Advanced Quantum Mechanics \& Spectroscopy (CHEM 7520)

Alexander Yu. Sokolov

Week 7-8: Advanced electronic structure theory

IV. SLATER DETERMINANTS AND THE HARTREE-FOCK APPROXIMATION

1) We need to make sure that the many-electron wavefunction written as a product of spin-orbitals is by construction antisymmetric with respect to the permutation of any two electrons. When we considered an example of a helium atom in the ${ }^{3}$ S state, it was easy to construct an antisymmetric wavefunction because there were only two spin-orbitals. In general, for a two-electron system we can write a wavefunction in the antisymmetric form as:

$$
\begin{equation*}
|\Psi(1,2)\rangle=\frac{1}{\sqrt{2}}\left[\psi_{1}(1) \psi_{2}(2)-\psi_{1}(2) \psi_{2}(1)\right] \tag{1}
\end{equation*}
$$

The prefactor $\frac{1}{\sqrt{2}}$ is necessary to satisfy the normalization condition $\langle\Psi \mid \Psi\rangle=1$. We can rewrite this equation in a more compact form:

$$
\begin{equation*}
|\Psi(1,2)\rangle=\mathscr{A}(1,2) \psi_{1}(1) \psi_{2}(2) \tag{2}
\end{equation*}
$$

where $\mathscr{A}(1,2)$ is the antisymmetrizer operator that makes the resulting wavefunction antisymmetric with respect to the permutation of the electrons 1 and 2 . It also includes the normalization prefactor.
2) We can generalize Eq. (2) for a system with N electrons:

$$
\begin{equation*}
|\Psi(1, \ldots, N)\rangle=\mathscr{A}(1, \ldots, N) \prod_{i}^{N} \psi_{i}(i) \tag{3}
\end{equation*}
$$

As in the previous case, the antisymmetrizer operator $\mathscr{A}(1, \ldots, N)$ contains the normalization prefactor and is used to make sure that $|\Psi(1, \ldots, N)\rangle$ is antisymmetric with respect to the permutation of any two electrons.
3) Realizing that Eq. (3) is the definition of a determinant, we can write the wave-
function as:

$$
|\Psi\rangle=\frac{1}{\sqrt{N!}}\left|\begin{array}{cccc}
\psi_{1}(1) & \psi_{1}(2) & \cdots & \psi_{1}(N) \tag{4}\\
\psi_{2}(1) & \psi_{2}(2) & \cdots & \psi_{2}(N) \\
\vdots & \vdots & \ddots & \vdots \\
\psi_{N}(1) & \psi_{N}(2) & \cdots & \psi_{N}(N)
\end{array}\right|
$$

This form of the wavefunction is called the Slater determinant. We can easily verify that Eq. (4) reduces to Eq. (1) for the two-electron system. Interestingly, Eq. (4) demonstrates one of the postulates of quantum mechanics: each electron is associated with every orbital, i.e. electrons are indistinguishable.
4) Since a determinant is uniquely defined by its diagonal, we can represent the wavefunction more compactly as $|\Psi\rangle=\left|\psi_{1} \psi_{2} \ldots \psi_{N-1} \psi_{N}\right\rangle$. In this notation, the normalization prefactor is implied.
5) Slater determinant is a very convenient mathematical object for representing electronic wavefunctions. Permutation of two rows or two columns of the Slater determinant is equivalent to permuting two orbitals or two electrons, resulting in a sign change. If two columns or two rows are the same, the Slater determinant is zero. Thus, Slater determinant naturally satisfies Pauli principle for any N electron system.
6) In the Hartree-Fock approximation, the electronic wavefunction is chosen to be a Slater determinant. Using this form of the wavefunction, we can derive an expression for the Hartree-Fock energy. We recall that

$$
\begin{equation*}
E=\sum_{i}^{N}\langle\Psi| \hat{h}_{i}|\Psi\rangle+\sum_{i>j}^{N}\langle\Psi| \frac{1}{r_{i j}}|\Psi\rangle \tag{5}
\end{equation*}
$$

