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IV. DIATOMIC MOLECULES

1) In diatomic molecules, Ĥ no longer commutes with L̂2 and we only have three
good quantum numbers:

Ŝ2 |Ψ〉= S(S+1) |Ψ〉 (1)

Ŝz |Ψ〉= MS |Ψ〉 (2)
L̂z |Ψ〉= Λ |Ψ〉 (3)

As before, S is a positive integer number and −S ≤ MS ≤ S. The L̂z quantum
number is a good quantum number, but it is labeled as Λ for diatomics.

2) To obtain Λ for any electronic state of a diatomic molecule, we recall that
each atomic orbital can be classified using a one-electron ml quantum number. In
diatomics, the same one-electron quantum number is labeled as λ . For example,
for p+1 orbital ml = λ = +1. Orbitals with λ = 0,±1,±2,±3, . . . are labeled as
σ ,π,δ ,φ , . . ., respectively. To calculate Λ, all we need is to sum over all one-
electron λi of spin-orbitals ψi that appear in the electronic wavefunction:

Λ =
N

∑
i

λi (4)

3) In diatomic molecules, the energy depends on S and |Λ|. Each state with a dis-
tinct electronic energy can be represented using the diatomic term symbol 2S+1Λ,
where Λ is labeled as Σ, Π, ∆, Φ, . . . for Λ = 0, ±1, ±2, ±3, . . ., respectively. We
recall that for each state there is 2S+ 1 degeneracy associated with spin. Thus,
the Σ states are 2S+ 1 degenerate, while Π, ∆, Φ, . . . are 2× (2S+ 1) = 4S+ 2
degenerate.

4) The Σ states have additional symmetry. We recall that the Hamiltonian must
commute with the symmetry operators of the point group that the diatomic
molecules belong to (D∞h or C∞v). Therefore, the electronic wavefunction has
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to be an eigenfunction of these operators. In particular, for the σv operation, the
corresponding eigenvalue problem can be written as:

σ̂v |Ψ〉=±|Ψ〉 (5)

where +1 and−1 are the two possible eigenvalues. The Σ states corresponding to
+1 and−1 eigenvalues are labeled as Σ+ and Σ−, respectively. In this case, the en-
ergies of the Σ+ and Σ− states will generally be different. To find the eigenvalues
of the σ̂v operator, we must act this operator on every orbital in a determinant. The
following results can be used: σ̂v |σ〉 = |σ〉, σ̂v |π+1〉 = |π−1〉, σ̂v |δ+1〉 = |δ−1〉,
and so on.

5) One of the simplest diatomic molecules that we consider is BeH. The ground-
state electronic configuration is (1σ)2(2σ)2(3σ)1 and the electronic wavefunc-
tion can be written as:

|ΨBeH〉= A 1σα(1)1σβ (2)2σα(3)2σβ (4)3σα(5) ML = 0, MS =
1
2

(6)

There is also a determinant with MS =−1
2 . This wavefunction corresponds to the

2Σ+ state.

6) For BH, the ground-state electronic configuration is (1σ)2(2σ)2(3σ)2, the
electronic wavefunction can be written as:

|ΨBH〉= A [core4]3σα(5)3σβ (6) (7)

This wavefunction corresponds to the 1Σ+ state.

7) For CH, the ground-state electronic configuration is (1σ)2(2σ)2(3σ)2(1π)1,
the electronic wavefunction can be written as:

|ΨCH〉= A [core4]3σα(5)3σβ (6)1πα(7) (8)

This wavefunction corresponds to the 2Π state.

8) The NH molecule has the (1σ)2(2σ)2(3σ)2(1π)2 ground-state electronic con-
figuration. This electronic configuration gives rise to several determinants. For
each determinant, we can obtain the value of Λ by summing the values of λi cor-
responding to individual spin-orbitals. To determine the possible term symbols,
we can use the rules similar to the ones we used before:
Rule 1: For each Slater determinant with given values of Λ and MS, there is an
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eigenfunction of Ŝ2 with S≥ |MS|.
Rule 2: The quantum number S satisfies the property: S≤ N

2 .

