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VI. RESTRICTED HARTREE-FOCK THEORY (RHF) FOR
CLOSED-SHELL MOLECULES

1) Previously, we derived equations of Hartree-Fock theory in terms of the spin-
orbitals |ψi〉. These equations are general, they can be applied to closed-shell
molecules (all electrons are paired) and open-shell molecules (some electrons are
unpaired). Before we discuss how the Hartree-Fock equations are solved in prac-
tice, we will introduce one simplification: we will assume that the molecule of
interest is closed-shell. In this case, the Hartree-Fock equations can be fully ex-
pressed in terms of the spatial orbitals.

2) We have already derived equations for closed-shell molecules within the
Hartree approximation. Since the Hartree energy expression includes the one-
electron and the Coulomb two-electron terms that appear in the Hartree-Fock
energy expression, we can reuse the results of our derivation.

EHF = EH−∑
i> j
〈i j| ji〉 (1)

As before, we assume that N is the (even) number of electrons and that the first N
spin-orbitals are occupied. Half of the electrons will occupy the first N/2 spatial
orbitals with spin α and the other half will occupy N/2 spatial orbitals with spin
β . Using the convention

|ψ2i−1(1)〉= |φi(1)〉 |α(1)〉 (2)
|ψ2i(1)〉= |φi(1)〉 |β (1)〉 i = 1, . . . ,N/2 (3)

the Hartree energy of a closed-shell molecule can be written as:

EH = 2
N/2

∑
i
〈φi|ĥ|φi〉+4

N/2

∑
i> j
〈φiφ j|

1
r12
|φiφ j〉 (4)
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We now consider the exchange term. As for the Coulomb term, there are four
types of exchange integrals corresponding to different combinations of spin labels.
For the 〈2i2 j|2 j 2i〉 and 〈(2i−1)(2 j−1)|(2 j−1)(2i−1)〉 types, we get:

〈2i2 j|2 j 2i〉=
∫

φ
∗
i (1)β

∗(1)φ∗j (2)β
∗(2)

1
r12

φ j(1)β (1)φi(2)β (2)d1d2

= 〈φiφ j|
1

r12
|φ jφi〉= 〈(2i−1)(2 j−1)|(2 j−1)(2i−1)〉 (5)

For the 〈(2i−1)2 j|2 j (2i−1)〉 type, we get:

〈(2i−1)2 j|2 j (2i−1)〉=
∫

φ
∗
i (1)α

∗(1)φ∗j (2)β
∗(2)

1
r12

φ j(1)β (1)φi(2)α(2)d1d2

= 0 (6)

Similarly,

〈2i(2 j−1)|(2 j−1)2i〉= 0 (7)

Thus, the closed-shell Hartree-Fock energy can be written as:

EHF = EH−2
N/2

∑
i> j
〈φiφ j|

1
r12
|φ jφi〉

= 2
N/2

∑
i
〈φi|ĥ|φi〉+

N/2

∑
i> j

(4〈φiφ j|
1

r12
|φiφ j〉−2〈φiφ j|

1
r12
|φ jφi〉)

= 2
N/2

∑
i
〈i|ĥ|i〉+

N/2

∑
i> j

(4〈i j|i j〉−2〈i j| ji〉) (8)

= 2
N/2

∑
i
〈i|ĥ|i〉+

N/2

∑
i j
(2〈i j|i j〉−〈i j| ji〉) (9)

where in the last two steps we redefined the one- and two-electron integrals in
terms of the spatial orbitals (〈i|ĥ|i〉= 〈φi|ĥ|φi〉 and 〈i j|kl〉= 〈φiφ j| 1

r12
|φkφl〉). Fol-

lowing a similar derivation, the elements of the Fock matrix can be expressed in
the spatial orbital basis as follows:

fi j = 〈i|ĥ| j〉+
N/2

∑
k
(2〈ik| jk〉−〈ik|k j〉) (10)

2



3) Solving the Hartree-Fock equations in the basis of spatial orbitals allows to
greatly reduce the computational cost. If K is the number of spin-orbitals, the
number of spatial orbitals is just K/2. While the total number of two-electron
integrals in the spin-orbital basis is K4, there are only K4/8 two-electron integrals
in the spatial-orbital basis. In our derivation we took advantage of the fact that
in closed-shell molecules the spin-orbitals with spins α and β are constrained (or
restricted) to have the same spatial orbitals. For this reason, this formulation of
the Hartree-Fock theory is called the restricted Hartree-Fock theory (RHF).

