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Week 10-11: Electronic spectroscopy of atoms and molecules

I. MANY-ELECTRON ATOMS: ELECTRONIC CONFIGURATIONS,
ANGULAR MOMENTUM, SPIN

1) Now that we’ve discussed the foundations of electronic structure theory, we
are in the position to apply this knowledge to electronic spectroscopy of atoms
and molecules. We first turn our attention to the electronic structure of atoms.
First, we refresh some results from the hydrogen atom problem. The ground-state
electronic configuration of the H atom is (1s)1. There are also unoccupied 2s,
2p, 3s, 3p, 3d, etc orbitals. The H atom wavefunction is an eigenfunction of the
one-electron orbital angular momentum operator l̂2, its projection along the axis
of an applied external field l̂z, the one-electron spin operator ŝ2, and its projection
along the z-axis ŝz. This is a result of the fact that the Hamiltonian Ĥ commutes
with l̂2, l̂z, ŝ2, and ŝz. Thus, in addition to the principal quantum number n, each
wavefunction is labeled using the l, ml, s, and ms quantum numbers. The quantum
numbers satisfy the following property: −l≤ml ≤ l and−s≤ms≤ s. The H atom
energy only depends on n. As a result, the 2s and 2p wavefunctions (or 3s, 3p,
and 3d) are energetically degenerate.

2) For the many-electron atoms, Ĥ no longer commutes with the one-electron
operators l̂2, l̂z, ŝ2, and ŝz, due to the presence of the electron-electron repulsion
term. Instead, it commutes with the total orbital angular momentum operator L̂2,
its projection along the axis of an applied external field L̂z, the total spin operator
Ŝ2, and its projection along the z-axis Ŝz. Thus, the wavefunction of a many-
electron atom is an eigenfunction of all of these operators (in atomic units):

L̂2 |Ψ〉= L(L+1) |Ψ〉 (1)
L̂z |Ψ〉= ML |Ψ〉 (2)

Ŝ2 |Ψ〉= S(S+1) |Ψ〉 (3)

Ŝz |Ψ〉= MS |Ψ〉 (4)

Hence, each atomic wavefunction can be labeled using the L, ML, S, and MS quan-
tum numbers. As in the one-electron case, there is a similar relationship between
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these quantum numbers: −L≤ML≤ L and−S≤MS≤ S. The L̂z and Ŝz operators
can be easily expressed in terms of the corresponding one-electron operators:

L̂z =
N

∑
i

l̂z(i) (5)

Ŝz =
N

∑
i

ŝz(i) (6)

where the summation is performed over all N electrons. Expressions for the L̂2

and Ŝ2 in terms of l̂2 and ŝ2 are more complicated.

L̂2 = L̂+L̂−+ L̂2
z − L̂z (7)

Ŝ2 = Ŝ+Ŝ−+ Ŝ2
z − Ŝz (8)

where L̂+ and L̂− (Ŝ+ and Ŝ−) are raising and lowering operators. Importantly,
by making sure that |Ψ〉 is an eigenfunction of L̂2, L̂z, Ŝ2, and Ŝz, we can greatly
simplify the solution of the Schrödinger equation.

3) Our task now is to construct electronic wavefunctions for a given many-
electron atom. We recall that any electronic wavefunction can be expanded in
the basis of Slater determinants formed from a complete one-electron spin-orbital
basis set. Thus, we will use Slater determinants to represent the atomic wave-
functions. For simplicity, we will assume that we always work with a complete
one-electron basis set. Nevertheless, the results of our analysis will be applicable
to finite basis sets as well.

4) Since L̂z and Ŝz are just sums of the one-electron operators, any Slater deter-
minant wavefunction is an eigenfunction of these operators. The corresponding
eigenvalues are given as:

ML =
N

∑
i

mli (9)

MS =
N

∑
i

msi (10)

where mli and msi are the projections of the orbital angular momentum and spin
along the axis of an applied external field for a spin-orbital ψi. Note that, in
general, a Slater determinant is not an eigenfunction of L̂2 and Ŝ2. In fact, for
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many electronic states, the eigenfunctions of L̂2 and Ŝ2 are multi-determinant.

II. ATOMIC TERM SYMBOLS

1) In the absence of an external field, the energy of a many-electron atom depends
on the total quantum numbers L and S and is (2L+ 1)(2S+ 1)-degenerate. It is
convenient to represent each electronic state using a term symbol: 2S+1L, where
2S+ 1 is the total spin multiplicity and L is the total orbital angular momentum
labeled as S, P, D, F , G, . . . for L = 0, 1, 2, 3, 4, . . ., respectively.

