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Week 2-3: Rotations of polyatomic molecules

III. QUANTUM MECHANICS OF RIGID ROTATIONS

A. The rotational Hamiltonian operator

1) The classical Hamiltonian function involves the angular momentum vec-
tors J with components (in the principal molecule-fixed coordinate system) J =

(Ja,Jb,Jc). In quantum mechanical description, we replace Ja,Jb,Jc by the cor-
responding differential operators Ĵ that involve coordinates describing rotations.
The appropriate coordinates are those that describe the orientation of the molecule
relative to a nonrotating space-fixed coordinate system with origin located at the
center of mass of the molecule. We will denote this coordinate system as (X ,Y,Z).
To specify the orientation of the molecule-fixed principal axes a,b,c with respect
to the space-fixed axes X ,Y,Z, we must specify three angles. These angles are
known as the Euler angles.

2) To define the Euler angles we assume that coordinate systems (a,b,c) and
(X ,Y,Z) share the same origin O, which is also the center of mass (see Levine
“Molecular spectroscopy” Figure 5.2). The three angles θ ,φ ,χ are defined as
follows:

(a) θ is the angle between OZ and Oc (0≤ θ ≤ π)

(b) φ is the angle between OX and the projection of Oc in the XY plane (0≤ φ ≤ 2π)

(c) χ is the angle of rotation about the Oc axis in the ab plane (0≤ χ ≤ 2π)

The angles θ and φ specify the orientation of the c axis, while χ specifies the
orientation of a and b. The line of intersection of the XY and ab planes is called
the line of nodes (ON).

3) We need to express the components of the angular momentum operator Ĵ in
terms of the Euler angles. We use the following fact from the theory of the orbital
angular momentum: the component of the angular momentum operator along
some axis is −ih̄ ∂

∂β
, where β is the angle of rotation about that axis. The angles
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φ , χ , and θ are the angles of rotation about the OZ, Oc, and ON axes, respectively.
Thus, we obtain:

ĴZ =−ih̄
∂

∂φ
Ĵc =−ih̄

∂

∂ χ
ĴN =−ih̄

∂

∂θ
(1)

The operators ĴZ, Ĵc, ĴN are simple, but they do not belong to the same coordinate
system [(X ,Y,Z) or (a,b,c)]. To derive expressions for Ĵa and Ĵb, we study the
relationship between different components of the angular momentum vector J in
classical mechanics. We can express J in terms of the unit vectors ei along axes
a,b,c:

J = eaJa + ebJb + ecJc (2)

The component JN can thus be written by projecting the vector J by the unit vector
eN:

JN = (eN · ea)Ja +(eN · eb)Jb +(eN · ec)Jc (3)

Similarly, for JZ we obtain:

JZ = (eZ · ea)Ja +(eZ · eb)Jb +(eZ · ec)Jc (4)

The dot products that appear in Eqs. (3) and (4) can be expressed in terms of the
trigonometric functions of φ , χ , and θ . Since expression for Jc is known, we can
regard Ja and Jb as two unknowns and obtain expressions for them from Eqs. (3)
and (4). We obtain:

Ja =−cos χ cscθJZ + cos χ cotθJc + sin χJN (5)
Jb = sin χ cscθJZ− sin χ cotθJc + cos χJN (6)

Replacing classical quantities by operators we can write expressions for the com-
ponents of the angular momentum operator in the molecule-fixed coordinate sys-
tem:

Ĵa = ih̄
[

cos χ cscθ
∂

∂φ
− cos χ cotθ

∂

∂ χ
− sin χ

∂

∂θ

]
(7)

Ĵb = ih̄
[
−sin χ cscθ

∂

∂φ
+ sin χ cotθ

∂

∂ χ
− cos χ

∂

∂θ

]
(8)

Ĵc =−ih̄
∂

∂ χ
(9)
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In a similar way, we can obtain expressions for the components of the angular
momentum operator in the space-fixed coordinate system:

ĴX = ih̄
[

cosφ cotθ
∂

∂φ
− cosφ cscθ

∂

∂ χ
+ sinφ

∂

∂θ

]
(10)

