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1 Schrödinger equation

In quantum chemistry we seek for approximate solutions of the non-relativistic
time-independent Schrödinger equation:

ĤΨ = EΨ . (1)

The Hamiltonian operator Ĥ is defined (in atomic units) as:

Ĥ =− 1

2

n∑
i

∇2
i −

1

2

N∑
A

1

MA

∇2
A

−
n∑
i

N∑
A

ZA
riA

+
n∑
i>j

1

rij
+

N∑
A>B

ZAZB
RAB

, (2)

where the indices i run over the total number of electrons (n), indices A,B
run over the total number of nuclei (N), MA is the mass of the nucleus A,
ZA is the nuclear charge, RAB is the distance between two nuclei, riA is
the electron-nuclear distance, and rij is the distance between two electrons.
The first two terms of Eq. (2) describe the kinetic energy of the electrons
and nuclei, while the last three terms describe the potential energy of the
electron-nuclear, electron-electron, and nuclear-nuclear interaction.

If Ψ is the true (exact) ground-state wavefunction, then the equation (1)
yields the exact energy E. We can express the differential equation (1) in
the integral form:

E =

∫
Ψ∗ĤΨ dτ , (3)

where the energy E is obtained by integrating over the coordinates of all
electrons and nuclei, which we label as τ . Using the Dirac’s bra-ket notation,
Eq. (1) can be rewritten as:

E = 〈Ψ|Ĥ|Ψ〉 . (4)

In Eqs. (3) and (4), we assumed that the wavefunction is normalized, i.e.:

〈Ψ|Ψ〉 =

∫
Ψ∗Ψ dτ = 1 . (5)
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2 Born-Oppenheimer Approximation

In Eq. (4), the wavefunction |Ψ〉 depends on the coordinates of all electrons
and nuclei in a molecule. We can take advantage of the fact that the nuclei
are much heavier than the electrons and, thus, assume that the electrons
are moving in the field of the fixed nuclei. Within this approximation (also
known as the Born-Oppenheimer approximation), the second term of Eq. (2)
(the kinetic energy of the nuclei) can be neglected and the last term of Eq. (2)
(the internuclear repulsion) can be considered to be constant. The energy
expression takes the form:

E = Eelec + Enuc = 〈Ψelec|Ĥelec|Ψelec〉+
N∑

A>B

ZAZB
RAB

. (6)

The first term of Eq. (6) is the solution of the electronic Schrödinger equation

Ĥelec |Ψelec〉 = Eelec |Ψelec〉 , (7)

where |Ψelec〉 is the wavefunction that depends only on the coordinates of the
electrons and the electronic Hamiltonian is defined as:

Ĥelec =− 1
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In Eq. (8), we defined the one-electron operator

ĥi =− 1

2
∇2
i −

N∑
A

ZA
riA

, (9)

which is often referred to as the core Hamiltonian.
From now on, we will always assume that we work in the framework of the

Born-Oppenheimer approximation and define Ĥ ≡ Ĥelec and |Ψ〉 ≡ |Ψelec〉
for brevity.
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3 Variational method

The electronic Schrödinger equation (7) yields the exact ground-state energy
(E = E0) provided that |Ψ〉 is the exact ground-state electronic wavefunction.
Let’s consider an approximate wavefunction |Ψ̃〉. In this case, we can write
the energy as an expectation value:

Ẽ =
〈Ψ̃|Ĥ|Ψ̃〉
〈Ψ̃|Ψ̃〉

. (10)

We can show that the expectation value (10) may approach but never be
lower than the exact ground state energy E0 of the system:

Ẽ ≥ E0 . (11)

Eq. (11) is known as the variational principle. It becomes an equality if and
only if |Ψ̃〉 is the exact ground-state wavefunction.

