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Week 2-3: Rotations of polyatomic molecules

IV. SELECTION RULES IN ROTATIONAL SPECTROSCOPY

1) A transition between two states ψn and ψm is allowed if the corresponding
transition dipole matrix element is non-zero:

Rnm = 〈ψn|µ̂|ψm〉=
∫

ψ
∗
n µ̂ψmdτ (1)

The dipole moment operator µ̂ is given by

µ̂ = ∑
i

qiri (2)

where the sum runs over electrons and nuclei. Note that Rnm has three compo-
nents corresponding to the three components of the dipole moment operator (e.g.,
x,y,z).

2) Within the Born-Oppenheimer approximation, ψm can be written as a product
of the rotational, vibrational, and electronic wavefunctions. For pure rotational
transitions, we can write:

ψm = ψrot,m(θ ,φ ,χ)ψvib(Q;θ ,φ ,χ)ψe(re;θ ,φ ,χ,Q) (3)
ψn = ψrot,n(θ ,φ ,χ)ψvib(Q;θ ,φ ,χ)ψe(re;θ ,φ ,χ,Q) (4)

where Q are the vibrational normal coordinates and re are the coordinates of the
electrons.

3) We therefore obtain for the transition dipole matrix element:

Rnm =
∫ ∫

ψ
∗
rot,nψ

∗
vib

[∫
ψ
∗
e µ̂ψe dτe

]
ψvibψrot,m dQdτrot (5)

The integral over the electronic coordinates (in square brackets) can be written as
a vector µµµ(Q) that depends on the normal coordinates of vibrations. Furthermore,
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integrating over the vibrational wavefunction

Rnm =
∫

ψ
∗
rot,n

[∫
ψ
∗
vibµµµ(Q)ψvib dQ

]
ψrot,m dτrot (6)

the transition dipole matrix element can be expressed as

Rnm =
∫

ψ
∗
rot,n(θ ,φ ,χ)µµµ(θ ,φ ,χ)ψrot,m(θ ,φ ,χ)dτrot (7)

where µµµ(θ ,φ ,χ) denotes vibrationally averaged permanent dipole moment.

4) We can express µµµ(θ ,φ ,χ) as

µµµ(θ ,φ ,χ) = µ0n(θ ,φ ,χ) (8)

where µ0 is the magnitude of the dipole moment of the molecule and n(θ ,φ ,χ) is
the unit vector for the direction of µµµ in space as a function of the Euler angles.
Combining all of these results and introducing the integration limits we can write:

Rnm = µ0

∫
π

0
sinθ dθ

∫ 2π

0
dφ

∫ 2π

0
dχ ψ

∗
rot,n(θ ,φ ,χ)n(θ ,φ ,χ)ψrot,m(θ ,φ ,χ)

(9)

An important result is that Rnm = 0 if the molecule does not have a permanent
dipole moment (µ0 = 0). In such cases, no microwave spectrum is observed. Ex-
amples of molecules that don’t have microwave spectrum: H2, O2, N2, F2, CO2,
BF3, CH4, benzene. Selection rules for the various rotational types are governed
by the integral over (θ ,φ ,χ) in Eq. (9). We will summarize the main results
below.

5) Spherical top molecules:
Spherical tops can be considered as a special case of symmetric tops and should
have the same selection rules. However, due to high symmetry, their permanent
dipole moment must be zero (µ0 = 0). Therefore, pure rotational absorption spec-
tra cannot be observed for (rigid) spherical tops. In practice, extremely weak
transitions may be observed due to vibration-rotation interaction (e.g., centrifugal
distortion).

6) Linear molecules:
In this case, ψrot,m and n do not actually depend on χ . The selection rules for this
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rotational type are:

µ0 6= 0; ∆J =±1; ∆M = 0,±1 (10)

Mathematically, these rules can be derived by expressing ψrot,m in terms of the
spherical harmonics and evaluating the integral in Eq. (9). Physically, ∆J = ±1
represents the absorption (or emission) of a single photon with one h̄ quantum of
the angular momentum.

Consider an allowed transition between two states with quantum numbers J and
J + 1. Using the rotational energy expression for linear molecules, we can write
the excitation energy as:

∆Frot = B(J+1)(J+2)−B(J)(J+1) = 2B(J+1) (11)

Thus, the lowest-energy absorption line corresponding to the J = 0→ 1 transition
will appear in the spectrum at energy 2B. The second line for the J = 1→ 2 will
give rise to a line at energy 4B. We note that all absorption lines in the microwave
spectrum of a linear molecule are equally-spaced with an energy difference of
2B. In practice, this energy difference may deviate from 2B due to the vibration-
rotation interaction.

7) Symmetric top molecules:
Symmetric tops can have a permanent dipole moment, but due to symmetry it
must lie along the principal axis that corresponds to the unique principal moment
of inertia (a for prolate, c for oblate). As a result, the vector n(θ ,φ ,χ) must be
aligned with this symmetry axis and its components in the space-fixed coordinate
are:

n = (sinθ cosφ ,sinθ sinφ ,cosθ) (12)

Since the components of n do not depend on χ , integration over χ in Eq. (9) will
give a non-zero result only if ∆K = 0. Thus, for the symmetric-top molecules the
following selection rules apply:

µ0 6= 0; ∆J =±1; ∆M = 0,±1; ∆K = 0 (13)

Although the symmetric-top energy depends on both J and K, the energy spacing
between the absorption lines in the symmetric-top microwave spectra will depend
only on the rotational constant B, since ∆K = 0 according to the selection rules.
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Similar to the case of the linear molecules, we obtain:

∆Frot = 2B(J+1) (14)

Thus, the symmetric top lines are equally-spaced with an energy difference of 2B.
As for the linear molecules, the vibration-rotation coupling may affect the spacing
between the lines and, in addition, introduce dependence of the allowed transitions
on K.

