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Week 1: Review of foundations

I. FOUNDATIONS OF QUANTUM MECHANICS

A. Linear vector algebra

First, we briefly recap main concepts of linear algebra that will be very important
later in the course.

A vector in 3 dimensions can be represented by specifying its components ai (i =
1, 2, 3) with respect to a set of three mutually perpendicular unit vectors:

~a = a1~e1 +a2~e2 +a3~e3 =
3

∑
i=1

ai~ei (1)

The unit vectors ~ei form a basis and are called basis vectors. The basis is com-
plete, i.e. any three-dimensional vector can be represented as a linear combination
of 3 basis vectors. Basis is not unique, we could have chosen three different mu-
tually perpendicular vectors:

~a = a′1~ε1 +a′2~ε2 +a′3~ε3 =
3

∑
i=1

a′i~εi (2)

A vector can be represented by a column matrix. For example, in the basis~ei, the
representation is:

a =

a1
a2
a3

 (3)

The same vector can be represented in the basis~εi as:

a′ =

a′1
a′2
a′3

 (4)
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For now we assume that we always work in the same basis.

The scalar or dot product of two vectors in the same basis is defined as:

~a ·~b = a1b1 +a2b2 +a3b3 =
3

∑
i=1

aibi (5)

The dot product of the vector on itself is just the square of the length of the vector
(|~a|):

~a ·~a = a2
1 +a2

2 +a2
3 ≡ |~a|2 (6)

We can express the product as

~a ·~b =
3

∑
i=1

3

∑
j=1

aib j~ei ·~e j (7)

Thus, we require:

~ei ·~e j = δi j =

{
1 f or i = j
0 f or i 6= j ,

(8)

where δi j is a Kronecker delta. The above equation states that the basis vectors
~ei are mutually perpendicular (orthogonal) and have unit length; in other words,
orthonormal. Useful Properties:

~e j ·~a =
3

∑
i=1

ai~e j ·~ei = a j (9)

~a =
3

∑
i=1

~ei~ei ·~a =
3

∑
i=1

~ei ai =
↔
1 ·~a , (10)

where
↔
1 is the unit dyadic:

↔
1 =

3

∑
i=1

~ei~ei . (11)

Dyadic is a quantity, which when dotted into a vector gives another vector. The
unit dyadic gives the same vector back.
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All of the above equations can be generalized to more than 3 dimensions. In the
general case of N dimensions, we get

~a = a1~e1 +a2~e2 + . . .+aN~eN =
N

∑
i=1

ai~ei (12)

and the dot product is expressed as:

~a ·~b = a1b1 +a2b2 + . . .+aNbN =
N

∑
i=1

aibi (13)

From now on, we will work with general vector spaces of N dimensions and will
simplify our summation notation.

An operator is an object that when acting on a vector converts it into another
vector:

Ô~a =~c (14)

There are different types of operators, we will mostly encounter linear operators,
which have the property:

Ô(x~a+ y~b) = xÔ~a+ yÔ~b (15)

A linear operator is completely determined in terms of its action on a basis vector
~ei. Since Ô~ei is a vector and any vector can be represented as a linear combination
of basis vectors, we get:

Ô~ei = ∑
j
~e jO ji (16)

The number O ji is the component of the vector Ô~ei along~e j. These numbers can
be arranged in a two-dimensional array called matrix:

O =


O11 O12 . . . O1N
O21 O22 . . . O2N
. . . . . . . . . . . .

ON1 ON2 . . . ONN

 (17)

This is also called as the matrix representation of Ô in the basis~ei.
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The matrix O completely specifies the action of the operator Ô in a given basis.
For example, the action of Ô on a vector~a can be written as:

Ô~a = ∑
i

aiÔ~ei = ∑
i j

aiO ji~e j = ∑
j

c j~e j (18)

∑
i

O jiai = c j (19)

Oa = c (20)

Some important properties and definitions:

1. If Ĉ = ÂB̂, their matrix representations are related as: C = AB.

2. In general, ÂB̂ 6= B̂Â and AB 6= BA, the commutator is [A,B] = AB−BA

3. The adjoint operator Â† of the operator Â is defined such that its matrix
representation (A†)i j = (A∗) ji, or equivalently A† = (A∗)T. If A is real,
A† = AT.