To prove that, we will use the fact that the Hamiltonian Ĥ is Hermitian
and, therefore, its eigenfunctions form a complete and orthonormal set of
basis functions, which we will denote as |ΦI〉. This orthonormal set can be
used to represent any wavefunction |Ψ̃〉 as a linear combination:

|Ψ̃〉 =
∑
I

CI |ΦI〉 , (12)

where

Ĥ |ΦI〉 = EI |ΦI〉 , (13)∑
I

C∗ICI = 1 . (14)

Then, for the expectation value (10) we obtain:

Ẽ =
∑
IJ

C∗ICJ 〈ΦI |Ĥ|ΦJ〉 =
∑
I

C∗ICIEI , (15)

where we used the fact the the eigenfunctions |ΦI〉 are orthonormal. We can
now subtract the exact ground-state energy from both sides of Eq. (15):

Ẽ − E0 =
∑
I

C∗ICI(EI − E0) . (16)
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Note that each term in the summation on the r.h.s. of Eq. (16) is either zero
or positive, since EI ≥ E0. Thus, we can conclude that

Ẽ − E0 ≥ 0 , (17)

which proves that Eq. (11) is true.
The variational principle states that the energy expectation value is a

rigorous upper bound to the exact ground state energy. The essential problem
in the variational method is to find a wavefunction, which gives the lowest
possible value of Ẽ. For this purpose, the variational condition

δẼ = 0 (18)

is usually employed. If the chosen wavefunction is a good approximation
to the exact wavefunction, it is possible to approach the exact energy very
closely by enforcing the variational condition (18). In general, the more
variational parameters is included in the variational wavefunction, the closer
the exact energy can be approached as these variables are optimized.

4 Hartree-Fock approximation

The main problem of quantum chemistry is finding approximate solutions
to the electronic Schrödinger equation. Central to this problem for systems
with many electrons is the Hartree-Fock approximation. It has played an
important role in the development of modern quantum chemistry and our
theoretical understanding of chemistry in general. In addition, it usually
constitutes the first step towards more accurate approximations.

In the Hartree-Fock approximation, the electronic wavefunction is ex-
pressed as the antisymmetrized product of the one-electron basis functions
ψi(xi) (so-called spin-orbitals):

|Ψ(x1, . . . , xn)〉 ≈ |ΨHF〉 = Â(x1, . . . , xn)
n∏
i

ψi(xi) , (19)

where xi denotes the spin and spatial coordinates of the ith electron. The
antisymmetrizer operator Â(x1, . . . , xn) is used to ensure that the resulting
many-electron wavefunction is antisymmetric with respect to the permuta-
tion of any pair of the electrons (thus, satisfies the Pauli exclusion principle).
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Each spin-orbital ψ(xi) can be expressed as a product of two functions:

ψ(xi) = φ(i)σ(i) , (20)

where φ(i) is the spatial orbital, which depends only on the spatial coordinates
of the ith electron, and σ(i) is the spin function, which denotes the spin (we
use σ(i) = α(i) for the spin-up electron and σ(i) = β(i) for the spin-down
electron). The spin-orbitals satisfy the orthonormality condition:

〈ψi|ψj〉 = Sij = δij , (21)

where δij is the Kronecker delta:

δij =

{
1 for i = j
0 for i 6= j .

(22)

The same orthonormality condition applies to the spatial orbitals and the
spin functions.

Now, let’s consider an example of the Hartree-Fock wavefunction for a
system with two electrons. We will assume that both electrons occupy the
same spatial orbital (φ1) with opposite spins (as in the ground electronic
state of a hydrogen molecule or a helium atom). Thus, we can express the
electronic wavefunction as:

|ΨHF(x1, x2)〉 = Â(x1, x2)ψ1(x1)ψ2(x2)

=
1√
2

[ψ1(x1)ψ2(x2)− ψ1(x2)ψ2(x1)]

=
1√
2

[φ1(1)α(1)φ1(2)β(2)− φ1(2)α(2)φ1(1)β(1)] . (23)