Thus, each term on the r.h.s. of the energy expression can be written as an expectation value $\langle\Psi| \hat{O}|\Psi\rangle$ where $\hat{O}=\hat{h}_{i}$ or $\hat{O}=\frac{1}{r_{i j}}$. Each term $\langle\Psi| \hat{O}|\Psi\rangle$ can be written as:

$$
\frac{1}{N!} \int\left|\begin{array}{cccc}
\psi_{1}^{*}(1) & \psi_{1}^{*}(2) & \cdots & \psi_{1}^{*}(N) \tag{6}\\
\psi_{2}^{*}(1) & \psi_{2}^{*}(2) & \cdots & \psi_{2}^{*}(N) \\
\vdots & \vdots & \ddots & \vdots \\
\psi_{N}^{*}(1) & \psi_{N}^{*}(2) & \cdots & \psi_{N}^{*}(N)
\end{array}\right| \hat{O}\left|\begin{array}{cccc}
\psi_{1}(1) & \psi_{1}(2) & \cdots & \psi_{1}(N) \\
\psi_{2}(1) & \psi_{2}(2) & \cdots & \psi_{2}(N) \\
\vdots & \vdots & \ddots & \vdots \\
\psi_{N}(1) & \psi_{N}(2) & \cdots & \psi_{N}(N)
\end{array}\right| \mathrm{d} 1 \mathrm{~d} 2 \ldots \mathrm{~d} N
$$

This is equal to:

$$
\frac{1}{N!} \int \begin{gather*}
\psi_{1}^{*}(1) \psi_{2}^{*}(2) \psi_{3}^{*}(3) \cdots \psi_{N}^{*}(N) \tag{7}\\
-\psi_{2}^{*}(1) \psi_{1}^{*}(2) \psi_{3}^{*}(3) \cdots \psi_{N}^{*}(N) \\
-\psi_{1}^{*}(1) \psi_{3}^{*}(2) \psi_{2}^{*}(3) \cdots \psi_{N}^{*}(N) \\
\vdots
\end{gather*}\left|\begin{array}{cccc}
\psi_{1}(1) & \psi_{1}(2) & \cdots & \psi_{1}(N) \\
\psi_{2}(1) & \psi_{2}(2) & \cdots & \psi_{2}(N) \\
\vdots & \vdots & \ddots & \vdots \\
\psi_{N}(1) & \psi_{N}(2) & \cdots & \psi_{N}(N)
\end{array}\right| \mathrm{d} 1 \mathrm{~d} 2 \ldots \mathrm{~d} N
$$

where there are $N!-3$ more possibilities. The first term in this expansion is

$$
\frac{1}{N!} \int \psi_{1}^{*}(1) \psi_{2}^{*}(2) \psi_{3}^{*}(3) \cdots \psi_{N}^{*}(N) \hat{O}\left|\begin{array}{cccc}
\psi_{1}(1) & \psi_{1}(2) & \cdots & \psi_{1}(N) \tag{8}\\
\psi_{2}(1) & \psi_{2}(2) & \cdots & \psi_{2}(N) \\
\vdots & \vdots & \ddots & \vdots \\
\psi_{N}(1) & \psi_{N}(2) & \cdots & \psi_{N}(N)
\end{array}\right| \mathrm{d} 1 \mathrm{~d} 2 \ldots \mathrm{~d} N
$$

The second term is

$$
\frac{1}{N!} \int-\psi_{2}^{*}(1) \psi_{1}^{*}(2) \psi_{3}^{*}(3) \cdots \psi_{N}^{*}(N) \hat{O}\left|\begin{array}{cccc}
\psi_{1}(1) & \psi_{1}(2) & \cdots & \psi_{1}(N) \tag{9}\\
\psi_{2}(1) & \psi_{2}(2) & \cdots & \psi_{2}(N) \\
\vdots & \vdots & \ddots & \vdots \\
\psi_{N}(1) & \psi_{N}(2) & \cdots & \psi_{N}(N)
\end{array}\right| \mathrm{d} 1 \mathrm{~d} 2 \ldots \mathrm{~d} N
$$

