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Week 4-6: Vibrations of polyatomic molecules

I. CLASSICAL MECHANICS OF MOLECULAR VIBRATIONS

1) We have discussed that the nuclear motion can be separated into translational,
rotational, and vibrational motions. If the molecule has N nuclei, then the nuclear
wavefunction is a function of 3N coordinates. The translational wavefunction
depends on three coordinates that define the position of the center of mass in a
space-fixed coordinate system. For a nonlinear molecule, the rotational wave-
function depends on three Euler angles (θ , φ , and χ) that define the orientation of
the principal axes a, b, and c with respect to a nonrotating set of axes with origin
at the center of mass. For linear molecules, the rotational quantum number K = 0,
and the wavefunction only depends on θ and φ . Thus, the vibrational wavefunc-
tion will depend on (3N − 5) or (3N − 6) coordinates for linear or nonlinear
molecules, respectively.

2) As we discussed before, in the description of molecular vibrations we work in
the coordinate system that has its origin at the center of mass of the molecule and
its axes directed along the principal axes of rotation (a, b, c).

3) In the classical mechanical description, our model for molecular vibration is
a set of N point masses (nuclei), each of which vibrates about an equilibrium
position (determined by solving the electronic Schrödinger equation). If aα , bα ,
and cα are the Cartesian coordinates of the nucleus α , and aα,e, bα,e, and cα,e
are the equilibrium values of these coordinates, we can define the 3N Cartesian
displacement coordinates:

xα = aα −aα,e yα = bα −bα,e zα = cα − cα,e (1)

These coordinates measure the displacement of each nucleus from equilibrium.
Since there is (3N−5) or (3N−6) vibrational coordinates, not all displacement
coordinates are independent. They are connected by five or six relations, which
specify how the axes (a, b, c) rotate and translate with the molecule.
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4) The classical kinetic energy of vibration about the equilibrium positions:

T =
1
2

N
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α=1

mα

[(
dxα

dt

)2

+
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dyα

dt

)2

+

(
dzα
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)2
]

(2)

To simplify this equation, we define the mass-weighted Cartesian displacement
coordinates q1, . . . ,q3N:

q1 =
√

m1x1 q2 =
√

m1y1 q3 =
√

m1z1 (3)
q4 =

√
m2x2 . . . q3N =

√
mNzN (4)

Then, the kinetic energy has the form:

T =
1
2
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)2

=
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q̇2
i (5)

T =
1
2
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q̇1 q̇2 . . . q̇3N

)


q̇1
q̇2
...

q̇3N

=
1
2

q̇Tq̇ (6)

5) The potential energy of vibration is a function of x1, . . . ,zN; hence it can
be written as a function of the mass-weighted coordinates q1, . . . ,q3N . For a
molecule, the vibrational potential energy is given by U , the sum of the electronic
energy and the nuclear repulsions (the solution of the electronic Schrödinger equa-
tion):

V =U(q1, . . . ,q3N) (7)

From now on, we will use V to denote the vibrational potential energy. We can
expand the potential energy in a Taylor series about the equilibrium positions
(q1 = q2 = . . .= q3N = 0):

V =Ve +
3N

∑
i=1

(
∂V
∂qi

)
e
qi +

1
2

3N

∑
i=1

3N

∑
k=1

(
∂ 2V

∂qi∂qk

)
e
qiqk

+
1
6

3N

∑
i=1

3N

∑
j=1

3N

∑
k=1

(
∂ 3V

∂qi∂q j∂qk

)
e
qiq jqk + . . . (8)

where Ve is the equilibrium electronic energy (including nuclear repulsion) and the
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subscript e indicates that the derivatives are evaluated at the equilibrium nuclear
configuration. At the equilibrium, the potential energy is a minimum:(

∂V
∂qi

)
e
= 0, i = 1, . . . ,3N (9)

We will neglect terms higher than quadratic in the Taylor expansion. If the vibra-
tions are small, this is a good approximation. We obtain:

V =Ve +
1
2

3N

∑
i=1

3N

∑
k=1

Wikqiqk (10)

Wik ≡
(

∂ 2V
∂qi∂qk

)
e

(11)

V =Ve +
1
2

qTWq (12)

The matrix W is called the mass-weighted Cartesian force constant matrix.

6) To find equations of motion for the classical mechanical vibration of molecules,
we use the Newton’s second law (Fx = max). The x-component of the force acting
on each atom is given by:

Fx,α =− ∂V
∂xα

= mα

d2xα

dt2 (13)

We can rewrite this equation using the mass-weighted coordinates qi =
√

mαxα :

∂V
∂xα

=
∂V
∂qi

∂qi

∂xα

= m1/2
α

∂V
∂qi

(14)

d2xα

dt2 =
d2

dt2

(
qi

m1/2
α

)
=

1

m1/2
α

d2qi

dt2 (15)

This leads to:

d2qi

dt2 +
∂V
∂qi

= 0 , i = 1, . . . ,3N (16)

Here, V is given by Eq. (10) and contains a double sum over the coordinates qi.
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Hence, the derivative ∂V
∂qi

will contain a single sum over qi:

d2qi

dt2 +
3N

∑
j=1

Wi jq j = 0 , i = 1, . . . ,3N (17)

q̈+Wq = 0 (18)

This is a coupled system of differential equations that involves all qi’s, which
makes the solution of this system of equations very complicated.