ĴY = ih̄
[

sinφ cotθ
∂

∂φ
− sinφ cscθ

∂

∂ χ
− cosφ

∂

∂θ

]
(11)

ĴZ =−ih̄
∂

∂φ
(12)

4) We have previously derived the expression for the Hamiltonian function in
classical mechanics. Replacing the classical quantities by the corresponding op-
erators, we can write the quantum-mechanical Hamiltonian of molecular rotation
as:

Ĥrot =
Ĵ2

a
2Ia

+
Ĵ2

b
2Ib

+
Ĵ2

c
2Ic

(13)

We can use this Hamiltonian to solve the rotational Schrödinger equation. In-
stead of solving it directly, we are going to find the eigenvalues of Ĥrot using the
commutation properties of the angular momentum operators.

5) The total angular momentum operator is given by:

Ĵ2 = Ĵ2
a + Ĵ2

b + Ĵ2
c = Ĵ2

X + Ĵ2
Y + Ĵ2

Z (14)

Ĵ2 =−h̄2
[

csc2
θ

∂ 2

∂φ 2 + csc2
θ

∂ 2

∂ χ2 −2cotθ cscθ
∂ 2

∂φ∂ χ
+

∂ 2

∂θ 2 + cotθ
∂

∂θ

]
(15)

The angular momentum operators have the following commutation relations:[
ĴX , ĴY

]
= ih̄ĴZ

[
ĴY , ĴZ

]
= ih̄ĴX

[
ĴZ, ĴX

]
= ih̄ĴY (16)

[
Ĵa, Ĵb

]
=−ih̄Ĵc

[
Ĵb, Ĵc

]
=−ih̄Ĵa

[
Ĵc, Ĵa

]
=−ih̄Ĵb (17)

[
Ĵ2, ĴF

]
= 0

[
Ĵ2, Ĵg

]
= 0

[
ĴF , Ĵg

]
= 0 (18)

where F ∈ {X ,Y,Z} and g ∈ {a,b,c}.
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6) Using the properties of the angular momentum operators, we can derive the
commutators of the Hamiltonian:[

Ĥrot , Ĵ2
]
= 0

[
Ĥrot , ĴZ

]
= 0 (19)

Thus, Ĥrot commutes with the total angular momentum operator Ĵ2 and one of
its space-fixed components ĴZ. This is, however, not the case for the angular
momentum component in the molecule-fixed coordinate system:[

Ĥrot , Ĵc
]
= ih̄

(
1

2Ia
− 1

2Ib

)(
ĴaĴb + ĴbĴa

)
(20)

B. Solutions of the rotational Schrödinger equation

1) The rotational Schrödinger equation can be written as

Ĥrot |Ψrot〉= Erot |Ψrot〉 (21)

Since Ĥrot commutes with Ĵ2 and ĴZ, the rotational eigenfunctions |Ψrot〉 can be
chosen as eigenfunctions of these two operators. From the theory of angular mo-
mentum operators we obtain:

Ĵ2 |Ψrot〉= J(J+1)h̄2 |Ψrot〉 , J = 0,1,2, . . . (22)
ĴZ |Ψrot〉= Mh̄ |Ψrot〉 , M = 0,±1, . . . ,±J (23)

where
√

J(J+1)h̄ is the magnitude of the total rotational angular momentum
and Mh̄ is its component along a space-fixed axis. Since the eigenfunctions of
ĴZ =−ih̄ ∂

∂φ
are eiMφ

(2π)1/2 , the rotor eigenfunctions have the general form:

|Ψrot〉=
1

(2π)1/2 F(θ ,χ)eiMφ (24)

The above equations apply to molecules that belong to any rotational type. Let’s
consider special cases for different types of rotors.