2) An electronic configuration can correspond to one or several electronic states
with specific L and S (i.e., term symbols). To determine the term symbols and the
number of the L̂2 and Ŝ2 eigenfunctions, two rules can be used:
Rule 1: For each Slater determinant with given values of ML and MS, there is an
eigenfunction of L̂2 and Ŝ2 with L≥ |ML| and S≥ |MS|.
Rule 2: The quantum number L satisfies the property: L≤ ∑

N
i li, where li are the

orbital angular momenta of the individual orbitals |ψi〉. Similarly, for the spin
quantum number we obtain: S≤ N

2 .

3) The simplest many-electron system is the helium atom. From the hydrogen
atom energy level diagram, we expect the electronic configuration of the He atom
to be (1s)2. The electronic wavefunction can be expressed using a Slater determi-
nant:

|ΨHe〉= A ψ1sα(1)ψ1sβ (2)≡A 1sα(1)1sβ (2) (11)

For this wavefunction, ML = 0 and MS = 0. Note that the determinant |ΨHe〉 is
the only determinant that represents the (1s)2 electronic configuration. Using the
rules we stated earlier, we obtain: 0 ≤ L ≤ 0, i.e. L = 0. For the spin, we obtain
that 0 ≤ S ≤ 1. Thus, the two possible term symbols for this electronic state are
1S and 3S. However, according to rule 1, there is only one electronic state with
0≤ S≤ 1, since we were able to construct only one Slater determinant with ML =

0 and MS = 0. If this is the state with S = 1, there has to be a Slater determinant
with ML = 0 and MS = 1. However, such Slater determinant (A 1sα(1)1sα(2))
is zero, due to the Pauli principle. We conclude that the Slater determinant |ΨHe〉
corresponds to the state with a term symbol 1S.

4) For the lithium atom with electronic configuration (1s)2(2s)1, the wavefunc-
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tion can be represented using two Slater determinants:

|ΨLi〉= A 1sα(1)1sβ (2)2sα(3) ML = 0, MS =
1
2

(12)

|ΨLi〉= A 1sα(1)1sβ (2)2sβ (3) ML = 0, MS =−
1
2

(13)

Since we only need |ML| and |MS| to determine term symbols, we don’t need
to consider the configuration with ML = 0, MS = −1

2 . We observe that there is
only one determinant with ML = 0, MS =

1
2 . The possible values of L and S are:

L = 0; S = 1
2,

3
2 . Therefore, the possible term symbols are: 2S and 4S. Since a

determinant with MS = 3
2 is zero, we conclude that the only possible electronic

state for the configuration (1s)2(2s)1 is 2S.

5) For all of the states that we’ve dealt so far, we were able to represent the
electronic wavefunction using a single Slater determinant. From this analysis,
we can expect that the Hartree-Fock theory works well for the ground states of
the helium and lithium atoms. This is supported by the results from the full CI
computations, which demonstrate that the electronic wavefunction is dominated
by a single determinant.

6) We also note that the electrons that occupy closed electronic shells (e.g., (1s)2)
do not make non-zero contributions to ML, MS, L, and S. Therefore, when de-
termining the term symbols, these closed electronic shells can be omitted from
the analysis. This also suggests that atoms that have the same open-shell con-
figurations and different number of closed-shell orbitals will have the same term
symbols (i.e., (1s)1 ≡ (1s)2(2s)1 ≡ (1s)2(2s)2(2p)6(3s)1 ≡ . . .).

7) For the beryllium atom, the ground-state electronic configuration is (1s)2(2s)2.
The electronic wavefunction can be represented using a single Slater determinant:

|ΨBe〉= A 1sα(1)1sβ (2)2sα(3)2sβ (4) (14)

Since there is only one determinant possible for this electronic configuration and
all electronic shells are filled, the corresponding term symbol is 1S. In addition to
this Slater determinant, the exact wavefunction of the Be atom has a significant
contribution from the 1S state arising from the excited-state electronic configura-
tion (1s)2(2p)2.

8) For the boron atom, the ground-state electronic configuration is (1s)2(2s)2(2p)1.
The electronic wavefunction can be represented using the following Slater deter-
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minants:

|ΨB〉= A [core4]2p+1α(5) ML = 1, MS =
1
2

(15)

|ΨB〉= A [core4]2p0α(5) ML = 0, MS =
1
2

(16)

|ΨB〉= A [core4]2p−1α(5) ML =−1, MS =
1
2

(17)

In addition to these three determinants, there are three more determinants with
MS =−1

2 . Using the rules we have discussed above, we obtain that these determi-
nants correspond to the 2P electronic state.

9) A quicker algorithm for determining term symbols can be formulated as fol-
lows:

(a) Determine the range of all possible L and S values using rule 2 as: 0≤ L≤ ∑
N
i li

and 0≤ S≤ N
2 .