8) Asymmetric top molecules:
Because K is not a good quantum number for the asymmetric-top molecules, there
is no general restriction on K. In this case, the following selection rules apply:

µ0 6= 0; ∆J = 0,±1; ∆M = 0,±1 (15)

We note that the asymmetric-top transitions with ∆J = 0 correspond to lines with
non-zero frequency, which is not the case for the symmetric top. In addition, it
is possible that the asymmetric-top levels with quantum number J− 1 lie above
a level with quantum number J, giving rise to microwave absorption lines with
∆J = −1 in the spectrum. Microwave transitions with ∆J = −1, 0, and +1 are
called P-, Q-, and R-branch lines, respectively. These lines usually do not appear
as branches in the spectrum and are usually interspersed together.

The dipole moment of an asymmetric top can be resolved into components along
the three principal axes

µµµ(θ ,φ ,χ) = µaea +µbeb +µcec (16)

Transitions due to a non-vanishing dipole-moment component da are called a-type
transitions. For each type of transitions the following selection rules apply:

a-type: µa 6= 0 ∆Kpr = 0,±2,±4, . . . ∆Kob =±1,±3,±5, . . . (17)
b-type: µb 6= 0 ∆Kpr =±1,±3,±5, . . . ∆Kob =±1,±3,±5, . . . (18)
c-type: µc 6= 0 ∆Kpr =±1,±3,±5, . . . ∆Kob = 0,±2,±4, . . . (19)

In general, an asymmetric top can have non-zero components of µµµ along all three
axes, and all three types of transitions are possible. However, if there is a C2
axis, then this is a principal axis, and the dipole moment lies along this axis. In
this case, we get only one type of transitions. The patterns of the asymmetric-top
absorption lines are complex. In the microwave spectrum, P-, Q-, and R-branch,
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a-, b-, and c-type lines with high and low values of J are scattered among each
other, with no clear-cut pattern.

9) At room temperature, many rotational levels are well-populated because of the
small energy differences between rotational levels. Thus, in contrast to electronic
or vibrational absorption spectra, most of the lines in a pure-rotational absorption
spectrum do not involve the ground state.

V. VIBRATION-ROTATION INTERACTION

1) So far we described rotations of molecules using the rigid rotor approximation
by assuming that the nuclear Hamiltonian takes the form

ĤN = T̂rot +
[
T̂vib +U

]
= Ĥrot + Ĥvib (20)

where we neglected a contribution from the coupling of the rotational and vibra-
tional kinetic energy (T̂rot−vib ≈ 0). In reality, molecules vibrate and thus are not
completely rigid. As the vibrational energy of the molecule increases, the average
internuclear distance increases. This increases the effective moments of inertia,
and therefore decreases the rotational energy.

2) We can define an effective rotational constant B[v] for a given vibrational
state

B[v] = Be−∑
i

α
B
i (vi +

1
2
) (21)

where Be is the equilibrium rotational constant (a rotational constant with mo-
ments of inertia calculated at the equilibrium geometry) and the sum is over all
vibrational modes of the molecule (including separate terms for each mode of a
degenerate vibration). The constant αB

i is called rotation-vibration interaction
constant. Its value is positive for most of the molecules. Eq. (21) was obtained
using perturbation theory where the rotation-vibration term T̂rot−vib was treated as
a perturbation in the Hamiltonian. There are higher-order terms in this expansion
[of the type γB

i j(vi+
1
2)(v j+

1
2)], which are usually very small. Similar expressions

for the effective rotational constants A[v] and C[v] can be obtained:

A[v] = Ae−∑
i

α
A
i (vi +

1
2
) (22)
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C[v] =Ce−∑
i

α
C
i (vi +

1
2
) (23)

3) The constants αB
i can be measured experimentally; however, more common

way is to evaluate αB
i from theoretical computations. By combining the experi-

mentally measured effective rotational constants B[v] with the computed values of
αB

i , empirical values for the equilibrium constants Be can be obtained. The latter
constants can be used to obtain information about the equilibrium structure of the
molecule directly from the experiment.

4) Another effect that influences the rotational energies of molecules is called
centrifugal distortion. Because molecules are not completely rigid, as the rota-
tional quantum number increases, the mean values of bond distances in a poly-
atomic molecule increase. This again decreases the rotational energy as compared
to that of rigid rotor. Taking into account the centrifugal distortion, the energy of
an oblate symmetric top can be written as:

F = B[v]J(J+1)+(C[v]−B[v])K
2−DJJ2(J+1)2−DJKJ(J+1)K2−DKK4

(24)

Usually, the centrifugal-distortion constants DJ, DJK , and DK are very small
(∼ 10−3 of the rotational energy), and thus their effect on the energy is very
small. For CF3C≡CH, B0 = 0.095998 cm−1, while DJ = 8× 10−9 cm−1 and
DJK = 2×10−7 cm−1. However, for molecules with light atoms (such as hydro-
gen), it can be significant.
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