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Week 7-8: Advanced electronic structure theory

IV. SLATER DETERMINANTS AND THE HARTREE-FOCK
APPROXIMATION

1) We need to make sure that the many-electron wavefunction written as a prod-
uct of spin-orbitals is by construction antisymmetric with respect to the permuta-
tion of any two electrons. When we considered an example of a helium atom in
the 3S state, it was easy to construct an antisymmetric wavefunction because there
were only two spin-orbitals. In general, for a two-electron system we can write a
wavefunction in the antisymmetric form as:

|Ψ(1,2)〉= 1√
2
[ψ1(1)ψ2(2)−ψ1(2)ψ2(1)] (1)

The prefactor 1√
2

is necessary to satisfy the normalization condition 〈Ψ|Ψ〉= 1.
We can rewrite this equation in a more compact form:

|Ψ(1,2)〉= A (1,2)ψ1(1)ψ2(2) (2)

where A (1,2) is the antisymmetrizer operator that makes the resulting wave-
function antisymmetric with respect to the permutation of the electrons 1 and 2. It
also includes the normalization prefactor.

2) We can generalize Eq. (2) for a system with N electrons:

|Ψ(1, . . . ,N)〉= A (1, . . . ,N)
N

∏
i

ψi(i) (3)

As in the previous case, the antisymmetrizer operator A (1, . . . ,N) contains the
normalization prefactor and is used to make sure that |Ψ(1, . . . ,N)〉 is antisym-
metric with respect to the permutation of any two electrons.

3) Realizing that Eq. (3) is the definition of a determinant, we can write the wave-
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function as:

|Ψ〉= 1√
N!

∣∣∣∣∣∣∣∣∣
ψ1(1) ψ1(2) · · · ψ1(N)
ψ2(1) ψ2(2) · · · ψ2(N)

... ... . . . ...
ψN(1) ψN(2) · · · ψN(N)

∣∣∣∣∣∣∣∣∣ (4)

This form of the wavefunction is called the Slater determinant. We can easily
verify that Eq. (4) reduces to Eq. (1) for the two-electron system. Interestingly,
Eq. (4) demonstrates one of the postulates of quantum mechanics: each electron
is associated with every orbital, i.e. electrons are indistinguishable.

4) Since a determinant is uniquely defined by its diagonal, we can represent the
wavefunction more compactly as |Ψ〉 = |ψ1ψ2 . . .ψN−1ψN〉. In this notation, the
normalization prefactor is implied.

5) Slater determinant is a very convenient mathematical object for representing
electronic wavefunctions. Permutation of two rows or two columns of the Slater
determinant is equivalent to permuting two orbitals or two electrons, resulting in
a sign change. If two columns or two rows are the same, the Slater determinant
is zero. Thus, Slater determinant naturally satisfies Pauli principle for any N-
electron system.

6) In the Hartree-Fock approximation, the electronic wavefunction is chosen
to be a Slater determinant. Using this form of the wavefunction, we can derive an
expression for the Hartree-Fock energy. We recall that

E =
N

∑
i
〈Ψ|ĥi|Ψ〉+

N

∑
i> j
〈Ψ| 1

ri j
|Ψ〉 (5)

Thus, each term on the r.h.s. of the energy expression can be written as an expec-
tation value 〈Ψ|Ô|Ψ〉 where Ô = ĥi or Ô = 1

ri j
. Each term 〈Ψ|Ô|Ψ〉 can be written

as:

1
N!

∫
∣∣∣∣∣∣∣∣∣
ψ∗1 (1) ψ∗1 (2) · · · ψ∗1 (N)
ψ∗2 (1) ψ∗2 (2) · · · ψ∗2 (N)

... ... . . . ...
ψ∗N(1) ψ∗N(2) · · · ψ∗N(N)

∣∣∣∣∣∣∣∣∣ Ô
∣∣∣∣∣∣∣∣∣
ψ1(1) ψ1(2) · · · ψ1(N)
ψ2(1) ψ2(2) · · · ψ2(N)