(b) Start with the largest MS value. Decrease MS until the smallest non-negative
value. For each MS value:

i. Start with the largest ML value. Decrease ML until the smallest non-
negative value. For each combination of ML and MS:
A. Write all possible Slater determinants.
B. Determine all possible term symbols using rule 1 for L≥ML and

S≥MS.

10) Using this algorithm, for the carbon atom in the ground-state (1s)2(2s)2(2p)2

electronic configuration, we obtain the following term symbols: 3P, 1D, and 1S.

11) To determine which of these states is the ground state, we can use Hund’s
rules:
Hund’s rule 1: For a given electronic configuration, the term with the largest
spin multiplicity (2S+1) has the lowest energy.
Hund’s rule 2: For the specific spin multiplicity, the term with the largest L has
the lowest energy.
Note that Hund’s rules generally hold for the ground-state electronic configura-
tion, but are often violated for the excited-state configurations.

12) We can predict the energy ordering for the states of the carbon atom arising
from the (1s)2(2s)2(2p)2 electronic configuration as: 3P < 1D < 1S.
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13) The above algorithm can be used to determine the term symbols when elec-
trons occupy the same electronic shell. If an electronic configuration contains
two open electronic shells, two electrons occupying two different shells cannot
occupy the same spin-orbital. In this case, we do not need to worry about the
Pauli principle and can use rules for adding angular momenta to determine the
term symbols. The rules state that two systems with angular momenta L1, S1
and L2, S2 couple to a system with L and S defined by the following equations:
|L1−L2| ≤ L≤ (L1 +L2) and |S1−S2| ≤ S≤ (S1 +S2).

14) As an example, consider electronic configuration (2s)1(2p)1. The first shell
(2s)1 gives rise to the term symbol 2S. The second shell corresponds to 2P. Using
the rules for adding angular momenta: 2S ⊗ 2P = 1P ⊕ 3P.

15) Evaluation of term symbols for electronic shells that are more than half-
filled can be simplified by taking advantage of the particle-hole equivalence. The
following electronic configurations have the same term symbols: (s)n ≡ (s)2−n,
(p)n ≡ (p)6−n, (d)n ≡ (d)10−n, etc.

III. SPIN-ORBIT COUPLING, SELECTION RULES IN ATOMIC
SPECTROSCOPY

1) We discussed that an electronic configuration corresponds to, in general, mul-
tiple states characterized by specific values of L and S. Each value of L is the
result of the coupling of the electrons’ orbital angular momenta. Similarly, each
value of S is the result of the coupling of the electrons’ spin angular momenta.
Since S and L are just two different types of angular momenta, they can couple
too. This interaction (known as spin-orbit coupling) is much weaker, but it can be
observed in the experiment and becomes stronger for heavier elements.

2) When L̂ and Ŝ couple, their quantum numbers are no longer good quantum
numbers. When spin-orbit interaction is not too strong, we can describe it using
the so-called L-S coupling scheme (or Russell-Saunders coupling scheme). In this
scheme, we introduce the total angular momentum operator Ĵ and its quantum
number J. For given L and S, the possible values of J are: |L−S| ≤ J ≤ (L+S).
As a result of the spin-orbit coupling, the electronic energy depends on the values
of J. This gives rise to splitting of the terms characterized by the 2S+1L symbols
into levels characterized by the 2S+1LJ symbols.

3) The energy ordering of the levels can be predicted using the third Hund’s rule:
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Hund’s rule 3: For a given term 2S+1LJ, in an atom with a half-filled subshell or
less, the level with the lowest value of J lies lowest in energy. If the shell is more
than half-filled, the level with the highest value of J is lowest.

4) What are the selection rules in the absorption spectra of many-electron atoms?
They are governed by the the conservation of the angular momenta. Recall that
a photon carries one unit of angular momentum. As a result, the allowed elec-
tronic transitions in many-electron atoms should satisfy the following require-
ments (dipole approximation):

• Must involve one electron that must change its orbital angular momentum
∆l =±1. Thus, electronic transitions between terms corresponding to the
same electronic configuration are not dipole-allowed.

• Must not change the total orbital angular momentum by more than one unit:
∆L = 0,±1.

• Must not change the total angular momentum by more than one unit: ∆J = 0,±1.

• Must not change the total spin: ∆S = 0.

There are some exceptions to the selection rules listed above:

• Transitions between L = 0 and L′ = 0 are not allowed.

• Transitions between J = 0 and J′ = 0 are not allowed.

• As the spin-orbit interaction increases, the spin selection rule (∆S = 0) be-
comes less firm.
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