9) By starting with Λ = 2 and MS = 1, and considering all of the Λ and MS
combinations with lower values, we obtain that the term symbols arising from the
ground-state electronic configuration of the NH molecule are: 3Σ−, 1∆, and 1Σ+.

10) The term symbols of diatomic molecules are equivalent for the following
electronic configurations: (σ)n ≡ (σ)2−n, (π)n ≡ (π)4−n, (δ )n ≡ (δ )4−n, etc.

11) All homonuclear diatomics have a center of inversion. As a result, their
wavefunctions must be the eigenfunctions of the inversion operator:

î |Ψ〉=±|Ψ〉 (9)

Wavefunctions corresponding to +1 and −1 eigenvalues are labeled as g (gerade)
and u (ungerade), respectively. Similarly, spin-orbitals |σ〉, |π〉, |δ 〉, . . . are also
the eigenfunctions of the inversion operator î. The |σg〉 spin-orbitals correspond to
the bonding σ -orbitals, while |σu〉 are the anti-bonding σ -orbitals. For π-orbitals,
|πu〉 is the bonding spin-orbital and |πg〉 is the anti-bonding. This determines the
relative energy ordering of these orbitals.

12) Examples of homonuclear diatomics and their electronic configurations:

• H2: (1σg)
2 (1Σ+

g state)

• He2: (1σg)
2(1σu)

2 (1Σ+
g state)

• Li2: (1σg)
2(1σu)

2(2σg)
2 (1Σ+

g state)

• Be2: (1σg)
2(1σu)

2(2σg)
2(2σu)

2 (1Σ+
g state)

• N2: (1σg)
2(1σu)

2(2σg)
2(2σu)

2(1πu)
4(3σg)

2 (1Σ+
g state)

• O2: (1σg)
2(1σu)

2(2σg)
2(2σu)

2(1πu)
4(3σg)

2(1πg)
2 (3Σ−g state)

• F2: (1σg)
2(1σu)

2(2σg)
2(2σu)

2(1πu)
4(3σg)

2(1πg)
4 (1Σ+

g state)

13) Let’s consider a difficult case: C2 molecule. It’s electronic structure is com-
plicated because the 3σg and 1πu orbitals are very close in energy. There are three
possible electronic configurations that give rise to several electronic states that lie
close to each other in energy:

• (1πu)
4 ≡ 1Σ+

g

• (1πu)
3(3σg)

1 ≡ 1Πu ⊕ 3Πu
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• (1πu)
2(3σg)

2 ≡ 3Σ−g ⊕ 1∆g ⊕ 1Σ+
g

The relative energies of these states obtained from the experiment:

• X1Σ+
g : 0.00 eV

• a3Πu: 0.09 eV

• b3Σ−g : 0.80 eV

• A1Πu: 1.04 eV

• B1∆g: 1.50 eV

• B′1Σ+
g : 1.91 eV

14) Now, let’s discuss the effect of spin-orbit coupling in the electronic spectra
of diatomics. Since Ĥ does not commute with L̂2, it also doesn’t commute with
the total angular momentum operator Ĵ2. The diatomic electronic wavefunction is
an eigenfunction of the Ĵz operator, a z-component of the total angular momentum
operator:

Ĵz |Ψ〉= Ω |Ψ〉 (10)

The range of the eigenvalues is given by Ω = Λ+S, Λ+S−1, . . . , Λ−S. When
spin-orbit coupling is taken into account, the electronic energy depends on the
value of Ω. The diatomic energy levels are labeled as 2S+1ΛΩ. For example, for
the 3∆ state, there are three levels: 3∆1, 3∆2, 3∆3.