2) Spherical top:
The Hamiltonian takes the form:

Ĥrot =
Ĵ2

a
2Ib

+
Ĵ2

b
2Ib

+
Ĵ2

c
2Ib

=
Ĵ2

2Ib
(25)
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The Schrödinger equation becomes:

Ĵ2

2Ib
|Ψrot〉= Erot |Ψrot〉 (26)

Erot =
J(J+1)h̄2

2Ib
(27)

Note that the spherical top energy depends only on quantum number J. We can
express the rotational energy in cm−1 as follows:

Frot =
Erot

hc
= BJ(J+1) (28)

where B is the rotational constant that we defined in the classical theory of molec-
ular rotations. While Ĥrot in general does not commute with Ĵc, for the spherical
top Ĥrot involves only Ĵ2, which commutes with Ĵc. Hence, we obtain:[

Ĥrot , Ĵc
]
= 0 (29)

Thus, in addition to Ĵ2 and ĴZ, for the spherical top |Ψrot〉 is also an eigenfunction
of Ĵc. Since Ĵc =−ih̄ ∂

∂ χ
has a very similar form to that of ĴZ, we conclude that the

corresponding eigenvalue equation should be similar to that of Eq. (23), i.e.:

Ĵc |Ψrot〉= Kh̄ |Ψrot〉 , K = 0,±1, . . . ,±J (30)

where we assign a new quantum number K that labels the eigenfunctions of Ĵc and
describes the rotational angular momentum component along a molecule-fixed
axis of the spherical top. Similarly, the Ĵc eigenfunctions should have the form:

eiKχ

(2π)1/2 . Taking into account results obtained in Eqs. (22) to (24), we conclude that
the spherical top eigenfunctions should have the form:

|Ψrot〉=
1

2π
HJKM(θ)eiMφ eiKχ (31)

We therefore have three quantum numbers J, K, and M, but the energy depends
only on J. Each K and M can have 2J + 1 different values for each value of J.
Thus, the spherical top rotational levels are (2J+1)2-fold degenerate.

3) Linear molecule:
In linear molecules, the Hamiltonian only depends on angles θ and φ , not on χ .
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It has a similar form to that of the spherical top

Ĥrot =
Ĵ2

2Ib
(32)

but we should remember that for a linear molecule Ia = 0. The expression for the
total angular momentum operator simplifies:

Ĵ2 =−h̄2
[

csc2
θ

∂ 2

∂φ 2 +
∂ 2

∂θ 2 + cotθ
∂

∂θ

]
(33)

This turns out to be exactly the expression for the total orbital angular momentum
that can be found in many introductory books on quantum mechanics. Thus, the
eigenfunctions of Ĵ2 for linear or diatomic molecules are spherical harmonics:

|Ψrot〉= |YJM(θ ,φ)〉 (34)

Ĵ2 |YJM(θ ,φ)〉= J(J+1)h̄2 |YJM(θ ,φ)〉 (35)
ĴZ |YJM(θ ,φ)〉= Mh̄ |YJM(θ ,φ)〉 (36)

The energy expression has the form:

Frot =
Erot

hc
= BJ(J+1) (37)

In this case, each rotational energy level depends only on J and is (2J + 1)-fold
degenerate in M.

4) Symmetric top:
For the symmetric top only two principal moments of inertia are the same. As-
suming we have oblate top (Ia = Ib) so that c principal axis is the symmetry axis,
we can write the Hamiltonian as:

Ĥrot =
Ĵ2

a + Ĵ2
b

2Ib
+

Ĵ2
c

2Ic
=

Ĵ2− Ĵ2
c

2Ib
+

Ĵ2
c

2Ic
(38)

Since Ĵc commutes with Ĵ2 and Ĵ2
c , we conclude that

[
Ĥrot , Ĵc

]
= 0. Thus, the

oblate symmetric top wavefunction |Ψrot〉 is an eigenfunction of Ĵc:

Ĵc |Ψrot〉= Kh̄ |Ψrot〉 , K = 0,±1, . . . ,±J (39)
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Using this result, we can obtain the oblate top energy expression following the
derivation:

Ĵ2
c |Ψrot〉= K2h̄2 |Ψrot〉 (40)(

Ĵ2− Ĵ2
c

2Ib
+

Ĵ2
c

2Ic

)
|Ψrot〉= Erot |Ψrot〉 (41)(

J(J+1)h̄2−K2h̄2

2Ib
+

K2h̄2

2Ic

)
|Ψrot〉= Erot |Ψrot〉 (42)