... ... . . . ...
ψN(1) ψN(2) · · · ψN(N)

∣∣∣∣∣∣∣∣∣d1d2 . . . dN (6)
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This is equal to:

1
N!

∫ ψ∗1 (1)ψ
∗
2 (2)ψ

∗
3 (3) · · ·ψ∗N(N)

−ψ∗2 (1)ψ
∗
1 (2)ψ

∗
3 (3) · · ·ψ∗N(N)

−ψ∗1 (1)ψ
∗
3 (2)ψ

∗
2 (3) · · ·ψ∗N(N)

...

Ô

∣∣∣∣∣∣∣∣∣
ψ1(1) ψ1(2) · · · ψ1(N)
ψ2(1) ψ2(2) · · · ψ2(N)

... ... . . . ...
ψN(1) ψN(2) · · · ψN(N)

∣∣∣∣∣∣∣∣∣d1d2 . . . dN

(7)

where there are N!−3 more possibilities. The first term in this expansion is

1
N!

∫
ψ∗1 (1)ψ

∗
2 (2)ψ

∗
3 (3) · · ·ψ∗N(N)Ô

∣∣∣∣∣∣∣∣∣
ψ1(1) ψ1(2) · · · ψ1(N)
ψ2(1) ψ2(2) · · · ψ2(N)

... ... . . . ...
ψN(1) ψN(2) · · · ψN(N)

∣∣∣∣∣∣∣∣∣d1d2 . . . dN

(8)

The second term is

1
N!

∫
−ψ∗2 (1)ψ

∗
1 (2)ψ

∗
3 (3) · · ·ψ∗N(N)Ô

∣∣∣∣∣∣∣∣∣
ψ1(1) ψ1(2) · · · ψ1(N)

ψ2(1) ψ2(2) · · · ψ2(N)
... ... . . . ...

ψN(1) ψN(2) · · · ψN(N)

∣∣∣∣∣∣∣∣∣d1d2 . . . dN

(9)

Since determinants change sign upon interchange of two columns, we get:

1
N!

∫
ψ∗2 (1)ψ

∗
1 (2)ψ

∗
3 (3) · · ·ψ∗N(N)Ô

∣∣∣∣∣∣∣∣∣
ψ1(2) ψ1(1) · · · ψ1(N)
ψ2(2) ψ2(1) · · · ψ2(N)

... ... . . . ...
ψN(2) ψN(1) · · · ψN(N)

∣∣∣∣∣∣∣∣∣d1d2 . . . dN

(10)

Since 1 and 2 are just integration variables, we can switch them:

1
N!

∫
ψ∗2 (2)ψ

∗
1 (1)ψ

∗
3 (3) · · ·ψ∗N(N)Ô

∣∣∣∣∣∣∣∣∣
ψ1(1) ψ1(2) · · · ψ1(N)

ψ2(1) ψ2(2) · · · ψ2(N)
... ... . . . ...

ψN(1) ψN(2) · · · ψN(N)

∣∣∣∣∣∣∣∣∣d1d2 . . . dN

(11)
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Thus, the second term is the same as the first term in Eq. (8). Analogously, all
of the other N!− 2 permutations have the same value, so the integral 〈Ψ|Ô|Ψ〉
becomes

∫
ψ∗1 (1)ψ

∗
2 (2)ψ

∗
3 (3) · · ·ψ∗N(N)Ô

∣∣∣∣∣∣∣∣∣
ψ1(1) ψ1(2) · · · ψ1(N)
ψ2(1) ψ2(2) · · · ψ2(N)

... ... . . . ...
ψN(1) ψN(2) · · · ψN(N)

∣∣∣∣∣∣∣∣∣d1d2 . . . dN (12)

We can make an important observation: the spin-orbitals that are not being oper-
ated by an operator must be occupied by the same electron on the left and on the
right of Eq. (12) or the integral 〈Ψ|Ô|Ψ〉 will be identically zero, due to orthonor-
mality of the spin-orbitals.

