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Week 4-6: Vibrations of polyatomic molecules

II. QUANTUM MECHANICS OF MOLECULAR VIBRATIONS

1) During our discussion of the rotational spectroscopy, we obtained the rota-
tional Hamiltonian by replacing the classical quantities by the operators. In the
discussion of molecular vibrations we in principle could do the same. As an exer-
cise, we will take a different approach. We will start with a general expression for
the vibrational Hamiltonian and the Schrödinger equation and demonstrate that
we can convert these quantum mechanical expressions to the form obtained in the
classical description.

2) The vibrational Schrödinger equation for an N-atom molecule has the follow-
ing form:

Ĥvib |Ψvib〉= E |Ψvib〉 (1)

where the vibrational Hamiltonian is given by
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The first term corresponds to the vibrational kinetic energy operator T̂ and the
second term is the potential energy V̂ . In Eq. (2) both operators are expressed in
terms of the Cartesian displacement coordinates xα = (xα ,yα ,zα) that we defined
during the classical description. As we discussed before, it is convenient to in-
troduce the mass-weighted Cartesian coordinates (q1 =

√
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m1y1, . . .),

which allows to write the kinetic energy operator in a more compact form:

T̂ =− h̄2
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Similarly, the potential energy function can be expanded in a Taylor series about

1



the equilibrium positions and approximated using the second-order expression:
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Combining these results, we obtain for the vibrational Hamiltonian:

Ĥvib =−
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In the above equation the constant term Ve does not affect the vibrational wave-
functions and simply shifts the eigenvalue; therefore, we set it to zero (Ve = 0).

3) We now consider a unitary transformation of the coordinates qi that makes Wi j
diagonal. As before, we define:

Qk =
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∑
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Q = UTq q = UQ (8)

The corresponding derivatives can be written as:
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Thus, T̂ is separable in the basis of Qk as well. Similarly, for the potential energy
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operator we obtain:

V̂ =
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4) We are left with the following Schrödinger equation in normal coordinates:[
− h̄2
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|Ψvib〉= E |Ψvib〉 (14)

where it is now restricted to the internal vibrational modes only, i.e. those with
nonzero eigenvalues λk. The translations and rotations are thus separated from the
problem. We note that the Hamiltonian can be written as a sum of terms, each
of which involves only one normal coordinate (sum of the uncoupled harmonic-
oscillator Hamiltonians):

Ĥ =
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Ĥk =−
h̄2

2
∂ 2

∂Q2
k
+

1
2

λkQ2
k (16)

Thus, according to the separation of variables theorem, the eigenfunction of Ĥ can
be written in the product form

|Ψvib〉=
3N−6

∏
k=1
|ψk,vk(Qk)〉 (17)

and the solution of the Schrödinger equation (14) is equivalent to the solution of
3N−6 one-dimensional Schrödinger equations:

Ĥk |ψk,vk(Qk)〉= εk |ψk,vk(Qk)〉 (18)

The solution of Eq. (18) is well-known, it is a solution of the one-dimensional
harmonic-oscillator problem. The eigenvalues and eigenfunctions have the form:
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where functions Hvk are known as Hermite polynomials. If all vibrational quan-
tum numbers are zero (vk = 0), we obtain expression for the ground-state energy,
which is often called the zero-point vibrational energy (ZPVE):
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The ground-state vibrational wavefunction has the form:
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(We note that in principle Eq. (17) should satisfy Pauli principle and thus be sym-
metric or antisymmetric with respect to the permutation of the nuclear coordi-
nates, depending on whether the nuclei are fermions or bosons. For example, if
the nuclei are fermions, the harmonic oscillator wavefunction should be a Slater
determinant and the form in Eq. (17) will be an approximation. In practice, this
approximation holds very well for vibrations at low energies and is always used.)

5) We summarize that for molecules vibrating in deep potential wells near equi-
librium, the total vibrational wavefunction is a product of one-dimensional har-
monic oscillator wavefunctions in normal coordinates. The total vibrational en-
ergy is the sum of the quantized vibrational energies for each normal mode. The
vibrational frequencies are obtained by diagonalizing the mass-weighted force
constant matrix.

6) Each vibrational state can be characterized by the combination of quantum
numbers vk for each normal mode k. These vibrational quantum numbers are
usually written in parenthesis: (v1,v2, . . . ,v3N−6). Levels with one vk = 1 and all
other vi = 0 (i 6= k) are called fundamental levels. Levels with one vk > 1 and all
other vi = 0 (i 6= k) are called overtone levels. Levels with more than one non-zero
vk are called combination levels.

7) The frequencies of most diatomic molecules are high enough to make the pop-
ulation of the excited vibrational levels negligible at room temperature. For poly-
atomics, it is common to have low-energy vibrational levels that are appreciably
populated at room temperature.

4



8) If the two vibrational levels have the same energy they are called degener-
ate. For the ground state there is only one possible set of quantum numbers
(0,0, . . . ,0). Therefore, the ground vibrational level is always non-degenerate.
If all of the normal modes are non-degenerate (i.e., there is no degenerate eigen-
values of the force constant matrix), then the excited vibrational levels should
also be non-degenerate. In this case, it is still possible that two vibrational levels
can become accidentally degenerate (or near-degenerate). For example, a fun-
damental level (1,0, . . .) can become accidentally degenerate with an overtone
level (0,3, . . .) if it happens that ω1 ≈ 3ω2. The probability of the accidental de-
generacy increases rapidly with the size of the molecule, such degeneracies are
very common for the polyatomic molecules. If the two vibrational levels are acci-
dentally degenerate and have the same symmetry, their vibrational wavefunctions
may strongly interact. In this case (known as the Fermi resonance), the harmonic
approximation usually breaks down and the anharmonicity splits the vibrational
levels apart, leading to the loss of the degeneracy. In molecules with high sym-
metry that belong to non-abelian symmetry point groups, it is possible to have
degenerate normal modes and, therefore, many of the excited vibrational levels
are degenerate.
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