Since determinants change sign upon interchange of two columns, we get:

$$
\frac{1}{N!} \int \psi_{2}^{*}(1) \psi_{1}^{*}(2) \psi_{3}^{*}(3) \cdots \psi_{N}^{*}(N) \hat{O}\left|\begin{array}{cccc}
\psi_{1}(2) & \psi_{1}(1) & \cdots & \psi_{1}(N) \tag{10}\\
\psi_{2}(2) & \psi_{2}(1) & \cdots & \psi_{2}(N) \\
\vdots & \vdots & \ddots & \vdots \\
\psi_{N}(2) & \psi_{N}(1) & \cdots & \psi_{N}(N)
\end{array}\right| \mathrm{d} 1 \mathrm{~d} 2 \ldots \mathrm{~d} N
$$

Since 1 and 2 are just integration variables, we can switch them:

$$
\frac{1}{N!} \int \psi_{2}^{*}(2) \psi_{1}^{*}(1) \psi_{3}^{*}(3) \cdots \psi_{N}^{*}(N) \hat{O}\left|\begin{array}{cccc}
\psi_{1}(1) & \psi_{1}(2) & \cdots & \psi_{1}(N) \tag{11}\\
\psi_{2}(1) & \psi_{2}(2) & \cdots & \psi_{2}(N) \\
\vdots & \vdots & \ddots & \vdots \\
\psi_{N}(1) & \psi_{N}(2) & \cdots & \psi_{N}(N)
\end{array}\right| \mathrm{d} 1 \mathrm{~d} 2 \ldots \mathrm{~d} N
$$

Thus, the second term is the same as the first term in Eq. (8). Analogously, all of the other $N!-2$ permutations have the same value, so the integral $\langle\Psi| \hat{O}|\Psi\rangle$ becomes

$$
\int \psi_{1}^{*}(1) \psi_{2}^{*}(2) \psi_{3}^{*}(3) \cdots \psi_{N}^{*}(N) \hat{O}\left|\begin{array}{cccc}
\psi_{1}(1) & \psi_{1}(2) & \cdots & \psi_{1}(N) \tag{12}\\
\psi_{2}(1) & \psi_{2}(2) & \cdots & \psi_{2}(N) \\
\vdots & \vdots & \ddots & \vdots \\
\psi_{N}(1) & \psi_{N}(2) & \cdots & \psi_{N}(N)
\end{array}\right| \mathrm{d} 1 \mathrm{~d} 2 \ldots \mathrm{~d} N
$$

We can make an important observation: the spin-orbitals that are not being operated by an operator must be occupied by the same electron on the left and on the right of Eq. (12) or the integral $\langle\Psi| \hat{O}|\Psi\rangle$ will be identically zero, due to orthonormality of the spin-orbitals.
We first assume that $\hat{O}=\hat{h}_{i}$. The only non-zero term in Eq. (12) is:

$$
\begin{align*}
\langle\Psi| \hat{h}_{i}|\Psi\rangle & =\int \psi_{1}^{*}(1) \psi_{2}^{*}(2) \cdots \psi_{N}^{*}(N) \hat{h}_{i} \psi_{1}(1) \psi_{2}(2) \cdots \psi_{N}(N) \mathrm{d} 1 \mathrm{~d} 2 \ldots \mathrm{~d} N \\
& =\int \psi_{1}^{*}(1) \psi_{1}(1) \mathrm{d} 1 \cdots \int \psi_{i}^{*}(i) \hat{h}_{i} \psi_{i}(i) \mathrm{d} i \cdots \int \psi_{N}^{*}(N) \psi_{N}(N) \mathrm{d} N \\
& =\int \psi_{i}^{*}(i) \hat{h}_{i} \psi_{i}(i) \mathrm{d} i=\int \psi_{i}^{*}(1) \hat{h}_{1} \psi_{i}(1) \mathrm{d} 1=\langle i| \hat{h}|i\rangle \tag{13}
\end{align*}
$$

