Advanced Quantum Mechanics \& Spectroscopy
 (CHEM 7520)

Alexander Yu. Sokolov

Week 1: Review of foundations

I. FOUNDATIONS OF QUANTUM MECHANICS

A. Linear vector algebra

First, we briefly recap main concepts of linear algebra that will be very important later in the course.

A vector in 3 dimensions can be represented by specifying its components $a_{i}(i=$ $1,2,3)$ with respect to a set of three mutually perpendicular unit vectors:

$$
\begin{equation*}
\vec{a}=a_{1} \vec{e}_{1}+a_{2} \vec{e}_{2}+a_{3} \vec{e}_{3}=\sum_{i=1}^{3} a_{i} \vec{e}_{i} \tag{1}
\end{equation*}
$$

The unit vectors \vec{e}_{i} form a basis and are called basis vectors. The basis is complete, i.e. any three-dimensional vector can be represented as a linear combination of 3 basis vectors. Basis is not unique, we could have chosen three different mutually perpendicular vectors:

$$
\begin{equation*}
\vec{a}=a_{1}^{\prime} \vec{\varepsilon}_{1}+a_{2}^{\prime} \vec{\varepsilon}_{2}+a_{3}^{\prime} \vec{\varepsilon}_{3}=\sum_{i=1}^{3} a_{i}^{\prime} \vec{\varepsilon}_{i} \tag{2}
\end{equation*}
$$

A vector can be represented by a column matrix. For example, in the basis \vec{e}_{i}, the representation is:

$$
\mathbf{a}=\left(\begin{array}{l}
a_{1} \tag{3}\\
a_{2} \\
a_{3}
\end{array}\right)
$$

The same vector can be represented in the basis $\vec{\varepsilon}_{i}$ as:

$$
\mathbf{a}^{\prime}=\left(\begin{array}{l}
a_{1}^{\prime} \tag{4}\\
a_{2}^{\prime} \\
a_{3}^{\prime}
\end{array}\right)
$$

For now we assume that we always work in the same basis.

The scalar or dot product of two vectors in the same basis is defined as:

$$
\begin{equation*}
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=\sum_{i=1}^{3} a_{i} b_{i} \tag{5}
\end{equation*}
$$

The dot product of the vector on itself is just the square of the length of the vector $(|\vec{a}|)$:

$$
\begin{equation*}
\vec{a} \cdot \vec{a}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \equiv|\vec{a}|^{2} \tag{6}
\end{equation*}
$$

We can express the product as

$$
\begin{equation*}
\vec{a} \cdot \vec{b}=\sum_{i=1}^{3} \sum_{j=1}^{3} a_{i} b_{j} \vec{e}_{i} \cdot \vec{e}_{j} \tag{7}
\end{equation*}
$$

Thus, we require:

$$
\vec{e}_{i} \cdot \vec{e}_{j}=\delta_{i j}= \begin{cases}1 & \text { for } i=j \tag{8}\\ 0 & \text { for } i \neq j\end{cases}
$$

where $\delta_{i j}$ is a Kronecker delta. The above equation states that the basis vectors \vec{e}_{i} are mutually perpendicular (orthogonal) and have unit length; in other words, orthonormal. Useful Properties:

$$
\begin{gather*}
\vec{e}_{j} \cdot \vec{a}=\sum_{i=1}^{3} a_{i} \vec{e}_{j} \cdot \vec{e}_{i}=a_{j} \tag{9}\\
\vec{a}=\sum_{i=1}^{3} \vec{e}_{i} \vec{e}_{i} \cdot \vec{a}=\sum_{i=1}^{3} \vec{e}_{i} a_{i}=\stackrel{\leftrightarrow}{1} \cdot \vec{a}, \tag{10}
\end{gather*}
$$

where $\stackrel{\leftrightarrow}{1}$ is the unit dyadic:

$$
\begin{equation*}
\stackrel{\leftrightarrow}{1}=\sum_{i=1}^{3} \vec{e}_{i} \vec{e}_{i} \tag{11}
\end{equation*}
$$

Dyadic is a quantity, which when dotted into a vector gives another vector. The unit dyadic gives the same vector back.