In Eq. (23), the prefactor 1√
2

is necessary to satisfy the normalization condi-

tion 〈ΨHF|ΨHF〉 = 1 (this prefactor can be included in the definition of the
operator Â(x1, . . . , xn)). We can see that the above wavefunction satisfies
the Pauli principle, i.e. it is antisymmetric with respect to the interchange
of the two electrons (|ΨHF(x1, x2)〉 = − |ΨHF(x2, x1)〉). We also observe that
if we put two electrons in the same spatial orbital with the parallel spins
the resulting wavefunction will be zero, which is a consequence of the Pauli
principle.
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For a system with more than two electrons, the Hartree-Fock wavefunc-
tion can be written in the form similar to Eq. (23), but the resulting expres-
sion will be quite lengthy, as it will include more terms and longer products
of spin-orbitals. We can write the wavefunction in a more compact form if
we realize that Eq. (19) is the definition of the determinant:

|ΨHF〉 =
1√
n!

∣∣∣∣∣∣∣∣
ψ1(1)
ψ1(2)
. . .
ψ1(n)

ψ2(1)
ψ2(2)
. . .
ψ2(n)

. . .

. . .

. . .

. . .

ψn−1(1)
ψn−1(2)
. . .

ψn−1(n)

ψn(1)
ψn(2)
. . .

ψn(n)

∣∣∣∣∣∣∣∣ , (24)

where we used a shorthand notation for the electron coordinates (ψi(k) ≡
ψi(xk)). The wavefunction in Eq. (24) is known as the Slater determinant.
We can easily verify that Eq. (24) reduces to Eq. (23) for the two-electron sys-
tem that we considered as an example. Interestingly, Eq. (24) demonstrates
one of the postulates of quantum mechanics: each electron is associated
with every orbital, i.e. electrons are indistinguishable. Since a determinant
is uniquely defined by its diagonal (e.g., the product of the occupied or-
bitals in Eq. (24)), we can represent the wavefunction more compactly as
|ΨHF〉 = |ψ1ψ2 . . . ψn−1ψn〉. In this notation, the normalization prefactor is
implied.

5 Hartree-Fock energy

Now that we have defined the Hartree-Fock wavefunction, it is time to solve
the Schrödinger equation. Using Eq. (6), we can write the electronic energy
of the system as:

Eelec ≈ EHF = 〈ΨHF|Ĥelec|ΨHF〉 . (25)

Note that in the above equation the integration is performed over the co-
ordinates of all n electrons, but the Hamiltonian Ĥelec contains terms that
depend on at most two electrons at a time (see Eq. (8)). Using the fact
that the wavefunction |ΨHF〉 can be represented in terms of the products of
the spin-orbitals and that the spin-orbitals are orthonormal (Eq. (21)), the
n-electron integral in Eq. (25) can be reduced down to a sum of the one- and
two-electron integrals. The energy expression takes the following form:

EHF =
n∑
i

〈i|ĥ|i〉+
1

2

n∑
ij

〈ij||ij〉 , (26)
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where 〈i|ĥ|i〉 are the integrals over the one-electron terms of the Hamiltonian

〈i|ĥ|i〉 =

∫
ψ∗i (1)ĥ1ψi(1) dτ1 (27)

and 〈ij||ij〉 are the integrals over the two-electron repulsion operator:

〈ij||ij〉 = 〈ij|ij〉 − 〈ij|ji〉 , (28)

〈ij|ij〉 =

∫
ψ∗i (1)ψ∗j (2)

1

r12
ψi(1)ψj(2) dτ1 dτ2 . (29)

Note that the double vertical bar in 〈ij||ij〉 implies that the two-electron
integral is antisymmetrized, i.e. 〈ij||ij〉 = −〈ij||ji〉. In general, the two-
electron integrals have the following symmetry properties:

〈pq||rs〉 = −〈pq||sr〉 = −〈qp||rs〉 = 〈qp||sr〉
= 〈rs||pq〉 = −〈sr||pq〉 = −〈rs||qp〉 = 〈sr||qp〉 , (30)