We now assume that $\hat{O}=\frac{1}{r_{i j}}(i>j)$. The non-zero terms in Eq. (12) are:

$$
\begin{align*}
& \int \psi_{1}^{*}(1) \cdots \psi_{j}^{*}(j) \cdots \psi_{i}^{*}(i) \cdots \psi_{N}^{*}(N) \frac{1}{r_{i j}}\left[\begin{array}{c}
\psi_{1}(1) \cdots \psi_{j}(j) \cdots \psi_{i}(i) \cdots \psi_{N}(N) \\
-\psi_{1}(1) \cdots \psi_{i}(j) \cdots \psi_{j}(i) \cdots \psi_{N}(N)
\end{array}\right] \mathrm{d} 1 \cdots \mathrm{~d} N \\
& =\int \psi_{1}^{*}(1) \psi_{1}(1) \mathrm{d} 1 \cdots \int \psi_{i}^{*}(i) \psi_{j}^{*}(j) \frac{1}{r_{i j}} \psi_{i}(i) \psi_{j}(j) \mathrm{d} i \mathrm{~d} j \cdots \int \psi_{N}^{*}(N) \psi_{N}(N) \mathrm{d} N \\
& -\int \psi_{1}^{*}(1) \psi_{1}(1) \mathrm{d} 1 \cdots \int \psi_{i}^{*}(i) \psi_{j}^{*}(j) \frac{1}{r_{i j}} \psi_{j}(i) \psi_{i}(j) \operatorname{did} j \cdots \int \psi_{N}^{*}(N) \psi_{N}(N) \mathrm{d} N \\
& =\int \psi_{i}^{*}(i) \psi_{j}^{*}(j) \frac{1}{r_{i j}} \psi_{i}(i) \psi_{j}(j) \mathrm{d} i \mathrm{~d} j-\int \psi_{i}^{*}(i) \psi_{j}^{*}(j) \frac{1}{r_{i j}} \psi_{j}(i) \psi_{i}(j) \mathrm{d} i \mathrm{~d} j \\
& =\int \psi_{i}^{*}(1) \psi_{j}^{*}(2) \frac{1}{r_{12}} \psi_{i}(1) \psi_{j}(2) \mathrm{d} 1 \mathrm{~d} 2-\int \psi_{i}^{*}(1) \psi_{j}^{*}(2) \frac{1}{r_{12}} \psi_{j}(1) \psi_{i}(2) \mathrm{d} 1 \mathrm{~d} 2 \\
& =\langle i j \mid i j\rangle-\langle i j \mid j i\rangle \tag{14}
\end{align*}
$$

Using these results, we can write the Hartree-Fock energy expression as:

$$
\begin{equation*}
E=\sum_{i}^{N}\langle i| \hat{h}|i\rangle+\sum_{i>j}^{N}(\langle i j \mid i j\rangle-\langle i j \mid j i\rangle) \tag{15}
\end{equation*}
$$

7) Let us compare the energy (15) with the energy obtained in the Hartree approximation. We see that the Hartree energy is equal to the first two terms in the Hartree-Fock energy expression. However, the third term in Eq. (15) that depends on $\langle i j \mid j i\rangle$ does not appear in the Hartree approximation. This term is called the exchange energy and the integrals $\langle i j \mid j i\rangle$ are called exchange integrals. While the Coulomb integrals $\langle i j \mid i j\rangle$ can be interpreted as the energy of Coulomb repulsion between electron densities $\left|\psi_{i}(1)\right|^{2}$ and $\left|\psi_{j}(2)\right|^{2}$, the exchange integrals do not have a simple intuitive interpretation. They can be expressed as:

$$
\begin{equation*}
\langle i j \mid j i\rangle=\int \psi_{i}^{*}(1) \psi_{j}(1) \frac{1}{r_{12}} \psi_{i}(2) \psi_{j}^{*}(2) \mathrm{d} 1 \mathrm{~d} 2 \tag{16}
\end{equation*}
$$