15) Finally, we consider selection rules for diatomic molecules. The following
transitions are allowed (dipole approximation):

• Must not change the projection of the orbital angular momentum by more
than one unit: ∆Λ = 0,±1

• Must not change the projection of the total angular momentum by more than
one unit: ∆Ω = 0,±1

• Must not change the total spin: ∆S = 0

These selection rules indicate that there are two types of allowed transitions: (i)
those that do not change Λ (Σ→ Σ, Π→ Π, etc), and (ii) those that change Λ by
one (Σ→ Π, Π→ ∆, etc). As for the many-electron atoms, the ∆S = 0 selection
rule becomes less firm as the strength of the spin-orbit coupling increases. When
spin-orbit coupling becomes strong, ∆Ω = 0,±1 becomes the main selection rule.
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V. POLYATOMIC MOLECULES

1) In polyatomic molecules, the only two operators that commute with Ĥ are
Ŝ2 and Ŝz. To distinguish different electronic states, we can use the fact that the
symmetry operators R̂ of the point group of the molecule commute with Ĥ. Thus,
for polyatomic molecules, electronic wavefunction must be the eigenfunction of
R̂ and, therefore, can be transformed according to the corresponding irreducible
representation.

2) For atoms and diatomics, we used complex orbitals. For polyatomics, it is
generally more convenient to use real orbitals. For example, for water molecule
in the minimal basis, there are seven orbitals that transform according to irreps of
the C2v point group: (1a1)

2(2a1)
2(1b2)

2(3a1)
2(1b1)

2(4a1)
0(2b2)

0. The Hartree-
Fock wavefunction will have the form:

|ΨH2O〉= A [core4]1b2α(5)1b2β (6)3a1α(7)3a1β (8)1b1α(9)1b1β (10) (11)

The symmetry of the wavefunction is determined as the direct product of the sym-
metries of the individual spin-orbitals. Thus, any closed-shell electronic wave-
function transforms according to the totally symmetric irrep in the point group.
The symmetry of |ΨH2O〉 is A1. Therefore, the ground electronic state of water is
labeled as 1A1.

3) For the lowest-energy excited state of water, the electronic configuration is
(1a1)

2(2a1)
2(1b2)

2(3a1)
2(1b1)

1(4a1)
1(2b2)

0. There are three determinants with
MS = 0 and 1 that correspond to this electronic configuration:

|Ψ〉= A [core4]1b2α(5)1b2β (6)3a1α(7)3a1β (8)1b1α(9)4a1α(10) (12)

|Ψ〉= A [core4]1b2α(5)1b2β (6)3a1α(7)3a1β (8)1b1α(9)4a1β (10) (13)

|Ψ〉= A [core4]1b2α(5)1b2β (6)3a1α(7)3a1β (8)1b1β (9)4a1α(10) (14)

These determinants correspond to two electronic states: 3B1 and 1B1. According
to the experiment, the excitation energies of these two states are 7.0 and 7.4 eV,
respectively.

4) The ground-state electronic configuration of benzene is (a2u)
2(e1g)

4(e2u)
0(b2g)

0.
The Hartree-Fock ground-state wavefunction has the form:

|Ψ〉= A [core]a2uαa2uβe1gxαe1gxβe1gyαe1gyβ (15)
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This wavefunction corresponds to the 1A1g state. The lowest excited state of ben-
zene has the (a2u)

2(e1g)
3(e2u)

1(b2g)
0 configuration. This configuration gives rise

to six electronic states: 3E1u, 3B2u, 3B1u, 1E1u, 1B2u, and 1B1u.

5) For the polyatomic molecules, the following selection rules apply in absorp-
tion/emission spectroscopy:

• Γ(Ψg.s.)⊗Γ(µ)⊗Γ(Ψe.s.) must contain totally symmetric irrep

• Must not change the total spin: ∆S = 0

For example, for water the 1A1→ 1B1 transition is allowed. For benzene, the only
allowed transition among the ones we considered is 1A1g→ 1E1u.
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