〈pq|rs〉 = 〈rq|ps〉 = 〈ps|rq〉 = 〈rs|pq〉
= 〈qp|sr〉 = 〈qr|sp〉 = 〈sp|qr〉 = 〈sr|qp〉 . (31)

The notation used for the two-electron integrals in Eqs. (28) to (31) is called
the Physicists’ notation. In some literature, the Chemists’ notation is used
where the two-electron integrals are represented as (pq|rs). There exists a
simple relationship between the two types of notation:

(pq|rs) =

∫
ψ∗p(1)ψq(1)

1

r12
ψ∗r(2)ψs(2) dτ1 dτ2 = 〈pr|qs〉 . (32)

6 Hartree-Fock equations

Eq. (26) states that the Hartree-Fock energy can be evaluated using the spin-
orbitals |ψi〉. But how do we determine |ψi〉? According to the variational
principle (Section 3), the best approximation to the exact wavefunction is
given by the Hartree-Fock wavefunction that has the lowest energy. Thus,
we will seek for the spin-orbitals that minimize the Hartree-Fock energy.
An important condition is that the spin-orbitals should remain orthonormal
during the minimization. We can perform such constrained minimization by

8



using the Lagrange’s method of undetermined multipliers, where we construct
a functional that has the form of the Hartree-Fock energy augmented by the
orthonormality constraint:

L = EHF −
n∑
ij

εij(Sij − δij) . (33)

In Eq. (33), εij are the Lagrange multipliers and Sij is the overlap between
the two spin-orbitals (Eq. (21)). Setting the variation δL = 0, we arrive at
the equations that prescribe how to obtain the spin-orbitals that minimize
the Hartree-Fock energy:

f̂ |ψi〉 = εi |ψi〉 . (34)

Thus, the optimal spin-orbitals must be the eigenfunctions of the one-electron
operator f̂ called the Fock operator:

f̂(1) = ĥ(1) +
n∑
j

(Ĵj(1)− K̂j(1)) , (35)

where Ĵj and K̂j are the Coulomb and exchange operators, respectively. The
Coulomb operator is defined as:

Ĵj(1) =

∫
ψ∗j (2)ψj(2)

1

r12
dτ2 , (36)

while the exchange operator can be defined in terms of its action on a spin-
orbital |ψi〉:

K̂j(1)ψi(1) =

∫
ψ∗j (2)ψi(2)

1

r12
dτ2 ψj(1) . (37)

Note that although the spin-orbitals |ψi〉 must be the eigenfunctions of the
Fock operator, the Fock operator itself depends on the spin-orbitals |ψi〉 via
the operators Ĵj and K̂j. This demonstrates the self-consistent nature of the
Hartree-Fock equations: changing the spin-orbitals leads to a modified Fock
operator, which gives rise to a new set of spin-orbitals as its eigenfunctions.
In practice, the Hartree-Fock equations are solved by starting with an initial
set of spin-orbitals |ψi〉 (also known as the guess) and optimizing the spin-
orbitals by updating the Fock operator and solving Eq. (34) at every iteration.
This process is called the self-consistent field method (SCF).
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The Hartree-Fock equations can be solved efficiently if we formulate
Eq. (34) in the matrix form. Multiplying both sides of Eq. (34) by 〈ψj|,
we obtain:

fji = 〈ψj|f̂ |ψi〉 = εiδij , (38)

Thus, the spin-orbitals can be obtained by diagonalizing the Fock operator
matrix fij, which can be expressed in terms of the one- and two-electron
integrals as:

fij = 〈i|ĥ|j〉+
n∑
k

〈ik||jk〉 . (39)

The eigenvalues of the Fock matrix εi are called the orbital energies.

