteins in the CCSIM dataset.

Software usage for data analysis
Data analysis was conducted using Python version 3.7.3. Mat-
plotlib version 3.1.2 was utilized to create scatter plots, line plots
and violin distributions. The spherical representation of the pro-
tein in Figure 1 was generated with the online web application
Illustrate [77].

Results and discussions
In this study, we developed a web application on the ROSIE web-
server to predict the collision cross section obtained from IM-MS
experiments. This web application (ROSIE-PARCS) incorporates
our previously developed CCSIM prediction algorithm, PARCS [46],
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Figure 2. Input page of the ROSIE-PARCS webpage. PDB file(s) can be dragged into the drop box. Alternatively, users can use the ‘Browse’ button (shown
within the back dashed box) to navigate their filesystem and/or directly obtain a structure from the PDB by providing the PDB code and pressing the
download button (as indicated by the green dashed box). The number of residues, atoms and the chain identifiers are displayed for successfully uploaded
PDB files (orange dashed box). The two input parameters, ‘number of random rotations’ and ‘probe radius in Angstroms’ are shown in the red and blue dashed
boxes.

and has been designed to be more user-friendly than its CLI
counterpart. ROSIE-PARCS offers several capabilities such as: it
can handle multiple PDB files, has options to control application
parameters through its user-friendly interface and presents the
results in a clear and intuitive manner. Furthermore, ROSIE-PARCS
enables users to easily copy or download the CCSPARCS results for
further analysis. In the following subsections, we first discuss the
results display page of ROSIE-PARCS. Next, we verify ROSIE-PARCS
against the results obtained from the CLI-PARCS. Then we discuss
two case studies of calculating CCSPARCS in different scenarios. In
the first case study, we show the agreement of the CCSIM and the
CCSPARCS for known protein structures. In the second case study,
we calculate the CCSPARCS of several AF2-predicted structures and
analyze their agreement with CCSIM (�CCS), as well as the RMSD

of the prediction from the known PDB structure (i.e. the �CCS
versus RMSD).

Efficient results display and management for
CCSPARCS calculations with ROSIE-PARCS
During the development stage, we focused on visualizing the
results from ROSIE-PARCS in a clear and intuitive manner. We
developed a clear and user-friendly interface for the ROSIE-PARCS
results display page, which enables users to understand and make
informed decisions based on the calculation, thus improving their
overall experience and efficiency. To achieve this, a successful
CCSPARCS calculation is always indicated by the presence of the
green ‘finished’ State indicator as shown in Figure 3. Following
this, the CCSPARCS values obtained from ROSIE-PARCS are then
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Figure 3. Results page of the ROSIE-PARCS application. Successful completion of the CCSPARCS calculation is indicated by the green ‘finished’ State.
CCSPARCS values are displayed in a tabular format. The table headers are labeled as ‘File Name’ and ‘CCS Value (Å∧2)’. The red and blue box are
highlighting the ‘Download Results’ and copy to clipboard buttons, respectively.

displayed in a tabular format. The table displays ‘File Name’
and ‘CCS Value (Å∧2)’ as its header values (Figure 3). The ‘File
Name’ corresponds to name of the PDB files uploaded by the user.
The ‘CCS Value (Å∧2)’ corresponds to the CCS values calculated
by PARCS for the respective ‘File Name’. In Figure 3, we show
the CCSPARCS for all PDB files in the CCSIM dataset. Additionally,
the results page also contains two other important features. The
first is the download button, ‘Download Results’ (shown with
red dashed box in Figure 3), that allows the user to directly
download the displayed tabular data (tab-separated values file
format) onto their computer. The second feature is the copy to
clipboard button (shown with blue dashed box in Figure 3). This
feature allows users to directly copy the table and paste it into
other applications (such as text editors, excel sheets, etc.) for
further analysis. Therefore, ROSIE-PARCS allows efficient anal-
ysis and access to the CCSPARCS values in a clear and intuitive
format.

