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Week 7-8: Advanced electronic structure theory

IV. SLATER DETERMINANTS AND THE HARTREE-FOCK
APPROXIMATION

1) We need to make sure that the many-electron wavefunction written as a prod-
uct of spin-orbitals is by construction antisymmetric with respect to the permuta-
tion of any two electrons. When we considered an example of a helium atom in
the 38 state, it was easy to construct an antisymmetric wavefunction because there
were only two spin-orbitals. In general, for a two-electron system we can write a
wavefunction in the antisymmetric form as:

\w(1,2)) = %[%(1)1//2(2) )] (1)

The prefactor % is necessary to satisfy the normalization condition (¥/|¥) = 1.
We can rewrite this equation in a more compact form:

¥(1,2)) = «/(1,2)y1(1)y2(2) 2)

where <7 (1,2) is the antisymmetrizer operator that makes the resulting wave-
function antisymmetric with respect to the permutation of the electrons 1 and 2. It
also includes the normalization prefactor.

2) We can generalize Eq. (2) for a system with N electrons:

N
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As in the previous case, the antisymmetrizer operator <7 (1,...,N) contains the
normalization prefactor and is used to make sure that |¥(1,...,N)) is antisym-

metric with respect to the permutation of any two electrons.

3) Realizing that Eq. (3) is the definition of a determinant, we can write the wave-



function as:
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This form of the wavefunction is called the Slater determinant. We can easily
verify that Eq. (4) reduces to Eq. (1) for the two-electron system. Interestingly,
Eq. (4) demonstrates one of the postulates of quantum mechanics: each electron
is associated with every orbital, i.e. electrons are indistinguishable.

4) Since a determinant is uniquely defined by its diagonal, we can represent the
wavefunction more compactly as [¥) = |yjys ... Wy_; Wy). In this notation, the
normalization prefactor is implied.

5) Slater determinant is a very convenient mathematical object for representing
electronic wavefunctions. Permutation of two rows or two columns of the Slater
determinant is equivalent to permuting two orbitals or two electrons, resulting in
a sign change. If two columns or two rows are the same, the Slater determinant
is zero. Thus, Slater determinant naturally satisfies Pauli principle for any N-
electron system.

6) In the Hartree-Fock approximation, the electronic wavefunction is chosen
to be a Slater determinant. Using this form of the wavefunction, we can derive an
expression for the Hartree-Fock energy. We recall that
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Thus, each term on the r.h.s. of the energy expression can be written as an expec-

tation value (¥|O|¥) where O = ; or O = --. Each term (¥|O|%) can be written
tj

as:
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This 1s equal to:
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where there are N! — 3 more possibilities. The first term in this expansion is
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The second term 1is
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Since determinants change sign upon interchange of two columns, we get:
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Since 1 and 2 are just integration variables, we can switch them:
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Thus, the second term is the same as the first term in Eq. (8). Analogously, all
of the other N! — 2 permutations have the same value, so the integral (¥|O|¥)
becomes
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We can make an important observation: the spin-orbitals that are not being oper-
ated by an operator must be occupied by the same electron on the left and on the
right of Eq. (12) or the integral (¥|0|¥) will be identically zero, due to orthonor-
mality of the spin-orbitals.

We first assume that O = fz,-. The only non-zero term in Eq. (12) is:
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We now assume that O = % (i > j). The non-zero terms in Eq. (12) are:
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Using these results, we can write the Hartree-Fock energy expression as:

N N
E =) (ilhli)+ Y ((ijlij) — (ijlji) (15)
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7) Let us compare the energy (15) with the energy obtained in the Hartree ap-
proximation. We see that the Hartree energy is equal to the first two terms in the
Hartree-Fock energy expression. However, the third term in Eq. (15) that depends
on (ij|ji) does not appear in the Hartree approximation. This term is called the
exchange energy and the integrals (ij|ji) are called exchange integrals. While
the Coulomb integrals (ij|ij) can be interpreted as the energy of Coulomb repul-
sion between electron densities |y;(1)|? and |y;(2)|?, the exchange integrals do
not have a simple intuitive interpretation. They can be expressed as:

ilin = [ v w1 w@w; 2)a 16)
r12

Since i > j, the products y*(1)y;(1) involve pairs of different spin-orbitals, i.e.
the exchange interaction involves electrons that are delocalized between y; and
v;. Whereas the Coulomb repulsion described by the integrals (ij|ij) always
raises the energy (destabilization), the exchange energy involves a negative sign,
thus lowering the energy (stabilization).

8) The appearance of the exchange term in the Hartree-Fock energy expression is
due to indistinguishability of the electrons in the Hartree-Fock theory. In general,
the exchange interaction is a quantum mechanical effect that only occurs between
identical particles. For example, exchange interaction between two electrons with
opposite spins is zero. Thanks to the exchange interaction, the Hartree-Fock en-
ergies are much closer to the exact electronic energies than those obtained from
the Hartree approximation. For most of the molecular systems near equilibrium
geometries, the Hartree-Fock energy is equal to ~ 99 % of the exact electronic
energy. For this reason, the Hartree-Fock theory plays an important role in elec-
tronic structure theory. It provides a foundation for how we understand chemistry
and chemical bonding. In addition, it is often used as the first step towards more
accurate approximations.