4. If a is a column matrix, a† = (a∗1a∗2 . . .a
∗
N) is a row matrix.

5. (AB)† = B†A†

The following properties and definitions apply only to the square matrices:

6. The matrix A is diagonal if

Ai j = Aiiδi j (21)

7. The trace of the matrix A is defined as

TrA = ∑
i

Aii (22)

8. The unit matrix 1 is defined as:

1A = A1 = A (23)

Its elements are (1)i j = δi j.

9. The inverse of the matrix of A is defined as:

A−1A = AA−1 = 1 (24)
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10. A unitary matrix is the one whose inverse is its adjoint:

A−1 = A† (25)

A real unitary matrix is called orthogonal.

11. A Hermitian matrix is self-adjoint:

A† = A (26)

A real Hermitian matrix is called symmetric.

B. Complex vector spaces

We now generalize the concepts of linear algebra to an N-dimensional space in
which vectors can be complex. In analogy to the basis {~ei}, we consider N basis
vectors denoted |i〉 called ket vectors or kets. We assume basis |i〉 is complete, so
any vector can be represented as:

|a〉=
N

∑
i=1

ai |i〉 (27)

Similarly, |a〉 can be represented as a column matrix a (1D-array). We also intro-
duce a bra vector 〈a| whose matrix representation is a†. The product between 〈a|
and |a〉 is a generalization of the dot product:

〈a| |b〉 ≡ 〈a|b〉= a†b = (a∗1a∗2 . . .a
∗
N)


b1
b2
...

b3

= ∑
i

a∗i bi (28)

〈a|a〉= ∑
i

a∗i ai = ∑
i
|ai|2 (29)

By analogy, with real vector spaces, we obtain:

〈a|b〉= ∑
i j

a∗i b j 〈i| j〉 (30)

〈i| j〉= δi j (31)
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〈 j|a〉= ∑
i

ai 〈 j|i〉= a j (32)

〈a| j〉= ∑
i

a∗i 〈i| j〉= a∗j (33)

〈a| j〉= (〈 j|a〉)∗ = 〈 j|a〉∗ (34)
|a〉= ∑

i
ai |i〉= ∑

i
|i〉〈i|a〉 (35)

∑
i
|i〉〈i|= 1 (36)

Similarly, we can introduce an operator Ô that converts ket |a〉 into a ket |b〉:

Ô |a〉= |b〉 (37)

The action of the operator on the basis ket is given by:

Ô |i〉= ∑
j
| j〉O ji (38)

where O ji are the elements of the matrix representation O. The elements O ji can
be expressed using the braket notation either by multiplying with 〈 j| on the left
(“projecting”)

〈 j|Ô|i〉= ∑
k

δ jkOki = O ji (39)

or by introducing a completeness relation

Ô |i〉= ∑
j
| j〉〈 j|Ô|i〉= ∑

j
| j〉O ji (40)

Other useful relations:

Ci j = 〈i|Ĉ| j〉= 〈i|ÂB̂| j〉= ∑
k
〈i|Â |k〉〈k| B̂| j〉= ∑

k
AikBk j (41)

(O†)i j = 〈i|Ô†| j〉= 〈 j|Ô|i〉∗ = O∗ji (42)

If Ô is Hermitian, the following relation is satisfied:

〈a|Ô†|b〉= 〈a|Ô|b〉= 〈b|Ô|a〉∗ (43)
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C. Change of basis

Consider two orthonormal bases:

〈i| j〉= δi j , ∑
i
|i〉〈i|= 1 (44)