7 Hartree-Fock theory in the atomic orbital

basis

The Hartree-Fock equations can be solved by representing the spin-orbitals
on a grid and integrating over them numerically. However, a much more
common and efficient way to solve Eq. (34) is to express the spin-orbitals
as a linear combination of the Gaussian-type atom-centered basis functions
(so-called “atomic orbitals”):

|ψi〉 =
N∑
µ

Ci
µ |χµ〉 , (40)

where N is the total number of atomic orbitals. [Note that in Eq. (40) we
do not include the spin function (Eq. (20)) that is necessary to make sure
that the spin-orbitals of different spin are orthogonal. However, as long as
the coefficients Ci

µ satisfy the orthogonality requirement, the spin function
can be omitted. See Section 8 for more details.] In the simplest case, each
basis function |χµ〉 is represented as a single Gaussian-type function in the
Cartesian space (so-called Gaussian-type orbital, GTO):

|χGTO
µ (r)〉 = Nc x

lymzne−αµr2 , (41)

where r =
√
x2 + y2 + z2, Nc is the normalization coefficient, αµ is the pa-

rameter that defines the shape of the basis function’s radial distribution, and
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the exponents l,m, n are related to the projection of the basis function’s an-
gular momentum. In practice, the atomic orbitals |χµ〉 are usually expressed
in terms of the linear combination of GTO’s with fixed coefficients (so-called
contracted GTO):

|χµ(r)〉 =
∑
ν

cν |χGTO
ν (r)〉 . (42)

This allows to reduce the number of integrals that need to be evaluated
during a computation without significantly loosing accuracy.

In the atomic-orbital formulation, the problem of finding the optimal
spin-orbitals is reduced to the problem of finding the best Ci

µ coefficients that
minimize the Hartree-Fock energy in a specified basis set. As we increase the
size of the basis setN , the energy obtained at the end of the SCF optimization
will approach the lowest possible Hartree-Fock energy (so-called Hartree-Fock
basis set limit).

We can now use Eq. (40) to formulate the Hartree-Fock equations in the
atomic orbital basis. First, we consider expression for the energy:

EHF =
N∑
µν

n∑
i

Ci∗
µ C

i
ν 〈µ|ĥ|ν〉+

1

2

N∑
µνρσ

n∑
ij

Ci∗
µ C

j∗
ν C

i
ρC

j
σ 〈µν||ρσ〉

=
N∑
µν

Dµν 〈µ|ĥ|ν〉+
1

2

N∑
µνρσ

DµρDνσ 〈µν||ρσ〉 , (43)

where 〈µ|ĥ|ν〉 ≡ 〈χµ|ĥ|χν〉, 〈µν||ρσ〉 ≡ 〈χµχν ||χρχσ〉, and we defined the
density matrix Dµν that can be expressed in terms of the orbital coefficients:

Dµν =
n∑
i

Ci∗
µ C

i
ν . (44)

Note that Eq. (43) is now expressed in terms of the one- and two-electron
integrals in the atomic-orbital basis and all of the information about the
Hartree-Fock wavefunction (i.e., spin-orbitals) is now included in the den-
sity matrix. This demonstrates an important advantage of working in the
atomic-orbital formulation: as the molecular orbitals change during the SCF
optimization, only the density matrix changes, while the molecular integrals
do not. As a result, the one- and two-electron integrals can be computed
only once (e.g., at the beginning of a computation) and stored in memory for
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later use, which significantly reduces the cost of computing the Hartree-Fock
energy.