CCSPARCS calculations of ROSIE-PARCS are
identical to CLI-PARCS
To test the implementation of the ROSIE-PARCS web application,
we first verified that the CCSPARCS calculations from ROSIE-PARCS
matched those of CLI-PARCS, from our previous study [46]. This
was verified for a range of different probe radii and NRRs in the
PARCS algorithm. We used the CCSIM dataset for this test. In the
first verification test, we examined the effect of varying PR (while
keeping NRR fixed at 300) on both ROSIE-PARCS and CLI-PARCS.
We obtained the CCSPARCS from both ROSIE-PARCS and CLI-PARCS
by increasing the PR from 1.0 to 2.0 Å by 0.2 Å increments for
all the proteins in the CCSIM dataset. As expected, we observed

that increasing the PR increased the CCSPARCS for both ROSIE-
PARCS (blue) and CLI-PARCS (orange) as shown in Figure 4A. The
average sequence-length-normalized percent difference between
ROSIE-PARCS and CLI-PARCS in calculated CCSPARCS was 0.033,
0.023, 0.022, 0.016, 0.071 and 0.068% for the PR 1.0 , 1.2 , 1.4 , 1.6 ,
1.8 and 2.0 Å, respectively. The slight variations in CCSPARCS were
due to stochastic features in PARCS, namely the random rotation
matrices used to calculate CCSPARCS. These results (as outlined
in Supplementary Table 3) were expected and indicated that the
predictions from ROSIE-PARCS under various PR settings matched
those of CLI-PARCS. In the second verification test, we examined
the effect of varying NRR (while keeping the PR constant at 1.0 Å)
from 100 to 600, by increments of 100. We again tested this on
the CCSIM dataset. In this verification test, we again observed the
expected trend, where CCSPARCS neither increased nor decreased
across different NRR. This trend was observed for both ROSIE-
PARCS and CLI-PARCS as shown in Figure 4B. On average, the
normalized CCSPARCS from ROSIE-PARCS and CLI-PARCS differed
by only 0.02%. These results are outlined in detail in Supplemen-
tary Table 4. For the final verification test, we randomized both
the input parameters (PR and NRR). PR was randomized within
the range of 1.0 –2.0 Å, and NRR was randomized within the range
of 100–600. From this strategy, we obtained six random sets of PR
and NRR as outlined in Supplementary Table 5. Using these ran-
dom sets of input parameters, we again calculated CCSPARCS with
ROSIE-PARCS and CLI-PARCS for all proteins in the CCSIM dataset.
As shown in Supplementary Figure 1, the normalized CCSPARCS

calculated using ROSIE-PARCS and CLI-PARCS remained virtually
identical. The average percent difference (normalized CCSPARCS

from ROSIE-PARCS compared to that of CLI-PARCS) across the six
random sets of input parameters was 0.02%. Our results from the
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Figure 4. ROSIE-PARCS (blue) and CLI-PARCS (orange) produce virtually
identical CCSPARCS predictions at various parameter settings. (A) CCSPARCS
(normalized by sequence length) for both ROSIE-PARCS and CLI-PARCS at
probe radii between 1.0 and 2.0 Å and at a fixed NRRs of 300. (B) CCSPARCS
(normalized by sequence length) for both ROSIE-PARCS and CLI-PARCS
using 100–600 random rotations (at a fixed probe radius of 1.0 Å).

Figure 5. Comparison of CCSPARCS from ROSIE-PARCS to CCSIM. (A) The
CCS values without normalization are shown. (B) CCS values normalized
by the sequence length for all proteins in the CCSIM dataset are shown.

three different verification tests indicated that calculations from
ROSIE-PARCS are just as consistent and reliable when compared
to those of CLI-PARCS.

Case study 1: Experimental CCSIM closely agrees
with CCSPARCS calculated by ROSIE-PARCS for
known structures
This case study provides an example of basic CCSPARCS calculation
with ROSIE-PARCS. In this study, we calculated the CCSPARCS (with
ROSIE-PARCS) for all proteins in the CCSIM dataset (13 experi-
mentally determined protein structures deposited in the PDB).
We then compared the CCSPARCS with the CCSIM. As shown in
Figure 5A, a strong correlation (R2 = 0.994) and an average percent
error of 6.12% were observed between CCSPARCS and CCSIM for
the proteins in the CCSIM dataset. The CCSIM dataset consisted of
proteins of varying sequence length. Therefore, to better compare
CCSPARCS with CCSIM, we normalized both CCSPARCS and CCSIM by
their respective sequence length as shown in Figure 5B. We still
observed a strong correlation (R2 = 0.975).