VII. RESTRICTED HARTREE-FOCK THEORY IN THE ATOMIC
ORBITAL BASIS

1) The Hartree-Fock equations can be solved by representing the orbitals on
a three-dimensional real-space grid where each grid point contains information
about the value of the orbital at a given position in space. To compute the inte-
grals (e.g., 〈i|ĥ| j〉 or 〈i j|kl〉), the orbitals can be integrated numerically. However,
a much more common and efficient way to solve the Hartree-Fock equations is to
express the orbitals as linear combinations of the atom-centered basis functions
(so-called “atomic orbitals”):

|φi〉 =
n

∑
µ

Ci
µ |χµ〉 (11)

where n is the total number of atomic orbitals. Note that we will use Greek letters
µ , ν , . . . to index the atomic orbitals.

2) In the simplest case, each basis function |χµ〉 can be represented as a single
Gaussian-type function defined in the Cartesian space (so-called Gaussian-type
orbital, GTO):

|χGTO
µ (r)〉= Nc xkylzme−αµr2

(12)

where r =
√

x2 + y2 + z2, Nc is the normalization coefficient, αµ is the parameter
that defines the shape of the basis function’s radial distribution, and the exponents
k, l,m are related to the projection of the basis function’s angular momentum.
In practice, the atomic orbitals |χµ〉 are usually expressed in terms of the linear
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combination of GTO’s with fixed coefficients (so-called contracted GTO):

|χµ(r)〉= ∑
ν

cν |χGTO
ν (r)〉 (13)

This allows to reduce the number of integrals that need to be evaluated during a
computation without sacrificing the accuracy. We will discuss the basis sets in
more detail later.

3) In the atomic-orbital formulation of the Hartree-Fock theory, the problem of
finding the optimal orbitals |φi〉 is reduced to the problem of finding the best Ci

µ

coefficients that minimize the Hartree-Fock energy for a specified basis set. As
we increase the size of the basis set n, the energy obtained at the end of the SCF
optimization will approach the lowest possible Hartree-Fock energy (so-called
Hartree-Fock basis set limit), which corresponds to the best (in the variational
sense) Hartree-Fock wavefunction.

4) We can now use Eq. (11) to formulate the equations of the RHF theory in the
atomic orbital basis. First, we consider expression for the energy:

E = 2
N/2

∑
i
〈i|ĥ|i〉+

N/2

∑
i j
(2〈i j|i j〉−〈i j| ji〉)

= 2
N/2

∑
i

n

∑
µν

Ci∗
µ Ci

ν 〈µ|ĥ|ν〉+
N/2

∑
i j

n

∑
µνρσ

Ci∗
µ C j∗

ν Ci
ρC j

σ (2〈µν |ρσ〉−〈µν |σρ〉)

= 2
n

∑
µν

Dµν 〈µ|ĥ|ν〉+
n

∑
µνρσ

DµρDνσ (2〈µν |ρσ〉−〈µν |σρ〉) (14)

where 〈µ|ĥ|ν〉 ≡ 〈χµ |ĥ|χν〉, 〈µν |ρσ〉 ≡ 〈χµ χν | 1
r12
|χρ χσ 〉, and we defined the

density matrix D that can be expressed in terms of the orbital coefficients as:

Dµν =
N/2

∑
i

Ci∗
µ Ci

ν (15)

5) We see that the energy in Eq. (14) is now expressed in terms of the one- and
two-electron integrals in the atomic-orbital basis and all of the information about
the Hartree-Fock wavefunction (i.e., about the orbitals) is now included in the
density matrix. This demonstrates an important advantage of solving the Hartree-
Fock equations in the atomic-orbital basis: as the molecular orbitals change during

4



the SCF iterations, only the density matrix changes, while the atomic-orbital one-
and two-electron integrals do not. As a result, the one- and two-electron integrals
can be computed only once (usually, before the start of the SCF iterations) and
stored in memory for later use, which significantly reduces the computational cost
of the Hartree-Fock theory.