Since $i>j$, the products $\psi_{i}^{*}(1) \psi_{j}(1)$ involve pairs of different spin-orbitals, i.e. the exchange interaction involves electrons that are delocalized between ψ_{i} and ψ_{j}. Whereas the Coulomb repulsion described by the integrals $\langle i j \mid i j\rangle$ always raises the energy (destabilization), the exchange energy involves a negative sign, thus lowering the energy (stabilization).
8) The appearance of the exchange term in the Hartree-Fock energy expression is due to indistinguishability of the electrons in the Hartree-Fock theory. In general, the exchange interaction is a quantum mechanical effect that only occurs between identical particles. For example, exchange interaction between two electrons with opposite spins is zero. Thanks to the exchange interaction, the Hartree-Fock energies are much closer to the exact electronic energies than those obtained from the Hartree approximation. For most of the molecular systems near equilibrium geometries, the Hartree-Fock energy is equal to $\sim 99 \%$ of the exact electronic energy. For this reason, the Hartree-Fock theory plays an important role in electronic structure theory. It provides a foundation for how we understand chemistry and chemical bonding. In addition, it is often used as the first step towards more accurate approximations.
9) The Hartree-Fock energy is often expressed as

$$
\begin{equation*}
E=\sum_{i}^{N}\langle i| \hat{h}|i\rangle+\sum_{i>j}^{N}\langle i j||i j\rangle \tag{17}
\end{equation*}
$$

where $\langle i j \| i j\rangle$ are called the antisymmetrized two-electron integrals, which are defined in general as:

$$
\begin{equation*}
\langle i j||k l\rangle=\langle i j \mid k l\rangle-\langle i j \mid l k\rangle \tag{18}
\end{equation*}
$$

Realizing that $\langle i i \| i i\rangle=0$, we can also write the energy using an unrestricted summation as:

$$
\begin{equation*}
E=\sum_{i}^{N}\langle i| \hat{h}|i\rangle+\frac{1}{2} \sum_{i j}^{N}\langle i j||i j\rangle \tag{19}
\end{equation*}
$$

10) The two-electron integrals $\langle p q \mid r s\rangle$ and $\langle p q \| r s\rangle$ have the following symmetry properties:

$$
\begin{align*}
&\langle p q \| r s\rangle=-\langle p q \| s r\rangle=-\langle q p \| r s\rangle=\langle q p \| s r\rangle \\
&=\langle r s \| p q\rangle=-\langle s r \| p q\rangle=-\langle r s \| q p\rangle=\langle s r \| q p\rangle \tag{20}\\
&\langle p q \mid r s\rangle=\langle r q \mid p s\rangle=\langle p s \mid r q\rangle=\langle r s \mid p q\rangle \\
&=\langle q p \mid s r\rangle=\langle q r \mid s p\rangle=\langle s p \mid q r\rangle=\langle s r \mid q p\rangle \tag{21}
\end{align*}
$$

The notation $\langle p q \mid r s\rangle$ and $\langle p q \| r s\rangle$ is called the Physicists' notation. In some literature, the so-called Chemists' notation is used where the two-electron integrals are represented as $(p q \mid r s)$. There exists a simple relationship between the two types of notation:

$$
\begin{equation*}
(p q \mid r s)=\int \psi_{p}^{*}(1) \psi_{q}(1) \frac{1}{r_{12}} \psi_{r}^{*}(2) \psi_{s}(2) \mathrm{d} 1 \mathrm{~d} 2=\langle p r \mid q s\rangle \tag{22}
\end{equation*}
$$