We first assume that Ô = ĥi. The only non-zero term in Eq. (12) is:

〈Ψ|ĥi|Ψ〉=
∫

ψ
∗
1 (1)ψ

∗
2 (2) · · ·ψ∗N(N)ĥiψ1(1)ψ2(2) · · ·ψN(N)d1d2 . . . dN

=
∫

ψ
∗
1 (1)ψ1(1)d1 · · ·

∫
ψ
∗
i (i)ĥiψi(i)di · · ·

∫
ψ
∗
N(N)ψN(N)dN

=
∫

ψ
∗
i (i)ĥiψi(i)di =

∫
ψ
∗
i (1)ĥ1ψi(1)d1 = 〈i|ĥ|i〉 (13)

We now assume that Ô = 1
ri j

(i > j). The non-zero terms in Eq. (12) are:

∫
ψ
∗
1 (1) · · ·ψ∗j ( j) · · ·ψ∗i (i) · · ·ψ∗N(N)

1
ri j

[
ψ1(1) · · ·ψ j( j) · · ·ψi(i) · · ·ψN(N)
−ψ1(1) · · ·ψi( j) · · ·ψ j(i) · · ·ψN(N)

]
d1 . . . dN

=
∫

ψ
∗
1 (1)ψ1(1)d1 · · ·

∫
ψ
∗
i (i)ψ

∗
j ( j)

1
ri j

ψi(i)ψ j( j)did j · · ·
∫

ψ
∗
N(N)ψN(N)dN

−
∫

ψ
∗
1 (1)ψ1(1)d1 · · ·

∫
ψ
∗
i (i)ψ

∗
j ( j)

1
ri j

ψ j(i)ψi( j)did j · · ·
∫

ψ
∗
N(N)ψN(N)dN

=
∫

ψ
∗
i (i)ψ

∗
j ( j)

1
ri j

ψi(i)ψ j( j)did j−
∫

ψ
∗
i (i)ψ

∗
j ( j)

1
ri j

ψ j(i)ψi( j)did j

=
∫

ψ
∗
i (1)ψ

∗
j (2)

1
r12

ψi(1)ψ j(2)d1d2−
∫

ψ
∗
i (1)ψ

∗
j (2)

1
r12

ψ j(1)ψi(2)d1d2

= 〈i j|i j〉−〈i j| ji〉 (14)
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Using these results, we can write the Hartree-Fock energy expression as:

E =
N

∑
i
〈i|ĥ|i〉+

N

∑
i> j

(〈i j|i j〉−〈i j| ji〉) (15)

7) Let us compare the energy (15) with the energy obtained in the Hartree ap-
proximation. We see that the Hartree energy is equal to the first two terms in the
Hartree-Fock energy expression. However, the third term in Eq. (15) that depends
on 〈i j| ji〉 does not appear in the Hartree approximation. This term is called the
exchange energy and the integrals 〈i j| ji〉 are called exchange integrals. While
the Coulomb integrals 〈i j|i j〉 can be interpreted as the energy of Coulomb repul-
sion between electron densities |ψi(1)|2 and |ψ j(2)|2, the exchange integrals do
not have a simple intuitive interpretation. They can be expressed as:

〈i j| ji〉=
∫

ψ
∗
i (1)ψ j(1)

1
r12

ψi(2)ψ∗j (2)d1d2 (16)

Since i > j, the products ψ∗i (1)ψ j(1) involve pairs of different spin-orbitals, i.e.
the exchange interaction involves electrons that are delocalized between ψi and
ψ j. Whereas the Coulomb repulsion described by the integrals 〈i j|i j〉 always
raises the energy (destabilization), the exchange energy involves a negative sign,
thus lowering the energy (stabilization).