All of the above equations can be generalized to more than 3 dimensions. In the general case of N dimensions, we get

$$
\begin{equation*}
\vec{a}=a_{1} \vec{e}_{1}+a_{2} \vec{e}_{2}+\ldots+a_{N} \vec{e}_{N}=\sum_{i=1}^{N} a_{i} \vec{e}_{i} \tag{12}
\end{equation*}
$$

and the dot product is expressed as:

$$
\begin{equation*}
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{N} b_{N}=\sum_{i=1}^{N} a_{i} b_{i} \tag{13}
\end{equation*}
$$

From now on, we will work with general vector spaces of N dimensions and will simplify our summation notation.

An operator is an object that when acting on a vector converts it into another vector:

$$
\begin{equation*}
\hat{O} \vec{a}=\vec{c} \tag{14}
\end{equation*}
$$

There are different types of operators, we will mostly encounter linear operators, which have the property:

$$
\begin{equation*}
\hat{O}(x \vec{a}+y \vec{b})=x \hat{O} \vec{a}+y \hat{O} \vec{b} \tag{15}
\end{equation*}
$$

A linear operator is completely determined in terms of its action on a basis vector \vec{e}_{i}. Since $\hat{O} \vec{e}_{i}$ is a vector and any vector can be represented as a linear combination of basis vectors, we get:

$$
\begin{equation*}
\hat{O} \vec{e}_{i}=\sum_{j} \vec{e}_{j} O_{j i} \tag{16}
\end{equation*}
$$

The number $O_{j i}$ is the component of the vector $\hat{O} \vec{e}_{i}$ along \vec{e}_{j}. These numbers can be arranged in a two-dimensional array called matrix:

$$
\mathbf{O}=\left(\begin{array}{cccc}
O_{11} & O_{12} & \ldots & O_{1 N} \tag{17}\\
O_{21} & O_{22} & \ldots & O_{2 N} \\
\ldots & \ldots & \ldots & \ldots \\
O_{N 1} & O_{N 2} & \ldots & O_{N N}
\end{array}\right)
$$

This is also called as the matrix representation of \hat{O} in the basis \vec{e}_{i}.

The matrix \mathbf{O} completely specifies the action of the operator \hat{O} in a given basis. For example, the action of \hat{O} on a vector \vec{a} can be written as:

$$
\begin{align*}
\hat{O} \vec{a}=\sum_{i} a_{i} \hat{O} \vec{e}_{i} & =\sum_{i j} a_{i} O_{j i} \vec{e}_{j}=\sum_{j} c_{j} \vec{e}_{j} \tag{18}\\
\sum_{i} O_{j i} a_{i} & =c_{j} \tag{19}
\end{align*}
$$

$$
\begin{equation*}
\mathbf{O a}=\mathbf{c} \tag{20}
\end{equation*}
$$

Some important properties and definitions:

1. If $\hat{C}=\hat{A} \hat{B}$, their matrix representations are related as: $\mathbf{C}=\mathbf{A B}$.
2. In general, $\hat{A} \hat{B} \neq \hat{B} \hat{A}$ and $\mathbf{A B} \neq \mathbf{B A}$, the commutator is $[\mathbf{A}, \mathbf{B}]=\mathbf{A B}-\mathbf{B A}$
3. The adjoint operator \hat{A}^{\dagger} of the operator \hat{A} is defined such that its matrix representation $\left(\mathbf{A}^{\dagger}\right)_{i j}=\left(\mathbf{A}^{*}\right)_{j i}$, or equivalently $\mathbf{A}^{\dagger}=\left(\mathbf{A}^{*}\right)^{\mathbf{T}}$. If \mathbf{A} is real, $\mathbf{A}^{\dagger}=\mathbf{A}^{\mathbf{T}}$.
4. If \mathbf{a} is a column matrix, $\mathbf{a}^{\dagger}=\left(a_{1}^{*} a_{2}^{*} \ldots a_{N}^{*}\right)$ is a row matrix.
5. $(\mathbf{A B})^{\dagger}=\mathbf{B}^{\dagger} \mathbf{A}^{\dagger}$