J(J+1)h̄2

2Ib
+K2h̄2

(
1

2Ic
− 1

2Ib

)
= Erot (43)

Expressing the rotational energy in cm−1, we get for the oblate top:

Frot =
Erot

hc
= BJ(J+1)+(C−B)K2 (oblate) (44)

We note that (C−B) is negative, therefore the oblate top energy will decrease
with increasing K. For the prolate top, a similar derivation can be performed with
the only difference that we must interchange axes a and c. The resulting energy
expression is:

Frot =
Erot

hc
= BJ(J+1)+(A−B)K2 (prolate) (45)

Here, A−B is positive, thus the prolate top energy will increase with increasing K.
We also note that for A = B =C, the symmetric top energy expression will reduce
to that of the spherical top. Since the symmetric top |Ψrot〉 is an eigenfunction of
Ĵ2, ĴZ, and Ĵc, it has the following form:

|Ψrot〉=
1

2π
GJKM(θ)eiMφ eiKχ (46)

This form is identical to that of the spherical top. The symmetric top eigenfunc-
tions can be expressed using the so-called Wigner rotation matrices. More explic-
itly, the GJKM(θ) factor has the form:

GJKM(θ) =

√
2J+1

2
dJ

MK(θ) (47)

where

dJ
MK(θ) =

√
(J+M)!(J−M)!(J+K)!(J−K)!× (48)
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min{J−M,J−K}

∑
σ=max{0,−(K+M)}

(−1)J−K−σ [cos(θ/2)]K+M+2σ [sin(θ/2)]2J−K−M−2σ

σ !(K +M+σ)!(J−M−σ)!(J−K−σ)!

(49)

These expressions allow to calculate the symmetric top wavefunctions analytically
as a function of θ , φ , and χ .

As we can see from Eqs. (44) and (45), the symmetric top energy depends on J
and K2. There is a (2J + 1)-fold degeneracy associated with M. In addition, for
K 6= 0 there is a two-fold degeneracy associated with +|K| and −|K|. Thus, the
symmetric top degeneracy is 4J+2 for K 6= 0 and 2J+1 for K = 0.

5) Asymmetric top:
The asymmetric top Hamiltonian is

Ĥrot =
Ĵ2

a
2Ia

+
Ĵ2

b
2Ib

+
Ĵ2

c
2Ic

(50)

Since all moments of inertia are different, there is no simplification. The rotational
wavefunctions have the general form that we obtained before:

|Ψrot〉=
1

(2π)1/2 F(θ ,χ)eiMφ (51)

Because Ĥrot does not commute with Ĵc, for the asymmetric top K is no longer a
good quantum number.

The asymmetric top energy expression cannot be obtained in closed form for arbi-
trary values of J. To solve the Schrödinger equation, we expand |Ψrot〉 in terms of
some known complete orthonormal basis set. A convenient choice is to use a set
of the symmetric top wavefunctions, which are functions of the same coordinates
(the Euler angles) that satisfy the same boundary conditions as the asymmetric
top functions. Since for the asymmetric top Ĥrot commutes with Ĵ2 and ĴZ, each
wavefunction is labelled with J and M quantum numbers and can be expanded as
follows:

|Ψrot〉= |ψJMτ〉=
J

∑
K=−J

CJMKτ |φJMK〉 (52)

where CJMKτ are the expansion coefficients and |φJMK〉 are the symmetric top
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wavefunctions that we discussed earlier

|φJMK〉=
1

2π
GJKM(θ)eiMφ eiKχ (53)

In Eq. (52), τ is an index (not a quantum number) that labels the asymmetric
top wavefunctions in the order with increasing energy. The convention is that
τ runs from −J to J as the energy increases. There is a total of 2J + 1 terms
in the expansion on the right-hand side of Eq. (52) and, thus, there are 2J + 1
wavefunctions |ψJMτ〉 for specfic values of J and M.

