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Week 7-9: Advanced electronic structure theory

VIII. FORM OF THE EXACT WAVEFUNCTION:
FULL CONFIGURATION INTERACTION

1) Previously, we have discussed how atom-centered basis sets can be used to
represent the molecular orbitals using the linear combination:
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As we increase the size of the basis set (n — o), the energy obtained at the end
of the SCF optimization will approach the lowest possible Hartree-Fock energy
(so-called Hartree-Fock basis set limit), which corresponds to the best (in the
variational sense) molecular orbitals and the Hartree-Fock wavefunction
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However, except in rare situations (such as when the number of electrons N = 1),
the Hartree-Fock energy is not equal to the exact electronic energy, even if the
basis set |xy) is complete. This is because in Hartree-Fock theory the many-
electron wavefunction is approximated as an antisymmetrized product of spin-
orbitals, which is not true for the exact wavefunction in general.

2) How can we construct the exact wavefunction? Let’s assume that the spin-
orbitals |y;(1)) form a complete one-electron basis set. Thus, any one-electron
wavefunction |¥(1)) can be represented as a linear combination:
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where a; is expansion coefficient. Now, let’s consider a two-electron wavefunc-
tion |¥(1,2)). We can represent it in a similar way if we keep the coordinate 2



constant:
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where the expansion coefficients a;(2) are now functions of the coordinate 2.
Since a;(2) is a one-electron function, it can be expanded in the complete set

i) as:
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Thus, the two-electron wavefunction can be expanded as:
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We require |¥(1,2)) to be antisymmetric: |¥(1,2)) = —|¥(2,1)). This holds if
bij = —bj;, bjj = 0. We can rewrite the expansion as:
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We obtain that an arbitrary antisymmetric two-electron wavefunction can be ex-
actly expanded in terms of all unique determinants formed from a complete set
of the one-electron spin-orbitals. This argument is readily expanded to more than
two variables, so that the exact wavefunction for the ground and excited states
of the N-electron system can be written as a linear combination of all possible
N-electron Slater determinants formed from a complete set of spin-orbitals | ;).

3) We can construct all possible determinants by starting with the Hartree-Fock
Slater determinant. Recall that for a basis set of n atomic orbitals, there are n
spatial and 2n spin-orbitals. Out of these 2n spin-orbitals, only N spin-orbitals
with lowest orbital energies are occupied in the Hartree-Fock determinant (where
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N is the number of electrons). The remaining 2n — N spin-orbitals are usually
called unoccupied or virtual. To distinguish between the two types of orbitals,
we will use indices i, j, k,[,m,n to denote the spin-orbitals occupied in the Hartree-
Fock determinant and a,b, c,d, e, f to label the unoccupied spin-orbitals.

4) Starting with the Hartree-Fock determinant |®g), we can construct new deter-
minants by exciting electrons from occupied to unoccupied spin-orbitals. First,
we construct singly excited determinants |®¢), which are formed by substituting
a single spin-orbital |y;) occupied in |®() by an unoccupied spin-orbital |y,). A
collection of all determinants |®¢) for all combinations of i and a will include all
possible singly excited determinants. In a similar way, we can construct doubly
excited determinants \CID?;’ ) by substituting a pair of spin-orbitals |y;) and |y;) by
|w,) and |y,,), respectively, for all unique combinations of i and j, a and b. If we
construct up to all possible N-electron excitations, the exact wavefunction can be
written as a linear combination:
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Here, the summation is performed over the unique Slater determinants, thus the
summation indices are restricted (e.g., i < j). Since every determinant in the ex-
pansion (8) can be defined by specifying an electronic configuration (or molecular
orbital diagram), a procedure of expanding the wavefunction in terms of the deter-
minants with different number of excitations is called configuration interaction.

5) InEq. (8), determinants |®;) = {|Py), |PY), |CI>§‘}’> , ...} form a complete set of
N-electron basis functions. Thus, any exact wavefunction can be expanded in the
form of Eq. (8). Therefore, to solve the electronic Schrodinger equation exactly,
we must work with (i) a complete (infinite) one-electron basis set of spin-orbitals
|y,) and (ii) a complete (infinite) N-electron basis set of Slater determinants. Un-
fortunately, this procedure is not practical, because we cannot work with infinite
basis sets.

6) If we work with a finite set of spin-orbitals {|y,)}*" - 1» all possible determi-
nants formed from these spin-orbitals will not form a complete N-electron basis
set. Solving the electronic Schrodinger equation in this basis would correspond to
the exact solution within the finite one-electron basis set represented by 2n spin-
orbitals. This procedure is called full configuration interaction (full CI). Even
for small systems and minimal basis sets the number of determinants that must be



included in the full CI computation is extremely large:
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For a closed-shell molecule in the singlet ground state (S = 0), it is not necessary to
consider excitations of electrons that change the number of ¢ and f3 electrons. In
this case, the number of determinants necessary to include in the full CI procedure
1s smaller:
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Here, the superscript indicates that only determinants with a total spin projection
Mg = 0 are included.