6) Let us now turn our attention to the Hartree-Fock equations. Starting with
these equations in the spatial-orbital basis, we obtain:

f̂ |φi〉= εi |φi〉
n

∑
µ

〈ν | f̂ |µ〉Ci
µ = εi

n

∑
µ

〈ν |µ〉Ci
µ = εi

n

∑
µ

SνµCi
µ (16)

where we multiplied by 〈χν | on the left and defined the overlap matrix Sµν =

〈µ|ν〉. In the matrix form, Eq. (16) can be written as:

FC = SCεεε (17)

where εεε is a diagonal matrix of the orbital energies. The atomic-orbital basis Fock
matrix Fµν = 〈µ| f̂ |ν〉 has the following form:

Fµν = 〈µ|ĥ|ν〉+
n

∑
ρσ

Dρσ (2〈µρ|νσ〉−〈µρ|σν〉) (18)

7) We note that while in the spin- or spatial-orbital basis solving the Hartree-
Fock equations involves diagonalizing the Fock matrix, in the atomic orbital basis
it is not that straightforward due to the fact that the basis functions |χµ〉 are in
general non-orthogonal, which leads to the appearance of the overlap matrix S in
Eq. (17). In other words, Eq. (17) is no longer a simple eigenvalue problem, it is
a generalized eigenvalue problem. Nevertheless, we can still solve Eq. (17) rather
efficiently using a simple mathematical technique.

8) First, we construct an auxiliary matrix: the inverse square-root overlap ma-
trix (S−1/2). The S−1/2 matrix is defined such that S−1/2 S−1/2 = S−1 and can
be computed by diagonalizing the S matrix, taking the inverse square root of its
eigenvalues, and transforming back using the S matrix eigenvectors:

∑
µν

Uµµ ′SµνUνν ′ = sµ ′δµ ′ν ′
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(S−1/2)µν = ∑
µ ′

Uµµ ′
1
√sµ ′

Uνµ ′ (19)

Multiplying both sides of Eq. (17) by S−1/2 from the left, we obtain:

S−1/2 FS−1/2 S1/2 C = S−1/2 SCεεε

F̃ C̃ = C̃εεε (20)

9) Eq. (20) suggests that the generalized eigenvalue problem (17) can be con-
verted to a standard eigenvalue problem with the modified (transformed) Fock
matrix:

F̃ = S−1/2 FS−1/2 (21)

We can solve Eq. (20) by diagonalizing the F̃ matrix. Note that F and F̃ have the
same eigenvalues εεε , but their eigenvectors are different and are related to each
other as:

C̃ = S1/2 C (22)

Thus, in order to obtain the orbital coefficients C, we first construct the F̃ matrix,
diagonalize it, and then compute C = S−1/2 C̃.

10) The procedure that we used to solve the generalized eigenvalue problem in
Eq. (20) is known as the symmetric orthogonalization, it was first used in quan-
tum chemistry by Löwdin. As the name of this method suggests, it is based on the
transformation of the non-orthogonal atomic orbitals |χµ〉 to the the orthogonal
basis |χ̃µ ′〉 = ∑µ |χµ〉(S−1/2)µµ ′ where the eigenvalue problem can be solved by
diagonalizing the symmetric matrix F̃. In fact, it is easy to verify that in the basis
of |χ̃µ ′〉 the overlap matrix is the identity matrix.

11) We can now summarize the general procedure for solving the RHF equations
and computing the RHF energy using the atomic orbital basis. In short, here are
the key steps of the self-consistent field (SCF) optimization:

(a) Given the atomic-orbital basis set, compute the one- and two-electron inte-
grals in this basis.

(b) Using the overlap matrix S, form the S−1/2 matrix according to Eq. (19).
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(c) Form the initial (guess) Fock matrix according to Eq. (18), but neglecting the
contribution from the two-electron integrals.

(d) Using the initial Fock matrix, solve the generalized eigenvalue problem as
shown in Eq. (20) and compute the initial (guess) orbitals as C = S−1/2 C̃.

(e) Form the density matrix (Eq. (15)).

(f) Form the new Fock matrix including the contribution from the two-electron
integrals (Eq. (18)).

(g) Compute the Hartree-Fock energy. Note that the energy expression (14) can
be expressed in terms of the Fock matrix elements:

E =
n

∑
µν

Dµν(〈µ|ĥ|ν〉+Fµν) (23)

(h) Using the new Fock matrix, solve the generalized eigenvalue problem as
shown in Eq. (20) and compute the new orbitals as C = S−1/2 C̃.

(i) Form the new density matrix (Eq. (15)).

(j) Check convergence. If the change in the energy and the RMS of the density

matrix elements (∆rms =
√

∑µν(Dnew
µν −Dold

µν )2) is less than the predefined
threshold, the SCF optimization is finished. If not, go back to step (f).
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