We can now write the Schrödinger equation using the expansion in Eq. (52) and
express it in the matrix form projecting by |φJ′M′K′〉 on the left:

Ĥrot |ψJMτ〉= Eτ |ψJMτ〉 (54)

Ĥrot

J

∑
K=−J

CJMKτ |φJMK〉= Eτ

J

∑
K=−J

CJMKτ |φJMK〉 (55)

J

∑
K=−J

〈φJ′M′K′| Ĥrot |φJMK〉CJMKτ = Eτ

J

∑
K=−J

CJMKτ 〈φJ′M′K′|φJMK〉 (56)

J

∑
K=−J

〈φJ′M′K′| Ĥrot |φJMK〉CJMKτ = δJ′JδM′MCJMK′τEτ (57)

where we used the fact that the symmetric top wavefunctions are orthogonal. We
see that the right-hand side of Eq. (57) is zero unless J = J′ and M =M′. This indi-
cates that the asymmetric top Hamiltonian matrix elements 〈φJ′M′K′| Ĥrot |φJMK〉= 0
if J 6= J′ and M 6= M′ (this is a consequence of Ĥrot commuting with Ĵ2 and ĴZ).
We then obtain a simplified form of the Schrödinger equation

J

∑
K=−J

〈φJMK′| Ĥrot |φJMK〉CJMKτ =CJMK′τEτ (58)

J

∑
K=−J

HJM
K′KCJMτ

K =CJMτ
K′ Eτ (59)

HJMCJM = CJME (60)

where we defined HJM
K′K ≡ 〈φJMK′| Ĥrot |φJMK〉 and CJMτ

K ≡CJMKτ . For a specific
value of J, HJM is a matrix with dimensions 2J + 1 by 2J + 1. Eq. (60) can be
solved by diagonalizing HJM for each value of J and M to find the energy levels
Eτ (eigenvalues) and the mixing coefficients CJMτ

K′ (eigenvectors).
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If we choose the oblate-top wavefunctions as the basis set |φJMK〉, the matrix
elements HJM

K′K have the form:

HJM
K′K =

hc
2

δKK′
[
(2C−A−B)(K′)2 +(A+B)J(J+1)

]
+

hc
4

δK(K′+2)(B−A)
√
[J(J+1)−K′(K′+1)] [J(J+1)− (K′+1)(K′+2)]

+
hc
4

δK(K′−2)(B−A)
√
[J(J+1)−K′(K′−1)] [J(J+1)− (K′−1)(K′−2)]

(61)

Note that even and odd values of K do not mix. Prolate-top wavefunctions consti-
tute another satisfactory choice of the basis set.

For J = 0, the matrix HJM contains only one element H00. In this case, E = H00 = 0,
and the J = 0 asymmetric top wavefunction is identical to the symmetric-top J = 0
wavefunction. For J = 1, we have K = −1,0,+1. The Hamiltonian matrix has
the form:

H1M =

hc
2 (2C+A+B) 0 hc

2 (B−A)
0 hc(A+B) 0

hc
2 (B−A) 0 hc

2 (2C+A+B)

 (62)

The eigenvalues can be calculated either by diagonalizing the 3×3 matrix H1M or
by solving the 3×3 secular determinant equation det(H1M−1E) = 0. We obtain
in the order of increasing energy:

F1 =
E1

hc
= (B+C) , F2 = (A+C) , F3 = (A+B) (63)

For large J values, HJM can be diagonalized numerically.

In asymmetric tops, the rotational constant B can take any value between A and C.
In the limit B = A, we have an oblate symmetric top; for B =C, we have a prolate
symmetric top. We can introduce the so-called Ray’s asymmetry parameter

κ =
2B−A−C

A−C
(64)

For the oblate symmetric top, κ = 1, while for the prolate symmetric top κ =−1.
For the asymmetric tops, κ takes a value between 1 and −1. If we vary B while
keeping A and C fixed, we can draw a correlation diagram showing the energy
of the asymmetric top as a function of κ (see Levine “Molecular spectroscopy”
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Figure 5.4). Instead of using the index τ to label the asymmetric top energies and
wavefunctions, we can use the values of |K| for the prolate- and oblate-top levels
that correlate with the asymmetric top levels. These values are usually written as
subscripts to the J value: JKprKob (sometimes labeled as JKaKc).
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