8) The appearance of the exchange term in the Hartree-Fock energy expression is
due to indistinguishability of the electrons in the Hartree-Fock theory. In general,
the exchange interaction is a quantum mechanical effect that only occurs between
identical particles. For example, exchange interaction between two electrons with
opposite spins is zero. Thanks to the exchange interaction, the Hartree-Fock en-
ergies are much closer to the exact electronic energies than those obtained from
the Hartree approximation. For most of the molecular systems near equilibrium
geometries, the Hartree-Fock energy is equal to ∼ 99 % of the exact electronic
energy. For this reason, the Hartree-Fock theory plays an important role in elec-
tronic structure theory. It provides a foundation for how we understand chemistry
and chemical bonding. In addition, it is often used as the first step towards more
accurate approximations.
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9) The Hartree-Fock energy is often expressed as

E =
N

∑
i
〈i|ĥ|i〉+

N

∑
i> j
〈i j||i j〉 (17)

where 〈i j||i j〉 are called the antisymmetrized two-electron integrals, which are
defined in general as:

〈i j||kl〉= 〈i j|kl〉−〈i j|lk〉 (18)

Realizing that 〈ii||ii〉= 0, we can also write the energy using an unrestricted sum-
mation as:

E =
N

∑
i
〈i|ĥ|i〉+ 1

2

N

∑
i j
〈i j||i j〉 (19)

10) The two-electron integrals 〈pq|rs〉 and 〈pq||rs〉 have the following symmetry
properties:

〈pq||rs〉=−〈pq||sr〉=−〈qp||rs〉= 〈qp||sr〉
= 〈rs||pq〉=−〈sr||pq〉=−〈rs||qp〉= 〈sr||qp〉 (20)

〈pq|rs〉= 〈rq|ps〉= 〈ps|rq〉= 〈rs|pq〉
= 〈qp|sr〉= 〈qr|sp〉= 〈sp|qr〉= 〈sr|qp〉 (21)

The notation 〈pq|rs〉 and 〈pq||rs〉 is called the Physicists’ notation. In some liter-
ature, the so-called Chemists’ notation is used where the two-electron integrals
are represented as (pq|rs). There exists a simple relationship between the two
types of notation:

(pq|rs) =
∫

ψ
∗
p(1)ψq(1)

1
r12

ψ
∗
r (2)ψs(2)d1d2 = 〈pr|qs〉 (22)

V. THE HARTREE-FOCK EQUATIONS

1) We have demonstrated that the Hartree-Fock energy can be evaluated using
the one- and two-electron integrals that involve spin-orbitals |ψi〉. But how can
we determine |ψi〉? According to the variational principle, the best approximation
to the exact wavefunction is given by the Hartree-Fock wavefunction that has the
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lowest energy. Thus, we need to find spin-orbitals that minimize the Hartree-Fock
energy. An important condition is that the spin-orbitals should remain orthonor-
mal during the minimization. We can perform such constrained minimization by
using the Lagrange’s method of undetermined multipliers. In this method, we
construct a functional that is equal to the Hartree-Fock energy plus an additional
term that specifies the orthonormality constraint:

L = E−
n

∑
i j

εi j(Si j−δi j) (23)

In Eq. (23) εi j are the Lagrange multipliers and Si j = 〈ψi|ψ j〉 is the overlap be-
tween two spin-orbitals.

2) Enforcing the variational condition δL = 0, we arrive at the equations that
prescribe which spin-orbitals minimize the Hartree-Fock energy:

f̂ |ψi〉= εi |ψi〉 (24)

According to these equations (which are called the Hartree-Fock equations), the
optimal spin-orbitals must be the eigenfunctions of the one-electron operator f̂
called the Fock operator:

f̂ (1) = ĥ(1)+
N

∑
j
(Ĵ j(1)− K̂ j(1)) (25)

Each eigenfunction |ψi〉 is assigned an eigenvalue εi called orbital energy. The
first term of the Fock operator is the familiar core Hamiltonian. The last two terms
Ĵ j and K̂ j are called the Coulomb and exchange operators, respectively.