V. THE HARTREE-FOCK EQUATIONS

1) We have demonstrated that the Hartree-Fock energy can be evaluated using the one- and two-electron integrals that involve spin-orbitals $\left|\psi_{i}\right\rangle$. But how can we determine $\left|\psi_{i}\right\rangle$? According to the variational principle, the best approximation to the exact wavefunction is given by the Hartree-Fock wavefunction that has the
lowest energy. Thus, we need to find spin-orbitals that minimize the Hartree-Fock energy. An important condition is that the spin-orbitals should remain orthonormal during the minimization. We can perform such constrained minimization by using the Lagrange's method of undetermined multipliers. In this method, we construct a functional that is equal to the Hartree-Fock energy plus an additional term that specifies the orthonormality constraint:

$$
\begin{equation*}
\mathscr{L}=E-\sum_{i j}^{n} \varepsilon_{i j}\left(S_{i j}-\delta_{i j}\right) \tag{23}
\end{equation*}
$$

In Eq. (23) $\varepsilon_{i j}$ are the Lagrange multipliers and $S_{i j}=\left\langle\psi_{i} \mid \psi_{j}\right\rangle$ is the overlap between two spin-orbitals.
2) Enforcing the variational condition $\delta \mathscr{L}=0$, we arrive at the equations that prescribe which spin-orbitals minimize the Hartree-Fock energy:

$$
\begin{equation*}
\hat{f}\left|\psi_{i}\right\rangle=\varepsilon_{i}\left|\psi_{i}\right\rangle \tag{24}
\end{equation*}
$$

According to these equations (which are called the Hartree-Fock equations), the optimal spin-orbitals must be the eigenfunctions of the one-electron operator \hat{f} called the Fock operator:

$$
\begin{equation*}
\hat{f}(1)=\hat{h}(1)+\sum_{j}^{N}\left(\hat{J}_{j}(1)-\hat{K}_{j}(1)\right) \tag{25}
\end{equation*}
$$

Each eigenfunction $\left|\psi_{i}\right\rangle$ is assigned an eigenvalue ε_{i} called orbital energy. The first term of the Fock operator is the familiar core Hamiltonian. The last two terms \hat{J}_{j} and \hat{K}_{j} are called the Coulomb and exchange operators, respectively.
3) The Coulomb operator is defined as:

$$
\begin{equation*}
\hat{J}_{j}(1)=\int \psi_{j}^{*}(2) \psi_{j}(2) \frac{1}{r_{12}} \mathrm{~d} 2 \tag{26}
\end{equation*}
$$

This operator describes a one-electron potential obtained by averaging the Coulomb interaction $\frac{1}{r_{12}}$ of electron 1 and 2 over the space and spin coordinates of electron 2, weighted by the probability $\left|\psi_{j}(2)\right|^{2} \mathrm{~d} 2$ that electron 2 occupies the volume element d 2 at the position \mathbf{x}_{2}. By summing over all $j \neq i$, one obtains the total averaged potential acting on the electron in $\psi_{i}(1)$, arising from the $N-1$ electrons in the other spin-orbitals.
4) The exchange operator can be defined in terms of its action on a spin-orbital $\left|\psi_{i}\right\rangle$:

$$
\begin{equation*}
\hat{K}_{j}(1) \psi_{i}(1)=\int \psi_{j}^{*}(2) \psi_{i}(2) \frac{1}{r_{12}} \mathrm{~d} 2 \psi_{j}(1) \tag{27}
\end{equation*}
$$