7) To solve this system of coupled equations, we seek a unitary transformation
of the coordinates qi to a new set of coordinates which will be uncoupled. We
consider

Qk =
3N

∑
i=1

Uikqi UTU = UUT = 1 (19)

Q = UTq q = UQ (20)

Thus, the equations of motion become:

UQ̈+WUQ = 0 (21)

Q̈+UTWUQ = 0 (22)

We choose U such that

UTWU = ΛΛΛ =


λ1 0 . . . 0
0 λ2 . . . 0
. . . . . . . . . . . .

0 0 . . . λ3N

 (23)

Hence, the transformation matrix U is the eigenvector matrix of the real and sym-
metric force constant matrix W. We can obtain U by diagonalizing the matrix
W or by solving the secular equation det(Wi j− δi jλi) = 0. Then, the system of
differential equations becomes uncoupled:

Q̈+ΛΛΛQ = 0 (24)

d2Qi

dt2 +λiQi = 0 , i = 1, . . . ,3N (25)
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The solutions of these differential equations have the form:

Qi = Bi sin(
√

λit +bi) , i = 1, . . . ,3N (26)

where Bi and bi are some constants. Transforming Qi back to the old set of the
mass-weighted Cartesian coordinates, we get:

qk =
3N

∑
i=1

Aki sin(
√

λit +bi) , k = 1, . . . ,3N (27)

where Aki =UkiBi. Eqs. (26) and (27) demonstrate that the solutions of the equa-
tions of motion correspond to the harmonic vibrations. The constants

√
λi, bi,

and Bi contain information about the vibrational frequency, phase, and amplitude,
respectively.

8) The coordinates Qk are called normal coordinates and the vibrations associ-
ated with these coordinates are called normal modes. Let us look at what these
modes physically represent. We consider a special case with only one non-zero
constant Bm 6= 0 (Bi = 0, i 6= m), i.e. only one normal mode with non-zero ampli-
tude. In this case, Eq. (27) contains a single term representing the contribution
from the normal mode m for each qk:

qk = Akm sin(
√

λmt +bm) , k = 1, . . . ,3N (28)

We see that the coordinates of each atom vibrate in phase with one another with
the same frequency: when t has increased by Tm = 2π√

λm
, the sine function has gone

through one cycle. Thus the vibrational frequency is given by:

νm =
1

Tm
=

√
λm

2π
=

ωm

2π
(29)

where ωm =
√

λm is the angular frequency. We note that the amplitudes Akm are in
general different for each atom since Akm = UkmBm and the elements of Ukm can
be different for different k.

9) We summarize that a normal mode vibration is the one in which all the nu-
clei undergo harmonic motion with the same frequency and move in phase, but
generally with different amplitudes. The general classical solution for vibrations
of polyatomic molecules near equilibrium is an arbitrary superposition of nor-
mal modes. The normal coordinate coefficients Ukm and the normal frequencies
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νm =
√

λm
2π

are determined by diagonalizing the mass-weighted Cartesian force
constant matrix W.

10) In the basis of normal coordinates, expressions for the vibrational kinetic
and potential energies simplify:

T =
1
2
(UQ̇)TUQ̇ =

1
2

Q̇TQ̇ (30)

T =
1
2

3N−6

∑
i=1

Q̇2
i (31)

V =Ve +
1
2

qTUΛΛΛUTq =Ve +
1
2

QT
ΛΛΛQ (32)

V =Ve +
1
2

3N−6

∑
i=1

λiQ2
i (33)

The reason we have omitted contributions for the last six Qi’s is that the three
translational and three rotational coordinates are not harmonic motions, there-
fore, their λi = 0 rigorously for i = 3N−5, . . . ,3N (in our notation, these coordi-
nates with zero eigenvalues are labeled as 3N−5, . . . ,3N). Thus, for a nonlinear
molecule there are 3N− 6 normal modes with λi 6= 0 that correspond to internal
(vibrational) motions. For a linear molecule, there is one less rotational coordi-
nate, and thus there are 3N− 5 vibrational normal modes (the summation limits
need to be appropriately modified in the above equations). If the molecule is not
at its equilibrium geometry, the three λi corresponding to the rotational motion
can have small non-zero values due to forces acting on atoms to rotate back to the
equilibrium position.
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