The following properties and definitions apply only to the square matrices:
6. The matrix \mathbf{A} is diagonal if

$$
\begin{equation*}
A_{i j}=A_{i i} \delta_{i j} \tag{21}
\end{equation*}
$$

7. The trace of the matrix \mathbf{A} is defined as

$$
\begin{equation*}
\operatorname{Tr} \mathbf{A}=\sum_{i} A_{i i} \tag{22}
\end{equation*}
$$

8. The unit matrix $\mathbf{1}$ is defined as:

$$
\begin{equation*}
\mathbf{1 A}=\mathbf{A} \mathbf{1}=\mathbf{A} \tag{23}
\end{equation*}
$$

Its elements are $(\mathbf{1})_{i j}=\delta_{i j}$.
9. The inverse of the matrix of \mathbf{A} is defined as:

$$
\begin{equation*}
\mathbf{A}^{-\mathbf{1}} \mathbf{A}=\mathbf{A A}^{-1}=\mathbf{1} \tag{24}
\end{equation*}
$$

10. A unitary matrix is the one whose inverse is its adjoint:

$$
\begin{equation*}
\mathbf{A}^{-\mathbf{1}}=\mathbf{A}^{\dagger} \tag{25}
\end{equation*}
$$

A real unitary matrix is called orthogonal.
11. A Hermitian matrix is self-adjoint:

$$
\begin{equation*}
\mathbf{A}^{\dagger}=\mathbf{A} \tag{26}
\end{equation*}
$$

A real Hermitian matrix is called symmetric.

B. Complex vector spaces

We now generalize the concepts of linear algebra to an N-dimensional space in which vectors can be complex. In analogy to the basis $\left\{\vec{e}_{i}\right\}$, we consider N basis vectors denoted $|i\rangle$ called ket vectors or kets. We assume basis $|i\rangle$ is complete, so any vector can be represented as:

$$
\begin{equation*}
|a\rangle=\sum_{i=1}^{N} a_{i}|i\rangle \tag{27}
\end{equation*}
$$

Similarly, $|a\rangle$ can be represented as a column matrix a (1D-array). We also introduce a bra vector $\langle a|$ whose matrix representation is \mathbf{a}^{\dagger}. The product between $\langle a|$ and $|a\rangle$ is a generalization of the dot product:

$$
\begin{gather*}
\langle a||b\rangle \equiv\langle a \mid b\rangle=\mathbf{a}^{\dagger} \mathbf{b}=\left(a_{1}^{*} a_{2}^{*} \ldots a_{N}^{*}\right)\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{3}
\end{array}\right)=\sum_{i} a_{i}^{*} b_{i} \tag{28}\\
\langle a \mid a\rangle=\sum_{i} a_{i}^{*} a_{i}=\sum_{i}\left|a_{i}\right|^{2} \tag{29}
\end{gather*}
$$

By analogy, with real vector spaces, we obtain:

$$
\begin{align*}
& \langle a \mid b\rangle=\sum_{i j} a_{i}^{*} b_{j}\langle i \mid j\rangle \tag{30}\\
& \langle i \mid j\rangle=\delta_{i j} \tag{31}
\end{align*}
$$

$$
\begin{align*}
& \langle j \mid a\rangle=\sum_{i} a_{i}\langle j \mid i\rangle=a_{j} \tag{32}\\
& \langle a \mid j\rangle=\sum_{i} a_{i}^{*}\langle i \mid j\rangle=a_{j}^{*} \tag{33}\\
& \langle a \mid j\rangle=(\langle j \mid a\rangle)^{*}=\langle j \mid a\rangle^{*} \tag{34}\\
& |a\rangle=\sum_{i} a_{i}|i\rangle=\sum_{i}|i\rangle\langle i \mid a\rangle \tag{35}\\
& \sum_{i}|i\rangle\langle i|=1 \tag{36}
\end{align*}
$$