3) The Coulomb operator is defined as:

Ĵ j(1) =
∫

ψ
∗
j (2)ψ j(2)

1
r12

d2 (26)

This operator describes a one-electron potential obtained by averaging the Coulomb
interaction 1

r12
of electron 1 and 2 over the space and spin coordinates of electron

2, weighted by the probability |ψ j(2)|2 d2 that electron 2 occupies the volume
element d2 at the position x2. By summing over all j 6= i, one obtains the total
averaged potential acting on the electron in ψi(1), arising from the N−1 electrons
in the other spin-orbitals.
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4) The exchange operator can be defined in terms of its action on a spin-orbital
|ψi〉:

K̂ j(1)ψi(1) =
∫

ψ
∗
j (2)ψi(2)

1
r12

d2ψ j(1) (27)

This operator has a somewhat strange form and does not have a simple classical
interpretation like the Coulomb operator. We see that the action of K̂ j(1) involves
an exchange of electrons 1 and 2. Unlike the local Coulomb operator, the ex-
change operator is nonlocal, since there does not exist a simple potential K̂ j(1)
uniquely defined at a local point in space x1. The result of operating K̂ j(1) on
ψi(1) depends on the value of ψi throughout all space, not just x1, as evident from
Eq. (27). Both Ĵ j(1) and K̂ j(1) are called integral operators, that is their action
involves integration over the coordinates of the electron 2.

5) Note that although the spin-orbitals |ψi〉 must be the eigenfunctions of the
Fock operator, the Fock operator itself depends on the spin-orbitals |ψi〉 via the
operators Ĵ j and K̂ j. This demonstrates the self-consistent nature of the Hartree-
Fock equations: changing the spin-orbitals leads to a modified Fock operator,
which gives rise to a new set of spin-orbitals as its eigenfunctions. In practice, the
Hartree-Fock equations are solved by starting with an initial set of spin-orbitals
|ψi〉 (also known as the guess) and optimizing the spin-orbitals by updating the
Fock operator and solving the eigenvalue problem (24) at every iteration. This
process is called the self-consistent field method (SCF).

6) According to the Hartree-Fock equations, electron on the spin-orbital |ψi〉 in-
teracts with electrons on other spin-orbitals only through an averaged (mean-field)
one-electron potential described by the Fock operator (and not directly through the
Coulomb operator 1

r12
). For this reason, the Hartree-Fock theory is often referred

to as the mean-field or independent-electron approximation.

7) The Hartree-Fock equations can be solved efficiently if we formulate the
eigenvalue problem (24) in the matrix form. Multiplying both sides of Eq. (24)
by 〈ψ j|, we obtain:

f ji = 〈ψ j| f̂ |ψi〉= εiδi j , (28)

Thus, the solution of the Hartree-Fock equations |ψi〉 (the “optimal” spin-orbitals)
must diagonalize the Fock operator matrix fi j. The matrix elements fi j can be
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expressed as:

f ji = 〈ψ j|ĥ|ψi〉+
N

∑
k
〈ψ j|Ĵk|ψi〉−

N

∑
k
〈ψ j|K̂k|ψi〉 (29)

where

〈ψ j|Ĵk|ψi〉=
∫

ψ
∗
j (1)ψi(1)

1
r12

ψ
∗
k (2)ψk(2)d1d2 = 〈 jk|ik〉 (30)

〈ψ j|K̂k|ψi〉=
∫

ψ
∗
j (1)ψk(1)

1
r12

ψ
∗
k (2)ψi(2)d1d2 = 〈 jk|ki〉 (31)

Thus, we obtain:

f ji = 〈 j|ĥ|i〉+
N

∑
k
〈 jk||ik〉 . (32)

8) Solving the Hartree-Fock equations allows us to assign an orbital energy εi
for each spin-orbital ψi. Since a Slater determinant is uniquely specified by a set
of N spin-orbitals that appear on its diagonal, the Hartree-Fock wavefunction can
be graphically represented using a molecular orbital diagram with energy levels
corresponding to the orbital energies and the spin-up/spin-down arrows as their
occupations.
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