7) We can make several important conclusions by analyzing the form of the
exact wavefunction in Eq. (8). First, the true (exact) wavefunction is multi-
configurational. Although chemists are used to think that the electrons occupy
a well-defined set of molecular orbitals (a single electronic configuration), this
view of chemistry is only valid when a single electronic configuration (usually,
|®g)) dominates the expansion (8). In other words, this view is valid only when
the Hartree-Fock wavefunction provides a good approximation to the exact wave-
function. If more than one Slater determinant has a large contribution in Eq. (8),
the Hartree-Fock approximation breaks down and the electronic structure of a
molecule cannot be represented using a single electronic configuration. We will
discuss these situations in more detail later in the course.

8) Second, Eq. (8) suggests a systematic approach to go beyond the single-
determinant (Hartree-Fock) description of the electronic wavefunction. Rather
than including all possible determinants in the expansion (8), we can include de-
terminants only up to a certain excitation level. This approach is usually called
truncated configuration interaction. If we include up to all possible double ex-
citations, this approach is called configuration interaction with single and double
excitations (CISD). If the Hartree-Fock determinant |®y) dominates the expan-
sion (8) with a large coefficient (|co| > 0.9), CISD usually provides an accurate
approximation to the electronic wavefunction. If we include up to triple excita-
tions, we call the approach as configuration interaction with single, double, and
triple excitations (CISDT). We can continue by including the higher-order ex-
citations (e.g., CISDTQ, CISDTQS3, etc) up to all N-electron excitations, which
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is equivalent to full CI. One of the disadvantages of the CI approach is that the
number of excitations grows very quickly with the number of molecular orbitals,
even if the expansion (8) is truncated after the double excitations. Because of this,
the CI methods are usually limited to small molecules with modest basis sets.

9) How can we compute the exact energy? We denote the complete set of de-
terminants {|®y) , | DY), |CI>§’;’> ,...r as {|®)} where I indexes every determinant
starting from O (the Hartree-Fock determinant). Using this notation, we can
rewrite the exact wavefunction (8) in the general form:
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The electronic Schrodinger equation can be written in the following form:
H|Y¥)=E|¥) (12)
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where we used the fact that the Slater determinants are orthonormal (®;|®;) = Jy;.
Thus, to compute the exact energy we must diagonalize the H matrix, which is the
matrix representation of the electronic Hamiltonian in the basis of all Slater deter-
minants. Obviously, in the complete spin-orbital basis, the matrix H has infinite
dimensions, and the diagonalization problem is impossible to solve. In a finite
one-electron basis set, the Hamiltonian matrix has finite dimensions (Ngcr X Ny
where Ngcr 1s given by Eq. (9)), and the diagonalization is possible for one-
electron basis sets with small n. In practice, solving the eigenvalue problem (16)
for n > 18 becomes prohibitively expensive computationally, unless special tech-
niques are used.

10) To solve the eigenvalue problem (16), we must know how to evaluate the
matrix elements Hy; = (| H|d 7) with respect to any pair of Slater determinants
I and J. These matrix elements can be evaluated in terms of the one- and two-
electron integrals using the so-called Slater rules. These rules can be summarized
as follows:



Rule 1. Determinants are the same (|®;) = |D;) = |D)).
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where summations run over the spin-orbitals |y;,) that are occupied in |D).
Rule 2. Determinants are different by one spin-orbital (|®;) = |®), |P;) = |PY)).
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where | ;) is different from |®;) by substituting | y;) with |y, ) and the summation
runs over the spin-orbitals occupied in both determinants.

Rule 3. Determinants are different by two spin-orbitals (|®;) = |P), |Dy) =

|[©2)).
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where |®;) is different from |®;) by replacing |y;) and |y;) with |y,) and |y;).

Rule 4. Determinants are different by more than two spin-orbitals (|®;) = |D),
@) = [@-)).

(@|H|P) =0 (20)

The last rule is the result of the fact that the electronic Hamiltonian contains only
up to two-body terms. Although we did not derive Slater rules, their derivation
is very similar to the derivation of the Hartree-Fock energy expression that we
considered in detail. In fact, the Hartree-Fock energy expression is just a special
case of the Slater Rule 1.

11) The ground-state energy E obtained from the full CI procedure is the lowest
ground-state energy that is possible to obtain for a given finite basis set. The
difference between this exact energy and the Hartree-Fock ground-state energy
Eo computed using the same basis set is called the correlation energy:

Ecorr = E —Ey 1)

Note that E,,, < 0 is guaranteed by the variational principle. The correlation en-
ergy is a measure of the importance of electron correlation, which arises when



the motion of one electron in a molecule is influenced by the presence of all other
electrons. Since Hartree-Fock theory describes the interaction between two elec-
trons only through a one-particle (Fock) operator, it does not capture electron
correlation between electrons with opposite spins. Hartree-Fock does capture cor-
relation between electrons with the same spins because it satisfies Pauli principle
that prohibits two electrons with the same spins to occupy the same position in
space. Therefore, the correlation energy is mainly the measure of electron corre-
lation between electrons with the opposite spins.