Similarly, we can introduce an operator \hat{O} that converts ket $|a\rangle$ into a ket $|b\rangle$:

$$
\begin{equation*}
\hat{O}|a\rangle=|b\rangle \tag{37}
\end{equation*}
$$

The action of the operator on the basis ket is given by:

$$
\begin{equation*}
\hat{O}|i\rangle=\sum_{j}|j\rangle O_{j i} \tag{38}
\end{equation*}
$$

where $O_{j i}$ are the elements of the matrix representation \mathbf{O}. The elements $O_{j i}$ can be expressed using the braket notation either by multiplying with $\langle j|$ on the left ("projecting")

$$
\begin{equation*}
\langle j| \hat{O}|i\rangle=\sum_{k} \delta_{j k} O_{k i}=O_{j i} \tag{39}
\end{equation*}
$$

or by introducing a completeness relation

$$
\begin{equation*}
\hat{O}|i\rangle=\sum_{j}|j\rangle\langle j| \hat{O}|i\rangle=\sum_{j}|j\rangle O_{j i} \tag{40}
\end{equation*}
$$

Other useful relations:

$$
\begin{gather*}
C_{i j}=\langle i| \hat{C}|j\rangle=\langle i| \hat{A} \hat{B}|j\rangle=\sum_{k}\langle i| \hat{A}|k\rangle\langle k| \hat{B}|j\rangle=\sum_{k} A_{i k} B_{k j} \tag{41}\\
\left(O^{\dagger}\right)_{i j}=\langle i| \hat{O}^{\dagger}|j\rangle=\langle j| \hat{O}|i\rangle^{*}=O_{j i}^{*} \tag{42}
\end{gather*}
$$

If \hat{O} is Hermitian, the following relation is satisfied:

$$
\begin{equation*}
\langle a| \hat{O}^{\dagger}|b\rangle=\langle a| \hat{O}|b\rangle=\langle b| \hat{O}|a\rangle^{*} \tag{43}
\end{equation*}
$$

C. Change of basis

Consider two orthonormal bases:

$$
\begin{array}{cl}
\langle i \mid j\rangle=\delta_{i j}, & \sum_{i}|i\rangle\langle i|=1 \\
\langle\alpha \mid \beta\rangle=\delta_{\alpha \beta}, & \sum_{\alpha}|\alpha\rangle\langle\alpha|=1 \tag{45}
\end{array}
$$

We can define a transformation matrix:

$$
\begin{align*}
|\alpha\rangle & =\sum_{i}|i\rangle\langle i \mid \alpha\rangle=\sum_{i}|i\rangle U_{i \alpha}=\sum_{i}|i\rangle \mathbf{U}_{i \alpha} \tag{46}\\
|i\rangle & =\sum_{\alpha}|\alpha\rangle\langle\alpha \mid i\rangle=\sum_{\alpha}|\alpha\rangle U_{i \alpha}^{*}=\sum_{\alpha}|\alpha\rangle\left(\mathbf{U}^{\dagger}\right)_{\alpha i} \tag{47}
\end{align*}
$$

We can demonstrate that the matrix \mathbf{U} is unitary:

$$
\begin{align*}
\delta_{i j}=\langle i \mid j\rangle=\sum_{\alpha}\langle i \mid \alpha\rangle\langle\alpha \mid j\rangle & =\sum_{\alpha} \mathbf{U}_{i \alpha}\left(\mathbf{U}^{\dagger}\right)_{\alpha j}=\left(\mathbf{U} \mathbf{U}^{\dagger}\right)_{i j} \tag{48}\\
\mathbf{U} \mathbf{U}^{\dagger} & =\mathbf{U}^{\dagger} \mathbf{U}=\mathbf{1} \tag{49}
\end{align*}
$$

Thus, the two orthonormal bases are related by a unitary matrix. We can now consider how the matrix representations of an operator in two bases are related:

$$
\begin{align*}
\hat{O}|i\rangle & =\sum_{j}|j\rangle\langle j| \hat{O}|i\rangle=\sum_{j}|j\rangle O_{j i} \tag{50}\\
\hat{O}|\alpha\rangle & =\sum_{\beta}|\beta\rangle\langle\beta| \hat{O}|\alpha\rangle=\sum_{\beta}|\beta\rangle \Omega_{\beta \alpha} \tag{51}\\
\Omega_{\alpha \beta}=\langle\alpha| \hat{O}|\beta\rangle & =\sum_{i j}\langle\alpha \mid i\rangle\langle i| \hat{O}|j\rangle\langle j \mid \beta\rangle=\sum_{i j}\left(\mathbf{U}^{\dagger}\right)_{\alpha i}(\mathbf{O})_{i j}(\mathbf{U})_{j \beta} \tag{52}\\
\boldsymbol{\Omega} & =\mathbf{U}^{\dagger} \mathbf{O U} \tag{53}\\
\mathbf{O} & =\mathbf{U} \boldsymbol{\Omega} \mathbf{U}^{\dagger} \tag{54}
\end{align*}
$$