Case study 2: Inaccurate models predicted with
AF2 generally correspond to high predicted �CCS
values
The recent advances in deep learning and the development of
AF2 have led to highly successful prediction of protein tertiary
and quaternary structures from amino acid sequence. However,
there are still cases where AF2 predicts inaccurate models yet
assigns those high confidence scores. To test the ability of ROSIE-
PARCS to assess AF2 structures, we predicted the structures of

Figure 6. Analysis of average pLDDT, �CCS and RMSD for all predicted
structures from AF2. Comparison of (A) the AF2 confidence metric (aver-
age pLDDT) and (B) the absolute difference between CCSIM and CCSPARCS
(�CCS) against the RMSD of the predicted structures.

six proteins (a total of 30 predicted structures) shown in Sup-
plementary Table 2. We than calculated the RMSD of the AF2
models to their known structure and obtained the average AF2
pLDDT (AF2 confidence metric) for all AF2 predictions as shown
in Figure 6A. In AF2, a high pLDDT signifies higher confidence.
Therefore, we explored whether there was a correlation between
the average pLDDT and the RMSD. However, we show in Figure 6A
that the observed correlation was not very strong, with several
notable outliers. We hypothesize that this is because pLDDT is a
local measure. Additionally, we used PARCS to obtain the CCSPARCS.
We then calculated the absolute difference of the CCSPARCS of
the structures predicted with AF2 to the CCSIM (�CCS). We also
calculated the RMSD of the predicted protein structures to their
native structures. A comparison of �CCS versus RMSD is shown
in Figure 6B. In the context of protein structure prediction, a
high �CCS indicates high disagreement with experimental data
and vice versa [46]. And indeed, we observed a much stronger
correlation when comparing the �CCS to the RMSD, as shown
in Figure 6B. This suggests that, at least for our subset of six
proteins, �CCS was more effective in assessing predictions with
different RMSD values when compared to pLDDT (Figure 6). In
this dataset, �CCS using PARCS was a better measure of confi-
dence than average pLDDT. Furthermore, we also explored the
correlation between normalized �CCS and RMSD by accounting
for protein size. To do this, we normalized the �CCS by the amino
acid sequence length (see Supplementary Methods for additional
details). Additionally, we normalized the corresponding RMSD val-
ues to RMSD100 [74] values such that every protein was projected
to have the same size. As expected, �CCS was sensitive to the
protein size information. Although small deviations from the spe-
cific trend seen in Figure 6B were observed upon normalization,
the overall correlation pattern remained consistent, as shown
in Supplementary Figure 2. Thus, in cases where experimental
IM CCS data are available, �CCS (as calculated by ROSIE-PARCS)
might serve as a metric for evaluating the accuracy of predicted
protein structures.

Conclusion
IM is an experimental technique to investigate the structures of
proteins. Specifically, IM coupled to native MS techniques can pro-
vide structural information about the shape and size of proteins.
Computational modeling to predict IM CCS data further enhances
the understanding of protein structures in their native state.
Additionally, integrative modeling with IM data has garnered sig-
nificant attention and interest from the broader structural biology
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community. We have developed the ROSIE-PARCS web interface
which allows prediction of CCS from protein structure. It can be
accessed via this link (https://rosie.graylab.jhu.edu). The ROSIE-
PARCS interface is intuitive, easy and free to use. Additionally, our
case studies indicated that ROSIE-PARCS accurately predicts CCS
(within the limitations of the PA) and can aid in distinguishing
accurate and inaccurate models of protein structures predicted
with AlphaFold2. We believe ROSIE-PARCS can help researchers
gain a more comprehensive understanding of protein structures
and has the potential to be applied in a variety of IM applications.
Furthermore, IM-MS has applicability not only to proteins but can
also be used, among other things, to measure the CCS values
of polymers, nucleic acids and protein drug complexes. Given
this versatility, in future work, we aim to expand our web server
application to be able to calculate CCS for a broader range of
systems. To further cater to the diverse needs of our users, in
future versions of our web server application, we aim to expand
ROSIE-PARCS functionality by incorporating support for a wider
range of molecular file formats, in addition to the PDB file format.

Key Points

• IM-MS provides shape and size information of protein
structure through collision cross section (CCSIM), but
existing computational methods for predicting CCSIM

are not user-friendly.
• ROSIE-PARCS is a new web application on the ROSIE

webserver and allows users to predict CCSIM in a user-
friendly manner.

• Case study 1 shows that CCSIM predictions using ROSIE-
PARCS are highly accurate with an average error of
only 6.1%, while case study 2 shows that CCSIM pre-
dictions can help distinguish accurate from inaccurate
AlphaFold2 protein structure predictions.

• ROSIE-PARCS is publicly and freely available at https://
rosie.graylab.jhu.edu
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