Let us now turn our attention to the Hartree-Fock equations. Starting
with Eq. (38) and multiplying by 〈χν | on the left, we obtain:

N∑
µ

〈ν|f̂ |µ〉Ci
µ = εi

N∑
µ

〈ν|µ〉Ci
µ = εi

N∑
µ

SνµC
i
µ . (45)

In the matrix form, Eq. (45) can be written as:

FC = SCε , (46)

where ε is a diagonal matrix of the orbital energies. The atomic-orbital basis
Fock matrix Fµν = 〈µ|f̂ |ν〉 has the following form:

Fµν = 〈µ|ĥ|ν〉+
N∑
ρσ

〈µρ||νσ〉Dρσ . (47)

(It is a good exercise to verify this equation by starting with Eq. (39)). Note
that while in the spin-orbital basis solving the Hartree-Fock equations reduces
to diagonalizing the Fock matrix (Eq. (38)), in the atomic orbital basis it is
not that straightforward due to the fact that the basis functions |χµ〉 are in
general non-orthogonal, which leads to the appearance of the overlap matrix
S in Eq. (46). In other words, Eq. (46) is no longer a simple eigenvalue
problem, it is a generalized eigenvalue problem. Nevertheless, we can still
solve Eq. (46) rather efficiently using a few mathematical tricks. First, we
construct two auxiliary matrices: the square-root overlap matrix (S1/2) and
its inverse (S−1/2). The S−1/2 matrix is defined such that S−1/2 S−1/2 = S−1

and can be computed by diagonalizing the S matrix, taking the inverse square
root of its eigenvalues, and transforming back using the eigenvectors:∑

µν

Uµµ′SµνUνν′ = sµ′δµ′ν′ ,

(S−1/2)µν =
∑
µ′

Uµµ′
1
√
sµ′
Uνµ′ . (48)

If we multiply both sides of Eq. (46) by S−1/2 from the left, we obtain:

S−1/2 FS−1/2 S1/2 C = S−1/2 SC ε ,

F̃ C̃ = C̃ ε . (49)
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Eq. (49) suggests that the generalized eigenvalue problem (46) can be con-
verted into a standard eigenvalue problem with the modified (transformed)
Fock matrix:

F̃ = S−1/2FS−1/2 . (50)

We can solve Eq. (49) by diagonalizing the F̃ matrix. Note that F and F̃ have
the same eigenvalues ε, but their eigenvectors are different and are related
to each other as:

C̃ = S1/2C . (51)

Thus, in order to obtain the orbital coefficients C, we first construct the F̃
matrix, diagonalize it, and then compute C = S−1/2 C̃. The procedure that
we used to solve the generalized eigenvalue problem in Eq. (49) is known as
the symmetric orthogonalization, it was first used in quantum chemistry by
Löwdin. As the name of this method suggests, it is based on the transforma-
tion of the non-orthogonal atomic orbitals |χµ〉 to the the orthogonal basis
|χ̃µ′〉 =

∑
µ |χµ〉 (S−1/2)µµ′ where the eigenvalue problem can be solved by

diagonalizing the symmetric matrix F̃. In fact, it is easy to verify that in the
basis of |χ̃µ′〉 the overlap matrix is the identity matrix.

The above equations summarize the general procedure for solving the
Hartree-Fock equations and computing the energy in the atomic orbital basis.
In short, here are the key steps of the self-consistent field (SCF) optimization:

1. Given the basis set, compute the one- and two-electron integrals in the
atomic orbital basis.

2. Using the overlap matrix S, form the S−1/2 matrix according to Eq. (48).

3. Form the initial (guess) Fock matrix according to Eq. (47), but neglect-
ing the contribution from the two-electron integrals.

4. Using the initial Fock matrix, solve the generalized eigenvalue problem
as shown in Eq. (49) and compute the initial orbitals as C = S−1/2 C̃.

5. Form the density matrix (Eq. (44)).

6. Form the new Fock matrix including the contribution from the two-
electron integrals (Eq. (47)).
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7. Compute the Hartree-Fock energy. Note that the energy expression
(43) can be expressed in terms of the Fock matrix elements:

EHF =
1

2

N∑
µν

Dµν(〈µ|ĥ|ν〉+ Fµν) . (52)

8. Using the new Fock matrix, solve the generalized eigenvalue problem
as shown in Eq. (49) and compute the new orbitals as C = S−1/2 C̃.