D. Eigenvalue problem

If acting \hat{O} on a vector $|\alpha\rangle$ results in the same vector multiplied by a constant we say that $|\alpha\rangle$ is an eigenvector of \hat{O} :

$$
\begin{equation*}
\hat{O}|\alpha\rangle=\omega_{\alpha}|\alpha\rangle \tag{55}
\end{equation*}
$$

The constant ω_{α} is called eigenvalue.
Properties:

1. The eigenvalues of a Hermitian operator are real.

$$
\begin{align*}
\langle\alpha| \hat{O}|\alpha\rangle & =\langle\alpha| \hat{O}^{\dagger}|\alpha\rangle=\langle\alpha| \hat{O}|\alpha\rangle^{*} \tag{56}\\
\omega_{\alpha} & =\omega_{\alpha}^{*} \tag{57}
\end{align*}
$$

2. The eigenvectors of a Hermitian operator are orthogonal.

$$
\begin{align*}
\hat{O}|\beta\rangle & =\omega_{\beta}|\beta\rangle \tag{58}\\
\langle\beta| \hat{O}^{\dagger} & =\langle\beta| \omega_{\beta}^{*} \tag{59}\\
\langle\beta| \hat{O} & =\langle\beta| \omega_{\beta} \tag{60}\\
\langle\beta| \hat{O}|\alpha\rangle & =\omega_{\beta}\langle\beta \mid \alpha\rangle \tag{61}\\
\omega_{\alpha}\langle\beta \mid \alpha\rangle & =\omega_{\beta}\langle\beta \mid \alpha\rangle \tag{62}\\
\left(\omega_{\alpha}-\omega_{\beta}\right)\langle\beta \mid \alpha\rangle & =0 \tag{63}
\end{align*}
$$

Thus, $\langle\beta \mid \alpha\rangle=0$ if $\omega_{\alpha} \neq \omega_{\beta}$. Degenerate eigenvectors can always be chosen to be orthogonal.

3. Matrix representation of an operator in its eigenvector basis is diagonal.

 The problem of diagonalizing a matrix \mathbf{O} is equivalent to finding the unitary matrix that converts \mathbf{O} into a diagonal matrix$$
\mathbf{U}^{\dagger} \mathbf{O U}=\boldsymbol{\omega}=\left(\begin{array}{cccc}
\omega_{1} & 0 & \ldots & 0 \tag{64}\\
0 & \omega_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & 0 \\
0 & 0 & 0 & \omega_{N}
\end{array}\right)
$$

E. Orthogonal functions, eigenfunctions, and operators

We discussed how a vector can be represented using a complete set of orthonormal basis vector. Similarly, we can represent a sufficiently well-behaved function on some interval as an infinite linear combination of orthogonal functions.

We consider an infinite set of functions $\left\{\psi_{i}(x), i=1,2, \ldots\right\}$ that satisfy orthonor-
mality condition

$$
\begin{equation*}
\int_{x_{1}}^{x_{2}} \mathrm{~d} x \psi_{i}^{*}(x) \psi_{j}(x)=\delta_{i j} \tag{65}
\end{equation*}
$$

We will drop the integration limits. We assume that any function can be expressed as a linear combination of $\left\{\psi_{i}(x)\right\}$:

$$
\begin{equation*}
a(x)=\sum_{i} a_{i} \psi_{i}(x) \tag{66}
\end{equation*}
$$

This means that the basis $\psi_{i}(x)$ is complete. We can determine the coefficients of the linear combination as follows:

$$
\begin{equation*}
\int \mathrm{d} x \psi_{j}^{*}(x) a(x)=\sum_{i} \int \mathrm{~d} x \psi_{j}^{*}(x) \psi_{i}(x) a_{i}=\sum_{i} \delta_{j i} a_{i}=a_{j} \tag{67}
\end{equation*}
$$