〈α|β 〉= δαβ , ∑
α

|α〉〈α|= 1 (45)

We can define a transformation matrix:

|α〉= ∑
i
|i〉〈i|α〉= ∑

i
|i〉Uiα = ∑

i
|i〉Uiα (46)

|i〉= ∑
α

|α〉〈α|i〉= ∑
α

|α〉U∗iα = ∑
α

|α〉(U†)αi (47)

We can demonstrate that the matrix U is unitary:

δi j = 〈i| j〉= ∑
α

〈i|α〉〈α| j〉= ∑
α

Uiα(U†)α j = (UU†)i j (48)

UU† = U†U = 1 (49)

Thus, the two orthonormal bases are related by a unitary matrix. We can now
consider how the matrix representations of an operator in two bases are related:

Ô |i〉= ∑
j
| j〉〈 j|Ô|i〉= ∑

j
| j〉O ji (50)

Ô |α〉= ∑
β

|β 〉〈β |Ô|α〉= ∑
β

|β 〉Ωβα (51)

Ωαβ = 〈α|Ô|β 〉= ∑
i j
〈α|i〉〈i|Ô| j〉〈 j|β 〉= ∑

i j
(U†)αi(O)i j(U) jβ (52)

ΩΩΩ = U†OU (53)

O = UΩΩΩU† (54)

D. Eigenvalue problem

If acting Ô on a vector |α〉 results in the same vector multiplied by a constant we
say that |α〉 is an eigenvector of Ô:

Ô |α〉= ωα |α〉 (55)
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The constant ωα is called eigenvalue.

Properties:
1. The eigenvalues of a Hermitian operator are real.

〈α|Ô|α〉= 〈α|Ô†|α〉= 〈α|Ô|α〉∗ (56)
ωα = ω

∗
α (57)

2. The eigenvectors of a Hermitian operator are orthogonal.

Ô |β 〉= ωβ |β 〉 (58)

〈β | Ô† = 〈β |ω∗
β

(59)

〈β | Ô = 〈β |ωβ (60)

〈β |Ô|α〉= ωβ 〈β |α〉 (61)

ωα 〈β |α〉= ωβ 〈β |α〉 (62)

(ωα −ωβ )〈β |α〉= 0 (63)

Thus, 〈β |α〉 = 0 if ωα 6= ωβ . Degenerate eigenvectors can always be chosen to
be orthogonal.

3. Matrix representation of an operator in its eigenvector basis is diagonal.
The problem of diagonalizing a matrix O is equivalent to finding the unitary ma-
trix that converts O into a diagonal matrix

U†OU =ωωω =


ω1 0 . . . 0
0 ω2 . . . 0
. . . . . . . . . 0
0 0 0 ωN

 (64)

E. Orthogonal functions, eigenfunctions, and operators

We discussed how a vector can be represented using a complete set of orthonor-
mal basis vector. Similarly, we can represent a sufficiently well-behaved function
on some interval as an infinite linear combination of orthogonal functions.

We consider an infinite set of functions {ψi(x), i = 1,2, . . .} that satisfy orthonor-
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mality condition ∫ x2

x1

dxψ
∗
i (x)ψ j(x) = δi j (65)

We will drop the integration limits. We assume that any function can be expressed
as a linear combination of {ψi(x)}:

a(x) = ∑
i

aiψi(x) (66)

This means that the basis ψi(x) is complete. We can determine the coefficients of
the linear combination as follows:∫

dxψ
∗
j (x)a(x) = ∑

i

∫
dxψ

∗
j (x)ψi(x)ai = ∑

i
δ jiai = a j (67)

We now insert the expression for the coefficients into the original expression:

a(x) =
∫

dx′
[
∑

i
ψi(x)ψ∗i (x

′)

]
a(x′) (68)

The function in square brackets is called Dirac delta function:

∑
i

ψi(x)ψ∗i (x
′) = δ (x− x′) (69)