9) The Hartree-Fock energy is often expressed as

E = Z i|A)i) +Z (ijllij) (17)

i>j

where (ij||ij) are called the antisymmetrized two-electron integrals, which are
defined in general as:

(ijl|kt) = (ijlkt) = (ij|lk) (18)

Realizing that (ii||ii) = 0, we can also write the energy using an unrestricted sum-
mation as:

N

E =) (ilhli) + ZuHu (19)
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10) The two-electron integrals (pg|rs) and (pq||rs) have the following symmetry
properties:

(pqllrs) = —(pql|sr) = — (gpl|rs) = (gp||sr)
= (rs||pq) = — (srl|pq) = — (rsllgp) = (s7||qp) (20)

(pqlrs) = (rq|ps) = {ps|rq) = (rs|pq)
= (gplsr) = (gr|sp) = (splgr) = (sr|qp) (21)

The notation (pq|rs) and (pq||rs) is called the Physicists’ notation. In some liter-
ature, the so-called Chemists’ notation is used where the two-electron integrals
are represented as (pg|rs). There exists a simple relationship between the two
types of notation:

(palr) = [ (OW() v Qw2 d 12 = (orlas) @

V. THE HARTREE-FOCK EQUATIONS

1) We have demonstrated that the Hartree-Fock energy can be evaluated using
the one- and two-electron integrals that involve spin-orbitals |y;). But how can
we determine |y;)? According to the variational principle, the best approximation
to the exact wavefunction is given by the Hartree-Fock wavefunction that has the



lowest energy. Thus, we need to find spin-orbitals that minimize the Hartree-Fock
energy. An important condition is that the spin-orbitals should remain orthonor-
mal during the minimization. We can perform such constrained minimization by
using the Lagrange’s method of undetermined multipliers. In this method, we
construct a functional that is equal to the Hartree-Fock energy plus an additional
term that specifies the orthonormality constraint:

g:E—ZSij(S,‘j—(Sij) (23)

In Eq. (23) g;; are the Lagrange multipliers and S;; = (y;|y;) is the overlap be-
tween two spin-orbitals.

2) Enforcing the variational condition 6. = 0, we arrive at the equations that
prescribe which spin-orbitals minimize the Hartree-Fock energy:

flwi) = &) (24)

According to these equations (which are called the Hartree-Fock equations), the
optimal spin-orbitals must be the eigenfunctions of the one-electron operator f
called the Fock operator:

N

F(1)=h(1)+ Y (J;(1) - K;(1)) (25)

J

Each eigenfunction |y;) is assigned an eigenvalue €; called orbital energy. The
first term of the Fock operator is the familiar core Hamiltonian. The last two terms
fj and K ; are called the Coulomb and exchange operators, respectively.

3) The Coulomb operator is defined as:

0= [V - 26)
This operator describes a one-electron potential obtained by averaging the Coulomb
interaction % of electron 1 and 2 over the space and spin coordinates of electron
2, weighted by the probability |y;(2)|>d2 that electron 2 occupies the volume
element d2 at the position x,. By summing over all j # i, one obtains the total
averaged potential acting on the electron in y;(1), arising from the N — 1 electrons
in the other spin-orbitals.



4) The exchange operator can be defined in terms of its action on a spin-orbital
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This operator has a somewhat strange form and does not have a simple classical
interpretation like the Coulomb operator. We see that the action of K;(1) involves
an exchange of electrons 1 and 2. Unlike the local Coulomb operator, the ex-
change operator is nonlocal, since there does not exist a simple potential K (1)
uniquely defined at a local point in space x;. The result of operating K (1) on
v;(1) depends on the value of y; throughout all space, not just X, as evident from
Eq. (27). Both J;(1) and K;(1) are called integral operators, that is their action
involves integration over the coordinates of the electron 2.

5) Note that although the spin-orbitals |y;) must be the eigenfunctions of the
Fock operator, the Fock operator itself depends on the spin-orbitals |y;) via the
operators J; and K;. This demonstrates the self-consistent nature of the Hartree-
Fock equations: changing the spin-orbitals leads to a modified Fock operator,
which gives rise to a new set of spin-orbitals as its eigenfunctions. In practice, the
Hartree-Fock equations are solved by starting with an initial set of spin-orbitals
|w;) (also known as the guess) and optimizing the spin-orbitals by updating the
Fock operator and solving the eigenvalue problem (24) at every iteration. This
process is called the self-consistent field method (SCF).

6) According to the Hartree-Fock equations, electron on the spin-orbital |y;) in-
teracts with electrons on other spin-orbitals only through an averaged (mean-field)
one-electron potential described by the Fock operator (and not directly through the
Coulomb operator %). For this reason, the Hartree-Fock theory is often referred
to as the mean-field or independent-electron approximation.

7) The Hartree-Fock equations can be solved efficiently if we formulate the
eigenvalue problem (24) in the matrix form. Multiplying both sides of Eq. (24)
by (y;|, we obtain:

fii = (Wil flwi) = & . (28)
Thus, the solution of the Hartree-Fock equations |y;) (the “optimal” spin-orbitals)
must diagonalize the Fock operator matrix f;;. The matrix elements f;; can be



expressed as:

fii = (wjlhlyi) +§ wilJelwi) §,<Wj‘kk“l’i> (29)
where
(ilddv) = [ v v Qw@)di2 = ki) GO)
(ilkilv) = [ (W)= v v a2 = Gik) - G
Thus, we obtain:
fii = (lhli) +]X::<jk\|ik> - (32)

8) Solving the Hartree-Fock equations allows us to assign an orbital energy &;
for each spin-orbital ;. Since a Slater determinant is uniquely specified by a set
of N spin-orbitals that appear on its diagonal, the Hartree-Fock wavefunction can
be graphically represented using a molecular orbital diagram with energy levels
corresponding to the orbital energies and the spin-up/spin-down arrows as their
occupations.