We now insert the expression for the coefficients into the original expression:

$$
\begin{equation*}
a(x)=\int \mathrm{d} x^{\prime}\left[\sum_{i} \psi_{i}(x) \psi_{i}^{*}\left(x^{\prime}\right)\right] a\left(x^{\prime}\right) \tag{68}
\end{equation*}
$$

The function in square brackets is called Dirac delta function:

$$
\begin{equation*}
\sum_{i} \psi_{i}(x) \psi_{i}^{*}\left(x^{\prime}\right)=\delta\left(x-x^{\prime}\right) \tag{69}
\end{equation*}
$$

The function $\delta\left(x-x^{\prime}\right)$ is a continuous generalization of the Kronecker delta. The delta function has the following properties:

$$
\begin{align*}
\delta\left(x-x^{\prime}\right) & =\boldsymbol{\delta}\left(x^{\prime}-x\right) \tag{70}\\
\int \mathrm{d} x^{\prime} \delta\left(x^{\prime}\right) & =1 \tag{71}
\end{align*}
$$

We can consider the theory of complete orthonormal functions as a generalization of ordinary linear algebra. To see the analogy, we introduce the following defintions:

$$
\begin{gather*}
\psi_{i}(x) \equiv|i\rangle \quad \psi_{i}^{*}(x) \equiv\langle i| \tag{72}\\
a(x) \equiv|a\rangle \quad a^{*}(x) \equiv\langle a| \tag{73}\\
\int \mathrm{d} x a^{*}(x) b(x)=\langle a \mid b\rangle \tag{74}\\
\langle i \mid j\rangle=\delta_{i j} \tag{75}
\end{gather*}
$$

$$
\begin{array}{r}
\langle j \mid a\rangle=a_{j} \\
|a\rangle=\sum_{i}|i\rangle\langle i \mid a\rangle \tag{77}
\end{array}
$$

Similarly, we can define an operator that converts a function into another function

$$
\begin{align*}
\hat{O} a(x) & =b(x) \tag{78}\\
\hat{O}|a\rangle & =|b\rangle \tag{79}
\end{align*}
$$

Nonlocal operator:

$$
\begin{align*}
b(x)=\hat{O} a(x) & =\int \mathrm{d} x^{\prime} O\left(x, x^{\prime}\right) a\left(x^{\prime}\right) \tag{80}\\
b_{i} & =\sum_{j} O_{i j} a_{j} \tag{81}
\end{align*}
$$

Eigenfunctions:

$$
\begin{align*}
\hat{O} \phi_{\alpha}(x) & =\omega_{\alpha} \phi_{\alpha}(x) \tag{82}\\
\hat{O}|\alpha\rangle & =\omega_{\alpha}|\alpha\rangle \tag{83}
\end{align*}
$$

The beauty of the Dirac notation is that it allows to manipulate vectors and functions, as well as operators acting on them, in a formally identical way. Thus, many results obtain in linear algebra of vector spaces can be directly applied to orthonormal functions.

F. Schrödinger equation, measurements, observables

Let us briefly review the main concepts of quantum mechanics. We will be studying molecules - quantum mechanical systems with N number of particles. A system with N particles is described using a wavefunction $|\Psi(\tau, t)\rangle$, where τ symbolizes the $3 N$ spatial and N spin coordinates, t is time. Properties of $|\Psi(\tau, t)\rangle$:

- Single-valued and continuous
- Quadratically-integrable ($\int \Psi^{*} \Psi \mathrm{~d} \tau$ is finite)

This means that $|\Psi(\tau, t)\rangle$ must be well-behaved (remember requirements for expanding a function in a basis).

Each physical property corresponds to a quantum-mechanical operator. Let's assume that $|\Psi(\tau, t)\rangle$ describes a quantum-mechanical system. Measurement of an
operator \hat{O} gives result that is one of the eigenvalues of this operator.

$$
\begin{equation*}
\hat{O}\left|\Phi_{i}\right\rangle=O_{i}\left|\Phi_{i}\right\rangle \tag{84}
\end{equation*}
$$