This operator has a somewhat strange form and does not have a simple classical interpretation like the Coulomb operator. We see that the action of $\hat{K}_{j}(1)$ involves an exchange of electrons 1 and 2. Unlike the local Coulomb operator, the exchange operator is nonlocal, since there does not exist a simple potential $\hat{K}_{j}(1)$ uniquely defined at a local point in space \mathbf{x}_{1}. The result of operating $\hat{K}_{j}(1)$ on $\psi_{i}(1)$ depends on the value of ψ_{i} throughout all space, not just \mathbf{x}_{1}, as evident from Eq. (27). Both $\hat{J}_{j}(1)$ and $\hat{K}_{j}(1)$ are called integral operators, that is their action involves integration over the coordinates of the electron 2.
5) Note that although the spin-orbitals $\left|\psi_{i}\right\rangle$ must be the eigenfunctions of the Fock operator, the Fock operator itself depends on the spin-orbitals $\left|\psi_{i}\right\rangle$ via the operators \hat{J}_{j} and \hat{K}_{j}. This demonstrates the self-consistent nature of the HartreeFock equations: changing the spin-orbitals leads to a modified Fock operator, which gives rise to a new set of spin-orbitals as its eigenfunctions. In practice, the Hartree-Fock equations are solved by starting with an initial set of spin-orbitals $\left|\psi_{i}\right\rangle$ (also known as the guess) and optimizing the spin-orbitals by updating the Fock operator and solving the eigenvalue problem (24) at every iteration. This process is called the self-consistent field method (SCF).
6) According to the Hartree-Fock equations, electron on the spin-orbital $\left|\psi_{i}\right\rangle$ interacts with electrons on other spin-orbitals only through an averaged (mean-field) one-electron potential described by the Fock operator (and not directly through the Coulomb operator $\frac{1}{r_{12}}$). For this reason, the Hartree-Fock theory is often referred to as the mean-field or independent-electron approximation.
7) The Hartree-Fock equations can be solved efficiently if we formulate the eigenvalue problem (24) in the matrix form. Multiplying both sides of Eq. (24) by $\left\langle\psi_{j}\right|$, we obtain:

$$
\begin{equation*}
f_{j i}=\left\langle\psi_{j}\right| \hat{f}\left|\psi_{i}\right\rangle=\varepsilon_{i} \delta_{i j}, \tag{28}
\end{equation*}
$$

Thus, the solution of the Hartree-Fock equations $\left|\psi_{i}\right\rangle$ (the "optimal" spin-orbitals) must diagonalize the Fock operator matrix $f_{i j}$. The matrix elements $f_{i j}$ can be
expressed as:

$$
\begin{equation*}
f_{j i}=\left\langle\psi_{j}\right| \hat{h}\left|\psi_{i}\right\rangle+\sum_{k}^{N}\left\langle\psi_{j}\right| \hat{J}_{k}\left|\psi_{i}\right\rangle-\sum_{k}^{N}\left\langle\psi_{j}\right| \hat{K}_{k}\left|\psi_{i}\right\rangle \tag{29}
\end{equation*}
$$

where

$$
\begin{align*}
\left\langle\psi_{j}\right| \hat{J}_{k}\left|\psi_{i}\right\rangle & =\int \psi_{j}^{*}(1) \psi_{i}(1) \frac{1}{r_{12}} \psi_{k}^{*}(2) \psi_{k}(2) \mathrm{d} 1 \mathrm{~d} 2 \tag{30}
\end{align*}=\langle j k \mid i k\rangle,
$$

Thus, we obtain:

$$
\begin{equation*}
f_{j i}=\langle j| \hat{h}|i\rangle+\sum_{k}^{N}\langle j k||i k\rangle . \tag{3}
\end{equation*}
$$

8) Solving the Hartree-Fock equations allows us to assign an orbital energy ε_{i} for each spin-orbital ψ_{i}. Since a Slater determinant is uniquely specified by a set of N spin-orbitals that appear on its diagonal, the Hartree-Fock wavefunction can be graphically represented using a molecular orbital diagram with energy levels corresponding to the orbital energies and the spin-up/spin-down arrows as their occupations.