The function δ (x− x′) is a continuous generalization of the Kronecker delta. The
delta function has the following properties:

δ (x− x′) = δ (x′− x) (70)∫
dx′δ (x′) = 1 (71)

We can consider the theory of complete orthonormal functions as a generaliza-
tion of ordinary linear algebra. To see the analogy, we introduce the following
defintions:

ψi(x)≡ |i〉 ψ
∗
i (x)≡ 〈i| (72)

a(x)≡ |a〉 a∗(x)≡ 〈a| (73)∫
dxa∗(x)b(x) = 〈a|b〉 (74)

〈i| j〉= δi j (75)
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〈 j|a〉= a j (76)
|a〉= ∑

i
|i〉〈i|a〉 (77)

Similarly, we can define an operator that converts a function into another function

Ôa(x) = b(x) (78)

Ô |a〉= |b〉 (79)

Nonlocal operator:

b(x) = Ôa(x) =
∫

dx′O(x,x′)a(x′) (80)

bi = ∑
j

Oi ja j (81)

Eigenfunctions:

Ôφα(x) = ωαφα(x) (82)

Ô |α〉= ωα |α〉 (83)

The beauty of the Dirac notation is that it allows to manipulate vectors and func-
tions, as well as operators acting on them, in a formally identical way. Thus,
many results obtain in linear algebra of vector spaces can be directly applied to
orthonormal functions.

F. Schrödinger equation, measurements, observables

Let us briefly review the main concepts of quantum mechanics. We will be study-
ing molecules - quantum mechanical systems with N number of particles. A sys-
tem with N particles is described using a wavefunction |Ψ(τ, t)〉, where τ sym-
bolizes the 3N spatial and N spin coordinates, t is time. Properties of |Ψ(τ, t)〉:
• Single-valued and continuous

• Quadratically-integrable (
∫

Ψ∗Ψdτ is finite)

This means that |Ψ(τ, t)〉 must be well-behaved (remember requirements for ex-
panding a function in a basis).

Each physical property corresponds to a quantum-mechanical operator. Let’s as-
sume that |Ψ(τ, t)〉 describes a quantum-mechanical system. Measurement of an
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operator Ô gives result that is one of the eigenvalues of this operator.

Ô |Φi〉= Oi |Φi〉 (84)

In this case, we say that the measurement collapses the wavefunction of the sys-
tem (|Ψ(τ, t)〉) onto one of the eigenvectors of Ô. Taking a large number of
measurements will result in different outcomes (i.e., different eigenvalues), the
average measurement is given by:

〈O〉= 〈Ψ|Ô|Ψ〉= ∑
i j
〈Ψ |Φi〉〈Φi| Ô |Φ j〉〈Φ j|Ψ〉 (85)

= ∑
i j

δi jOi| 〈Φ j|Ψ〉 |2 = ∑
i

Oi| 〈Φi|Ψ〉 |2 = ∑
i

OiP(Oi) (86)

All operators that describe a physical system must be linear and Hermitian (re-
call the definitions that we discussed). Their eigenfunctions form a complete set.
Thus, any wavefunction can be expanded in terms of these eigenfunctions.

|Ψ〉= ∑
i
|Φi〉〈Φi|Ψ〉= ∑

i
|Φi〉Ci (87)

The time dependence of |Ψ(τ, t)〉 is given by the time-dependent Schrödinger
equation:

− h̄
i

∂ |Ψ〉
∂ t

= Ĥ |Ψ〉 (88)

where Ĥ is the Hamiltonian (or energy) operator. For the N-particle system, the
Hamiltonian operator is given by:

Ĥ =−
N

∑
i=1

h̄
2mi

∇
2
i +V̂ (x1,y1,z1, . . . ,xN,yN,zN, t) (89)

∇
2
i =

∂ 2

∂x2
i
+

∂ 2

∂y2
i
+

∂ 2

∂ z2
i

(90)