In this case, we say that the measurement collapses the wavefunction of the system $(|\Psi(\tau, t)\rangle)$ onto one of the eigenvectors of \hat{O}. Taking a large number of measurements will result in different outcomes (i.e., different eigenvalues), the average measurement is given by:

$$
\begin{align*}
\langle O\rangle & =\langle\Psi| \hat{O}|\Psi\rangle=\sum_{i j}\left\langle\Psi \mid \Phi_{i}\right\rangle\left\langle\Phi_{i}\right| \hat{O}\left|\Phi_{j}\right\rangle\left\langle\Phi_{j} \mid \Psi\right\rangle \tag{85}\\
& =\sum_{i j} \delta_{i j} O_{i}\left|\left\langle\Phi_{j} \mid \Psi\right\rangle\right|^{2}=\sum_{i} O_{i}\left|\left\langle\Phi_{i} \mid \Psi\right\rangle\right|^{2}=\sum_{i} O_{i} P\left(O_{i}\right) \tag{86}
\end{align*}
$$

All operators that describe a physical system must be linear and Hermitian (recall the definitions that we discussed). Their eigenfunctions form a complete set. Thus, any wavefunction can be expanded in terms of these eigenfunctions.

$$
\begin{equation*}
|\Psi\rangle=\sum_{i}\left|\Phi_{i}\right\rangle\left\langle\Phi_{i} \mid \Psi\right\rangle=\sum_{i}\left|\Phi_{i}\right\rangle C_{i} \tag{87}
\end{equation*}
$$

The time dependence of $|\Psi(\tau, t)\rangle$ is given by the time-dependent Schrödinger equation:

$$
\begin{equation*}
-\frac{\hbar}{i} \frac{\partial|\Psi\rangle}{\partial t}=\hat{H}|\Psi\rangle \tag{88}
\end{equation*}
$$

where \hat{H} is the Hamiltonian (or energy) operator. For the N-particle system, the Hamiltonian operator is given by:

$$
\begin{align*}
\hat{H} & =-\sum_{i=1}^{N} \frac{\hbar}{2 m_{i}} \nabla_{i}^{2}+\hat{V}\left(x_{1}, y_{1}, z_{1}, \ldots, x_{N}, y_{N}, z_{N}, t\right) \tag{89}\\
\nabla_{i}^{2} & =\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{\partial^{2}}{\partial y_{i}^{2}}+\frac{\partial^{2}}{\partial z_{i}^{2}} \tag{90}
\end{align*}
$$

The operator ∇_{i} is called nabla, while ∇_{i}^{2} is called Laplacian. Note that in this (non-relativistic) formulation of quantum mechanics the Hamiltonian written above does not depend on spin, while the wavefunction $|\Psi(\tau, t)\rangle$ does. If the potential energy \hat{V} does not depend on time, then the solution of the Schrödinger
equation will have the form:

$$
\begin{equation*}
|\Psi(\tau, t)\rangle=f(t)|\Psi(\tau)\rangle \tag{91}
\end{equation*}
$$

where $f(t)$ is a function of only time. Inserting this form into the Schrödinger equation, we get:

$$
\begin{equation*}
-\frac{\hbar}{i} \frac{f^{\prime}(t)}{f(t)}=\frac{\hat{H}|\Psi(\tau)\rangle}{|\Psi(\tau)\rangle}=E \tag{92}
\end{equation*}
$$

where we set the right-hand side to a constant E by the usual separation-ofvariables argument. We obtain:

$$
\begin{align*}
-\frac{\hbar}{i} f^{\prime}(t) & =E f(t) \tag{93}\\
f(t) & =A e^{\frac{-i E t}{\hbar}} \tag{94}
\end{align*}
$$

We also get:

$$
\begin{equation*}
\hat{H}|\Psi(\tau)\rangle=E|\Psi(\tau)\rangle \tag{95}
\end{equation*}
$$

which is the time-independent Schrödinger equation. We see that it has the form of the eigenvalue equation where E is the eigenvalue of the Hamiltonian \hat{H}. Thus, E are the possible energies of the system. States of the form $|\Psi(\tau, t)\rangle=$ $f(t)|\Psi(\tau)\rangle$ are called stationary states. For a stationary state,

$$
\begin{equation*}
|\Psi(\tau, t)\rangle=e^{\frac{-i E t}{\hbar}}|\Psi(\tau)\rangle \tag{96}
\end{equation*}
$$