9. Form the new density matrix (Eq. (44)).

10. Check convergence. If the change in the energy and the RMS of the

density matrix elements (∆rms =
√∑

µν(D
new
µν −Dold

µν )2) is less than

the predefined threshold, the SCF optimization is finished. If not, go
back to step 6.

8 Restricted Hartree-Fock theory (RHF) for

closed-shell molecules

In the previous section, we discussed how the Hartree-Fock equations can
be solved efficiently by expressing the spin-orbitals as the linear combination
of the atomic orbitals. As the number of the atomic orbitals increases and
the number of the Ci

µ coefficients in Eq. (40) grows, solving the Hartree-
Fock equations becomes more expensive computationally. In this section, we
will briefly discuss how we can reduce the cost of solving the Hartree-Fock
equations for molecules with closed electronic shells (all electrons are paired).

First, we recall that the spin-orbitals |ψ(xi)〉 are the functions of the
spatial and spin coordinates of the electrons and that they can be expressed as
|ψ(xi)〉 = |φ(i)〉 |σ(i)〉, where |φ(i)〉 is the spatial orbital and |σ(i)〉 is the spin
function (we use |σ(i)〉 = |α(i)〉 for the spin-up electron and |σ(i)〉 = |β(i)〉
for the spin-down electron). Thus, every spin-orbital |ψi〉 can be assigned a
particular spin and labeled by the corresponding spin function (either α or β).
If we expand |ψi〉 using Eq. (40), solving the Hartree-Fock equations would
require finding the orbital coefficients Ci

µ for every spin-orbital independently
of its spin, even if some of the spin-orbitals with opposite spins share the same
spatial orbital |φ(i)〉. This situation is common in closed-shell molecules,
where every α spin-orbital shares the same spatial orbital with one of the
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β spin-orbitals (i.e., all electrons are paired). We can take advantage of
that by restricting the α spin-orbitals to have the same orbital coefficients
Ci
µ as the β spin-orbitals, thus, reducing the number of the independent

variables in the Hartree-Fock equations by a factor of two. In this case, the
Hartree-Fock equations can be formulated entirely in terms of the spatial
orbitals by integrating over the spin coordinates of the electrons. Using the
orthonormality of the spin functions (〈α|α〉 = 〈β|β〉 = 1, 〈α|β〉 = 0), the
Hartree-Fock energy expression can be written as:

EHF = 2

n/2∑
i

〈i|ĥ|i〉+

n/2∑
ij

(2 〈ij|ij〉 − 〈ij|ji〉) , (53)

where the indices i and j now refer to the spatial orbitals |φi〉 and |φj〉,
the one- and two-electron integrals are defined in terms of the spatial or-
bitals [〈i|ĥ|i〉 ≡ 〈φi(1)|ĥ|φi(1)〉, 〈ij|ij〉 = 〈φi(1)φj(2)|φi(1)φj(2)〉], and the
summations run over the number of doubly occupied orbitals (n/2). In the
atomic-orbital basis, Eq. (53) takes the form:

EHF = 2
N∑
µν

Dµν 〈µ|ĥ|ν〉+
N∑

µνρσ

DµρDνσ(2 〈µν|ρσ〉 − 〈µν|σρ〉) , (54)

where Dµν is the spinless (or spatial-orbital) density matrix:

Dµν =

n/2∑
i

Ci∗
µ C

i
ν . (55)

The Fock operator can be written as:

fij = 〈i|ĥ|j〉+

n/2∑
k

(2 〈ik|jk〉 − 〈ik|kj〉) , (56)

while in the atomic orbital basis it has the following form:

Fµν = 〈µ|ĥ|ν〉+
N∑
ρσ

Dρσ(2 〈µρ|νσ〉 − 〈µρ|σν〉) . (57)

Using Eq. (57), the Hartree-Fock energy can be written as:

EHF =
N∑
µν

Dµν(〈µ|ĥ|ν〉+ Fµν) . (58)
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