The operator ∇i is called nabla, while ∇2
i is called Laplacian. Note that in

this (non-relativistic) formulation of quantum mechanics the Hamiltonian writ-
ten above does not depend on spin, while the wavefunction |Ψ(τ, t)〉 does. If the
potential energy V̂ does not depend on time, then the solution of the Schrödinger
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equation will have the form:

|Ψ(τ, t)〉= f (t) |Ψ(τ)〉 (91)

where f (t) is a function of only time. Inserting this form into the Schrödinger
equation, we get:

− h̄
i

f ′(t)
f (t)

=
Ĥ |Ψ(τ)〉
|Ψ(τ)〉

= E (92)

where we set the right-hand side to a constant E by the usual separation-of-
variables argument. We obtain:

− h̄
i

f ′(t) = E f (t) (93)

f (t) = Ae
−iEt

h̄ (94)

We also get:

Ĥ |Ψ(τ)〉= E |Ψ(τ)〉 (95)

which is the time-independent Schrödinger equation. We see that it has the
form of the eigenvalue equation where E is the eigenvalue of the Hamiltonian Ĥ.
Thus, E are the possible energies of the system. States of the form |Ψ(τ, t)〉 =
f (t) |Ψ(τ)〉 are called stationary states. For a stationary state,

|Ψ(τ, t)〉= e
−iEt

h̄ |Ψ(τ)〉 (96)

where E is the energy of the state and |Ψ(τ)〉 is the wavefunction of the stationary
state.
When discussing operators in linear algebra, we have defined a commutator of
two operators [Â, B̂] = ÂB̂− B̂Â. If [Â, B̂] = 0 we say that the two operators com-
mute. If two Hermitian operators Â and B̂ commute, then it can be proven that
there exists a common complete set of eigenfunctions for them. We say that the
operators describe compatible observables. Let’s assume that [Â, B̂] = 0 and that
the operator B̂ is nondegenerate in the basis of its eigenfunctions:

B̂ |Φi〉= Bi |Φi〉 (97)

ÂB̂ |Φi〉− B̂Â |Φi〉= 0 (98)

〈Φ j| ÂB̂ |Φi〉−〈Φ j| B̂Â |Φi〉= 0 (99)
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(Bi−B j)〈Φ j| Â |Φi〉= 0 (100)

Since the eigenvalues of B̂ are nondegenerate, (Bi−B j) 6= 0 if i 6= j. Thus, the
off-diagonal matrix elements 〈Φ j| Â |Φi〉 = 0, which means that the operator Â is
diagonal in the basis of |Φi〉:

〈Φi| Â |Φ j〉= δi jA j = A j 〈Φi|Φ j〉 (101)

Â |Φ j〉= A j |Φ j〉 (102)

In our course, we will pay particular attention to the observables that commute
with the Hamiltonian. These observables will allow us to obtain important infor-
mation about solutions of the Schrödinger equation.

G. Atomic units

To see how atomic units naturally arise, consider the Schrödinger equation for the
H atom in SI units: [

− h̄2

2me
∇

2− e2

4πε0r

]
|φ〉= E |φ〉 (103)

To cast this equation into dimensionless form, we let x,y,z→ λx′,λy′,λ z′ and
obtain: [

− h̄2

2meλ 2 ∇
′2− e2

4πε0λ r′

]
|φ ′〉= E |φ ′〉 (104)

We can factor out the constant in front of the kinetic and potential energy, provided
we choose λ such that

h̄2

meλ 2 =
e2

4πε0λ
= Ea (105)

where Ea is the unit of energy called Hartree. Solving for λ , we obtain:

λ =
4πε0h̄2

mee2 = a0 (106)
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Thus, λ is just the Bohr radius a0 which is the atomic unit of length called Bohr.
For the Schrödinger equation, we obtain:(

−1
2

∇
′2− 1

r′

)
|φ ′〉= E

Ea
|φ ′〉= E ′ |φ ′〉 (107)
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