where E is the energy of the state and $|\Psi(\tau)\rangle$ is the wavefunction of the stationary state.
When discussing operators in linear algebra, we have defined a commutator of two operators $[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}$. If $[\hat{A}, \hat{B}]=0$ we say that the two operators commute. If two Hermitian operators \hat{A} and \hat{B} commute, then it can be proven that there exists a common complete set of eigenfunctions for them. We say that the operators describe compatible observables. Let's assume that $[\hat{A}, \hat{B}]=0$ and that the operator \hat{B} is nondegenerate in the basis of its eigenfunctions:

$$
\begin{align*}
\hat{B}\left|\Phi_{i}\right\rangle & =B_{i}\left|\Phi_{i}\right\rangle \tag{97}\\
\hat{A} \hat{B}\left|\Phi_{i}\right\rangle-\hat{B} \hat{A}\left|\Phi_{i}\right\rangle & =0 \tag{98}\\
\left\langle\Phi_{j}\right| \hat{A} \hat{B}\left|\Phi_{i}\right\rangle-\left\langle\Phi_{j}\right| \hat{B} \hat{A}\left|\Phi_{i}\right\rangle & =0 \tag{9}
\end{align*}
$$

$$
\begin{equation*}
\left(B_{i}-B_{j}\right)\left\langle\Phi_{j}\right| \hat{A}\left|\Phi_{i}\right\rangle=0 \tag{100}
\end{equation*}
$$

Since the eigenvalues of \hat{B} are nondegenerate, $\left(B_{i}-B_{j}\right) \neq 0$ if $i \neq j$. Thus, the off-diagonal matrix elements $\left\langle\Phi_{j}\right| \hat{A}\left|\Phi_{i}\right\rangle=0$, which means that the operator \hat{A} is diagonal in the basis of $\left|\Phi_{i}\right\rangle$:

$$
\begin{align*}
\left\langle\Phi_{i}\right| \hat{A}\left|\Phi_{j}\right\rangle & =\delta_{i j} A_{j}=A_{j}\left\langle\Phi_{i} \mid \Phi_{j}\right\rangle \tag{101}\\
\hat{A}\left|\Phi_{j}\right\rangle & =A_{j}\left|\Phi_{j}\right\rangle \tag{102}
\end{align*}
$$

In our course, we will pay particular attention to the observables that commute with the Hamiltonian. These observables will allow us to obtain important information about solutions of the Schrödinger equation.

G. Atomic units

To see how atomic units naturally arise, consider the Schrödinger equation for the H atom in SI units:

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 m_{e}} \nabla^{2}-\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right]|\phi\rangle=\mathscr{E}|\phi\rangle \tag{103}
\end{equation*}
$$

To cast this equation into dimensionless form, we let $x, y, z \rightarrow \lambda x^{\prime}, \lambda y^{\prime}, \lambda z^{\prime}$ and obtain:

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 m_{e} \lambda^{2}} \nabla^{\prime 2}-\frac{e^{2}}{4 \pi \varepsilon_{0} \lambda r^{\prime}}\right]\left|\phi^{\prime}\right\rangle=\mathscr{E}\left|\phi^{\prime}\right\rangle \tag{104}
\end{equation*}
$$

We can factor out the constant in front of the kinetic and potential energy, provided we choose λ such that

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} \lambda^{2}}=\frac{e^{2}}{4 \pi \varepsilon_{0} \lambda}=\mathscr{E}_{a} \tag{105}
\end{equation*}
$$

where \mathscr{E}_{a} is the unit of energy called Hartree. Solving for λ, we obtain:

$$
\begin{equation*}
\lambda=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m_{e} e^{2}}=a_{0} \tag{106}
\end{equation*}
$$

Thus, λ is just the Bohr radius a_{0} which is the atomic unit of length called Bohr. For the Schrödinger equation, we obtain:

$$
\begin{equation*}
\left(-\frac{1}{2} \nabla^{\prime 2}-\frac{1}{r^{\prime}}\right)\left|\phi^{\prime}\right\rangle=\frac{\mathscr{E}}{\mathscr{E}_{a}}\left|\phi^{\prime}\right\rangle=\mathscr{E}^{\prime}\left|\phi^{\prime}\right\rangle \tag{107}
\end{equation*}
$$

